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Dynamics of local magnetic moments induced by itinerant Weyl electrons
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We derive the effective interactions between local magnetic moments which are mediated by Weyl electrons
in magnetic topological semimetals. The resulting spin dynamics is governed by the induced Heisenberg, Kitaev,
and Dzyaloshinskii-Moriya (DM) interactions with extended range and oscillatory dependence on the distance
between the spins. These interactions are realized in multiple competing channels shaped by the multitude of
Weyl nodes in the electron spectrum. Microscopic spins need to be spatially modulated with a channel-dependent
wave vector in order to take advantage of the interactions. The DM vector is parallel to the displacement
between the two interacting spins, and requires the presence of Weyl electron Fermi surfaces. We also derive
the Weyl-induced chiral three-spin interaction in the presence of an external magnetic field. This interaction
has an extended range as well, and acts upon the spatially modulated spins in various channels. Its tendency
is to produce a skyrmion lattice or a chiral spin liquid which exhibits topological Hall effect. Ultimately,
the theory developed here addresses magnetic dynamics in relativistic metals even when chiral magnetism is
microscopically precluded. We discuss insights into the ordered state of the magnetic Weyl semimetal NdAlSi.
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I. INTRODUCTION

Physical systems that combine strong interactions and
nontrivial topology can exhibit many interesting phenomena.
The most striking ones feature topological defects [1]—either
static in ordered phases such as the Abrikosov vortex lattice
[2], or delocalized in incompressible quantum liquids such as
the fractional quantum Hall states [3]. Magnetic topological
semimetals, where magnetism coexists with Dirac, Weyl, or
quadratic-band-touching electrons, are a new class of topolog-
ical interacting materials envisioned theoretically [4–7] and
gradually discovered experimentally [8]. Here, itinerant elec-
trons with nontrivial band topology can develop magnetism
themselves through a Fermi surface instability, or couple to
an independent set of local magnetic moments. Regardless
of whether the instability or intrinsic magnetism have any
topological footprint, the itinerant electrons can transfer cer-
tain aspects of their topological dynamics to the magnetic
moments. This process has been described in a general field
theory framework [9], but here we take a more concrete ap-
proach and reveal the experimentally relevant details of the
Weyl electrons’ influence on local moments.

In a broad sense, the following research is motivated by
the quest for new chiral magnets and new magnetic states
of matter. A Weyl spectrum of mobile electrons can arise
from a particular type of spin-orbit coupling. It has been
shown recently [9] that the same spin-orbit coupling act-
ing on localized electrons generates Dzyaloshinskii-Moriya
(DM) and chiral spin interactions which may be able to in-
troduce magnetic point defects (hedgehogs) in the texture of
the residual spins. A spin-orbit (i.e., DM) coupling [10–14],
and a chiral spin interaction enabled solely by an external

magnetic field [15–17], can also introduce magnetic line de-
fects (skyrmions). These are the direct microscopic origins
of topological and chiral magnetism. We will show in this
paper that itinerant Weyl electrons indirectly provide the
same ingredients for the topological magnetism of local mo-
ments that they interact with. The observed manifestations
of chiral magnetism include skyrmion [18] and hedgehog
[19] lattices, spin-momentum locking of spin waves [20–24],
spin wave topological bands [25,26], anomalous topological
Hall effect [27–35], and spin/thermal Hall effects [36–41].
Unconventional states such as chiral spin liquids are antic-
ipated when quantum fluctuations delocalize the magnetic
topological defects. The spin liquid variety associated with
line defects has been possibly observed [42–44], while the
proposed three-dimensional varieties [45–48] exhibit a frac-
tional magnetoelectric effect and generalize the topological
order of fractional quantum Hall states to higher dimensions.

In a more concrete and experimentally motivated [49] con-
text, this study explores the unique features of magnetism
which are tied to the relativistic nature of itinerant quasi-
particles and their presence at multiple locations in the first
Brillouin zone. Such features are somewhat independent of
the Weyl electron chirality and can be experimentally ob-
served even when the microscopic circumstances, such as spin
anisotropy, preclude chiral magnetism.

The purpose of this paper is to analyze the s-d model of
local moments coupled to itinerant Weyl electrons, and derive
the electron-mediated interactions among the moments. The
Weyl nodes are kept spherically symmetric in the present
analysis, but otherwise form an arbitrary set whose total topo-
logical charge (chirality) adds up to zero in the first Brillouin
zone. Every pair of Weyl nodes defines a separate channel
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for two-spin Ruderman-Kittel-Kasuya-Yosida (RKKY) inter-
actions. We find that the channels with equal-chirality nodes
favor spatial modulations of the local magnetization with a
period set by the difference between the node wave vectors.
Therefore, it is easiest to describe the induced interactions in
terms of “rectified” or “staggered” spins whose smooth ferro-
magnetic configuration represents the modulated microscopic
spins. The two-spin (RKKY) interactions include Heisenberg,
Kitaev, and DM couplings between the rectified moments.
We also obtain a three-spin chiral interaction in the pres-
ence of an external magnetic field. All couplings have an
extended range (over a few lattice constants a), and additional
algebraically attenuated sign-changing oscillations in their de-
pendence on the distance between spins. These features are
controlled by the momentum cut-off � of the linear Weyl
spectrum, so the interactions appear short ranged in the con-
tinuum limit πa−1 > � → ∞.

Previous theoretical studies of RKKY interactions in Weyl
semimetals [50–55] have also indicated the presence of
Heisenberg and DM interactions, as well as the “Ising” in-
teraction of the kind found in Kitaev models [56]. However,
these studies do not agree in a number of important details,
such as the orientation of vectors that characterize the DM and
Kitaev interactions, and the spatial range of interactions. The
present work attempts to resolve these discrepancies with a
thorough and transparent calculation. We find agreement with
Refs. [50,51] in terms of the overall orientation of DM and
Kitaev interactions, and attribute it to the same choice of the
Weyl spectrum symmetry. However, the long-range behavior
of interactions obtained here is naively different from the
one found in most other studies, and compatible only with
Ref. [55] which formulates its findings in the continuum limit.
This discrepancy probably stems from the focus on different
length scales: here we seek the dynamics at relatively short
distances in order to address Weyl semimetals with dense
magnetic moments on the lattice. We also extend the earlier
studies in several ways. The present analysis is not restricted
to only two Weyl nodes, it goes beyond the two-spin interac-
tions, and provides new relevant information for the modeling
of spin dynamics in the experimentally explored magnetic
Weyl semimetals [49]. This paper complements other related
works [57–63] by focusing on the effects specifically arising
due to the spin-orbit coupling. Studies of magnetic interac-
tions on the topological insulator surface have revealed similar
DM interactions [64–66], even when the surface states are
gapped [67].

A. The summary of results

Perhaps the most experimentally relevant finding of this
study is that the pairs of equal-chirality Weyl nodes con-
tribute ferromagnetic Heisenberg interactions between two
proximate rectified spins. This unfrustrated coupling is largest
at short range and stimulates magnetic orders at wave vectors
�Q = Qm − Qn given by the locations Qm, Qn of Weyl nodes
in the first Brillouin zone. The uniform channel �Q = 0 is
made strongest by the contributions from every individual
Weyl node through the intranode scattering of electrons on
local moments. The same-chirality internode scattering chan-
nels �Q �= 0 can also be competitive, especially if �Q is

nearly commensurate with the lattice that the moments reside
on. Spin modulations with incommensurate �Q are possi-
ble, but disadvantaged at least at low temperatures when the
magnetic order is to feature multiple wave vectors (e.g., the
prominent �Q = 0 and one or more �Q �= 0). This is due to
the presence of higher modulation harmonics n�Q (n > 1),
which are necessitated by the rigid magnitude of microscopic
local spins but generally not favored by the locations of the
Weyl nodes. All channels involving two opposite-chirality
Weyl nodes are antiferromagnetic among the rectified spins.
Their extended range can then introduce a geometric frustra-
tion for a dense arrangement of spins, so the ferromagnetic
channels are naively expected to control the magnetic state.

This simple physical picture qualitatively explains the or-
dered state [49] of the magnetic Weyl semimetal NdAlSi.
Neutron scattering measurements have discovered a collinear
easy-axis magnetic order of Nd moments, which combines
a ferromagnetic component with spin modulations at the
wave vector q = ( 2

3 + δ, 2
3 + δ, 0) in the lattice constant units.

The small incommensurate part δ corresponds to an ampli-
tude modulation in an intermediate temperature range, and
disappears below a lower critical temperature. At the same
time, band structure calculations have identified a large num-
ber of Weyl nodes in both paramagnetic and ferromagnetic
states near the Fermi level, unobscured by any sizable con-
ventional Fermi pocket. Some of these nodes form small
chirality dipoles in momentum space, created by the spin-
orbit coupling, with sets of dipoles separated by ∼q and its
symmetry-related wave vectors. Other sets of Weyl nodes are
found at different incommensurate separations. Given these
spectral features, the observed magnetic order fits the naive
expectation of ordering at both �Q = 0 and �Q ∼ q (the ob-
served single-ion easy-axis anisotropy does not pose a critical
obstacle to either channel). The incommensurate modulation
by amplitude is the result of fluctuations that resolve the
frustration between the anisotropy, the desired smooth spin
modulations at q, and the microscopically rigid spin magni-
tude. When the temperature becomes too low, the fluctuations
cannot soften the spins and the incommensurate component of
the magnetic order becomes unsustainable.

The induced Kitaev and DM interactions are found to van-
ish at shortest distances, but still acquire the strength of the
same order of magnitude as the Heisenberg coupling at finite
distances. The ferromagnetic or antiferromagnetic nature of
the Kitaev interaction (at distances where it is strongest) is the
same as that of the Heisenberg coupling, so its main antici-
pated effect is to reduce the continuous magnetic symmetry
down to a discrete group—still supporting at least collinear
orders as seen in NdAlSi [49] (note that the crystal fields
introduce spin anisotropy as well). More generally, the pres-
ence of sizable Kitaev interactions is interesting due to the
prospects for stabilizing Kitaev spin liquids [56,68–72]. The
Weyl-electron-induced DM interaction grows with the Fermi
energy |μ| measured relative to the Weyl nodes, and vanishes
when the nodes are exactly at the Fermi level. The DM vector
D ∝ ri − r j is parallel to the separation between the two inter-
acting spins at locations ri and r j . DM interactions generally
support spin twists into spiral configurations, and this struc-
ture of D favors the emergence of skyrmions or hedgehogs in
the spin texture [9]. However, any source of spin anisotropy
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goes against it and possibly leaves room only for a slight
spin misalignment with the local easy-axis directions. Such
a misalignment is seen in NdAlSi, but has not been elucidated
with sufficient detail yet [49].

The induced three-spin chiral interaction is perturbatively
weaker than any two-spin interaction, and generally even
more frustrated by the multitude of channels forged on the
full set of Weyl nodes. Up to three nodes are involved in
each channel, and the uniform channel contributed by each
single node is the most significant. However, this interaction
is proportional to the applied external magnetic field, and
perhaps can be made strong in strong fields. Its main tendency
is to stimulate skyrmions, magnetic line defects stretching
in the direction of the field. Like its RKKY counterparts,
this interaction features an algebraically attenuated oscillatory
dependence of its coupling constant on the mutual separations
between the spins (controlled by the momentum cut-off �).
Due to the increasing complexity of calculations, we did not
pursue four-spin and higher-order interactions. However, the
four-spin interaction is potentially interesting since it provides
an SU(2) part of the full U(1) × SU(2) chiral interaction
(φ + n̂�) n̂i(n̂ j × n̂k ), where φ ∝ B is the U(1) flux of the
external magnetic field B on the triangular plaquette formed
by the spins n̂i, n̂ j, n̂k , and � is the analogous SU(2) flux
of the gauge field that captures the spin-orbit coupling. The
SU(2) term is capable of stimulating skyrmions or hedgehogs
without magnetic field depending on the type of its non-
Abelian flux. The analysis appropriate for localized electrons
[9] suggests that Weyl electrons could favor the emergence
of magnetic hedgehogs via this mechanism. Note that its
perturbative weakness (at the fourth order) might also be
compensated by a large strength of the spin-orbit coupling.

B. Paper outline

Section II introduces the effective model of Weyl electrons
and local moments, and explains the general features of the
perturbation theory that yields the effective interactions be-
tween the moments. The qualitative properties of the induced
interactions, including their energy scales and scaling with the
model parameters, are deduced on general grounds before any
calculations. Section III proceeds with the technical deriva-
tion of the two-spin interactions, and presents the real-space
properties of the Heisenberg, Kitaev, and DM interactions at
the end (Sec. III C). Section IV derives the induced chiral
three-spin interaction, and analyzes its real-space structure at
the end (Sec. IV A). The final summary of conclusions and the
discussion of theory limitations, extensions, and applications
is presented in Sec. V.

II. EFFECTIVE HAMILTONIAN OF LOCAL MOMENTS

Consider a simple model of local moments n̂i and itinerant
electrons ψi that live on a three-dimensional lattice with sites
i:

H0 = Hn +
∑

k

εkψ
†
kψk + JK

∑
i

n̂i ψ
†
i σψi . (1)

The moments interact with itinerant electrons via a Kondo or
Hund coupling JK, and may have some intrinsic dynamics rep-

resented by Hn, such as (super)exchange, easy-axis anisotropy
due to crystal fields, etc. Both the itinerant electron dispersion
εk and JK are energy scales, and the fields n̂i and ψi are
dimensionless. We will derive the effective Hamiltonian

Heff = Hn +
∑

n

∑
i1···in

Ja1···an
i1···in n̂a1

i1
· · · n̂an

in
(2)

of local moments alone, which captures their emergent dy-
namics induced by the itinerant electrons. The intrinsic local
moment dynamics (Hn) will not be considered any further
since diagonalizing this Hamiltonian is not our present goal.
We will use the units h̄ = 1 and Einstein’s convention of
summation over the repeated spin-projection indices a j .

The effective Hamiltonian Heff is extracted from the effec-
tive action Seff by integrating out the Grassmann spinor field
ψ in the continuum-limit path integral

eiSeff[n̂i] ∝
∫

DψDψ† eiS[ψ,n̂i], (3)

with real-time action

S =
∫

dω

2π

d3k

(2π )3
ψ†(ω, k)(ω − εk )ψ (ω, k)

− JK

∫
dω

2π

dω′

2π

d3k

(2π )3

d3k′

(2π )3

× n̂(ω − ω′, k − k′) ψ†(ω′, k′)σψ (ω, k). (4)

The local moments have been converted to continuum limit
by the Fourier transform

n̂(
, q) = a3
∑

i

∫
dt ei(qri−
t )n̂i(t ), (5)

where ri are the discrete spatial coordinates of lattice sites
and a3 is the unit-cell volume (with a lattice constant a on
the cubic lattice). The perturbative expansion of the effective
action

Seff =
∑

n

∫
d4q1

(2π )4
· · · d4qn

(2π )4
(2π )4δ4

(
n∑

i=1

qi

)
×�a1···an (q1, . . . , qn) n̂a1 (q1) · · · n̂an (qn) (6)

is the sum of one-loop Feynman diagrams (Fig. 1)

�a1···an (q1, . . . , qn) = i
Jn

K

n

∫
d4k

(2π )4

× tr
[
G(k1)σ a1 G(k2)σ a2 · · · G(kn)σ an

]
,

(7)

with km = k +∑m−1
j=1 q j , because n̂i is not integrated out

and all diagrams in the expansion are connected. Here qi ≡
(
i, qi ) combines the frequency and momentum in a single
4 vector, σ a are Pauli matrices, and the electron Green’s
functions G(k) are spin matrices related to the time-ordered
expectation values

〈T ψ (k) ψ†(k′)〉 = i(2π )4δ4(k − k′) G(k)

in the noninteracting theory (with JK → 0). The nth order
diagram � involves n external fields n̂(qi ) and n electron
propagators, so it determines the coupling Ja1···an

i1···in ∝ Jn
K in (2).
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PREDRAG NIKOLIĆ PHYSICAL REVIEW B 103, 155151 (2021)

FIG. 1. Feynman diagrams for (a) two-spin and (b) three-spin
interactions. Thick external lines represent local moment fields and
thin lines represent Weyl electron propagators. The two-spin cou-
plings will include Heisenberg, Kitaev, and Dzyaloshinskii-Moriya
interactions, and the three-spin coupling is the chiral interaction
enabled by an external magnetic field or Weyl-node chirality in the
presence of magnetic order.

After the derivation of (7), the real-space couplings in the
effective Hamiltonian will be

Ja1···an
i1···in = − a3n

∫
d3q1

(2π )3
· · · d3qn

(2π )3
(2π )3δ3

(
n∑

i=1

qi

)
×�a1···an (q1, . . . , qn)ei(q1ri1 +···+qnrin ), (8)

with � evaluated at zero frequencies ω1 = · · · = ωn = 0.
Our analysis will focus on an idealized magnetic Weyl

semimetal whose electron spectrum εk contains NW Weyl
nodes with arbitrary chiralities χn = ±1 at arbitrary wave
vectors Qn, n = 1, . . . , NW. The periodic boundary conditions
of the first Brillouin zone impose the requirement

∑
n χn = 0.

We will assume for simplicity that all Weyl nodes sit at
the same energy ε = 0 and have perfect spherical symme-
try. Apart perhaps from the extreme dispersion tilting into
type-II nodes, anisotropies of the Weyl spectrum are not ex-
pected to introduce substantial changes in the final results. The
low-energy electrons associated with Weyl nodes must be for-
mally handled using NW distinct Grassmann spinors ψn. These
fields live at wave vectors Qn + k with “small” displacements
|k| < � from the Weyl nodes at Qn. The momenta carried by
local moments are restricted by momentum conservation to
Qm − Qn + q with small q. Therefore, the originally “large”
values of q on the left-hand side in (7) can select particular sets
of Weyl nodes with fixed large parts Qm − Qn of momentum
transfers. This prompts us to switch to a more precise notation

�a1···an
m1···mn

(q1, . . . , qn)

= i
Jn

K

n

∫
d4k

(2π )4
tr
[
Gm1 (k1)σ a1 Gm2 (k2)σ a2 · · · Gmn (kn)σ an

]
(9)

in which qi, k are understood to be the small wave vectors
in the vicinity of the selected Weyl nodes at Qm. When
we come back to the effective couplings on the lattice
(8), we will need to sum over all combinations of Weyl

nodes mi:

Ja1···an
i1···in = −a3n

∑
{m}

ei[(Qm2 −Qm1 )ri1 +···+(Qm1 −Qmn )rin ]

×
∫

d3q1

(2π )3
· · · d3qn

(2π )3
(2π )3δ3

(
n∑

i=1

qi

)
×�a1···an

m1···mn
(q1, . . . , qn)ei(q1ri1 +···+qnrin ). (10)

Since ri are the positions of local moments on lattice sites, the
modulations at internode displacement wave vectors Qm − Qn

are formally evident. Multiple channels of such “staggered”
modulations compete for their expression in the actual spin
correlations or magnetic order.

The Green’s function of Weyl electrons in (9) is

Gn(ω, k) = {ω − Hn(k) + i sgn[εn(k)]0+}−1
. (11)

Their linear energy dispersion εk ∼ ±v|k| − μ can be cap-
tured by the simple Weyl Hamiltonian

Hn(k) = vχnσk − μ (∀|k| < �) (12)

bundled with the chemical potential μ. χn = ±1 is the chi-
rality of the Weyl node. It will become apparent that the
momentum integrals in the Feynman diagrams are ultraviolet
divergent, so a momentum cut-off � is required. We will
limit � by the extent of the linear Weyl electron dispersion
in momentum space and hence calculate the full contribution
of the Weyl spectrum to the RKKY interactions. Having a
well-defined lattice scale, we will not pursue renormaliza-
tion which absorbs � into other measurable quantities (it
reduces the dominant part of the RKKY interactions to a
delta-function potential in the continuum limit [55]). The �

dependence of the induced interactions at the relevant lattice
scale indicates a possibility that nonlinear higher energy states
and bands also contribute to the RKKY interactions. Instead
of exploring this possibility here, we will just note that the
non-Weyl part of the RKKY interactions can be naturally
small, or at least not dominant. For example, the RKKY in-
teractions induced by electrons in conventional quadratically
dispersing bands are finite without a cutoff—they obtain from
�ab(q) ∝ J2

Kδab�(q), where �(q) is the Lindhard function.
Thus, the high-energy states of quadratic bands are not in-
fluential. A Weyl spectrum in materials naturally degenerates
into a “quadratic” dispersion at higher energies, effectively
cutting off the ultraviolet behavior of the Weyl dispersion.
Other dispersion nonlinearities in the band structure similarly
limit the influence of high-energy states. Generally the effects
of a local perturbation JK cannot be significant at arbitrarily
high energies, and we may capture this limitation within the
Weyl spectrum by a simple energy cut-off v�.

So, under plausible circumstances, we can assume that the
physics at the cut-off scale is sufficiently well understood
and proceed to estimate the RKKY interactions induced by
Weyl electrons even at short distances. This is important in
the present problem because the Weyl electron density of
states grows quadratically fast with energy, and we wish to
ultimately address the materials whose local moments are
closely packed on a lattice.

Once the cutoff introduces a length scale to the formally
relativistic spectrum, it will determine the spatial profile of
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the induced interactions with a resolution not better than
�−1 > (Qm − Qn)−1. When we substitute (10) into the ef-
fective Hamiltonian (2), we can define rectified spins ŝi =
n̂i exp[i(Qm − Qn)ri] by absorbing the modulation factors.
The rectified spins can have smooth spatial variations on the
lattice and represent entire clusters of the microscopic spins
n̂i modulated at Qm − Qn. The effective Hamiltonian is then
seen to capture the dynamics of rectified spins at length scales
larger than �−1.

The lattice length scale a explicitly enters (8) only as the
shown overall factor, due to the final switch to real space
via (5). Then, the simplicity of the model admits only one
relevant energy scale v� at zero temperature and chemical
potential. All couplings in the effective spin Hamiltonian can
be expressed in the scaling form

Ja1···an
i1···in = v�

(
a3�2JK

v

)n

f a1···an

(
δri j ;

μ

v�
,

B

v�
,

T

v�

)
,

(13)

where T is temperature in energy units, B is magnetic field
strength expressed as Zeeman energy, and δri j are the rela-
tive lattice displacements between the spins in the interacting
cluster. We will restrict the calculations to T = 0, but the
scaling form makes it apparent that low temperature is a small
perturbation (the energy scale v� is microscopic, hence easily
larger than the room temperature T ∼ 25 meV).

III. TWO-SPIN INTERACTIONS

Here we derive and analyze the two-spin interactions be-
tween local moments induced by the Weyl electrons. All such
interactions arise from the bubble diagram in Fig. 1(a). We

ought to calculate (9) at the second order of perturbation
theory:

�ab
mn(q) = i

J2
K

2

∫
d4k

(2π )4
tr
[
Gm

(
k− q

2

)
σ aGn

(
k+ q

2

)
σ b
]

(14)

(note the shift of the integration variables). The ingredient of
�ab

mn that we calculate first is the trace:

tr
[
Gm

(
k− q

2

)
σ aGn

(
k+ q

2

)
σ b
]

= 2 X ab(
, q; ω, k)
∏

s=±1

× 1

ω− 

2+μ−svχm|k − q

2 |+i0+sgn
(
svχm|k− q

2 |−μ
)

× 1

ω+ 

2 +μ−svχn|k+ q

2 |+i0+sgn
(
svχn|k+ q

2 |−μ
) ,

where

X ab(
, q; ω, k) =
[

(ω + μ)2 − 
2

4

]
δab

+ v2χmχn

[
2

(
kakb − qaqb

4

)
− δab

(
|k|2 − |q|2

4

)]
+ ivεabc

[
χm

(
ω + μ + 


2

)(
kc − qc

2

)
−χn

(
ω + μ − 


2

)(
kc + qc

2

)]
. (15)

We used (11) and (12) together with tr(1) = 2, tr(σ a) = 0, and
σ aσ b = δab + iεabcσ c involving the Levi-Civita tensor εabc.
Frequency ω integration in (14) is straightforward:

�ab
mn(q) = −J2

K

2

∑
s=±1

∫
d3k

(2π )3

{
sX ab

(

, q; svχm|k − q

2 | + 

2 − μ, k

)
θ
(−svχm|k − q

2 | + μ
)

vχm|k − q
2 | [(svχm|k − q

2 | + 

)2 − v2|k + q

2 |2 + iη+0+]
+ sX ab

(

, q; svχn|k + q

2 | − 

2 − μ, k

)
θ
(−svχn|k + q

2 | + μ
)

vχn|k + q
2 | [(svχn|k + q

2 | − 

)2 − v2|k − q

2 |2 + iη−0+]
}

. (16)

Here θ (x) is the step function. The infinitesimal imaginary parts in the poles of the electron Green’s function (11) contribute
infinitesimal corrections to the pole residues, which are collected in η±. Using

1

x + iη0+ = P
1

x
− iπ sgn(η)δ(x)

we see that a correction η can be important only when the integrand becomes singular (x = 0) at some momentum. This indeed
happens when the collective mode frequency 
 matches the energy of a particle-hole excitation. Therefore, the η± corrections
capture the decay of spin waves into particle-hole excitations, as discussed in the sequel paper [73]. Here we will focus only on
the nondissipative aspects of dynamics, by neglecting η± and calculating the principal value (P ) of the momentum integral. The
ensuing effective Hamiltonian will be manifestly Hermitian.

Since �ab
mn(
, q) is analytic at 
 = 0 for generic nonzero q, we can expand it in powers of 
 and associate the zeroth-order

term in the expansion with the instantaneous interactions between the spins. Therefore, taking the limit 
 → 0 provides access
to the nonretarded part of the effective spin interactions and enables further simplifications:

�ab
mn(q) = J2

K

8v3

∫
d3k

(2π )3

1

kq

[
X ab

− − (X ab
− )

∗

χm|k − q
2 | − X ab

− sgn
(
vχm|k − q

2 |− μ
)+ (X ab

− )
∗
sgn
(
vχm|k − q

2 | + μ
)

χm|k − q
2 |

− X ab
+ − (X ab

+ )
∗

χn|k + q
2 | + X ab

+ sgn
(
vχn|k + q

2 | − μ
)+ (X ab

+ )
∗
sgn
(
vχn|k + q

2 | + μ
)

χn|k + q
2 |

]
, (17)
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with

X ab
± = v2

∣∣∣k ± q
2

∣∣∣2δab + v2χmχn

(
2kakb − δab|k|2 − 2qaqb − δab|q|2

4

)
− iv2εabc

∣∣∣k ± q
2

∣∣∣[(1 + χmχn)
qc

2
± (1 − χmχn)kc

]
.

Note that the terms without sign functions in (17) vanish in typical perturbative treatments of Fermi liquids by the virtue of
X ∈ R. Here, however, X ∈ C originates in the chirality of Weyl nodes and yields Dzyaloshinskii-Moriya interactions between
the local moments.

Now we integrate out the momentum k using a polar coordinate system whose z axis is aligned with q. Choosing the polar
instead of, e.g., the spherical coordinate system, affects only the manner in which we capture the contributions of high-energy
states, since we must introduce a momentum cut-off �. These contributions are important but not universal, so the present theory
is unlikely to capture the properties of a real material with high accuracy (we only hope to reveal certain qualitative properties
of the RKKY interactions at short distances). Writing k = k‖ẑ + k⊥ = (k‖, k⊥, θ ) and q = qẑ we have

kq = k‖q,

∣∣∣k ± q
2

∣∣∣ = √(k‖ ± q

2

)2
+ k2

⊥. (18)

The polar coordinate system is convenient because these expressions do not depend on the polar angle θ . The only quantities
that depend on θ are the parts of X ab

± which are linear or quadratic in the components of k⊥; they either integrate out to zero or
average out to a half of the maximum value, while all other parts pick a factor of 2π from the angle integration. Hence we get

�ab
mn(q) = J2

K

8(2π )2vq

∞∫
−∞

dk‖

∞∫
0

dk⊥
k⊥
k‖

{
χm[Y ab

− − (Y ab
− )∗] − χn [Y ab

+ − (Y ab
+ )∗]

−Y ab
− sgn

[
v

√(
k‖ − q

2

)2

+ k2
⊥ − χmμ

]
− (Y ab

− )∗sgn

[
v

√(
k‖ − q

2

)2

+ k2
⊥ + χmμ

]

+Y ab
+ sgn

[
v

√(
k‖ + q

2

)2

+ k2
⊥ − χnμ

]
+ (Y ab

+ )∗sgn

[
v

√(
k‖ + q

2

)2

+ k2
⊥ + χnμ

]}
, (19)

where we defined

Y ab
± = X ab

±

v2
√(

k‖ ± q
2

)2 + k2
⊥

. (20)

From this point on we will separately consider the pairs of
Weyl nodes with the same χmχn = +1 and opposite χmχn =
−1 chiralities. We will also specialize to concrete values of
spin indices a, b ∈ {‖,⊥,⊥′}, where ‖ indicates the direction
along q and ⊥,⊥′ are any two orthogonal directions both
perpendicular to q.

A. Same-chirality nodes

With χm = χn, the formulas (20) reduce to

Y ‖‖
± = 2k‖

(
k‖ ± q

2

)√(
k‖ ± q

2

)2 + k2
⊥

, Y ⊥⊥
± = k2

⊥ ± q
(
k‖ ± q

2

)√(
k‖ ± q

2

)2 + k2
⊥

,

Y ⊥⊥′
± = − iq ε‖⊥⊥′

, Y ‖⊥
± = Y ⊥‖

± = 0. (21)

It is convenient to carry out the remaining integrations using
dimensionless variables

ζ = vq

2|μ| , ξ = vk‖
|μ| , η = vk⊥

|μ| . (22)

Observing that

sgn(u − χmμ) − sgn(u + χmμ) = −2χm sgn(μ) θ (|μ| − u)

holds for u > 0, the calculation of the “chiral” two-spin inter-
action is straightforward:

�⊥⊥′
mn (q) = − i ε‖⊥⊥′ χm sgn(μ) J2

Kμ2

4(2π )2v3

∞∫
−∞

dξ

∞∫
0

dη

× η

ξ

[
θ

(
1 −

√
(ξ − ζ )2 + η2

)
− θ

(
1 −

√
(ξ + ζ )2 + η2

)]
= i ε‖⊥⊥′ χm sgn(μ) J2

Kμ2

4(2π )2v3

[
(1 − ζ 2) ln

∣∣∣∣1 − ζ

1 + ζ

∣∣∣∣− 2ζ

]
.

(23)

Note that the dissipative terms were discarded by taking the
principal value of the integral.

The remaining nonzero components of the �mn tensor are
diagonal and involve the real-valued Y ‖‖

± and Y ⊥⊥
± . Observing

that

sgn(u − χmμ) + sgn(u + χmμ) = 2 θ (u − |μ|)

holds for u > 0, we find that (19) with a = b becomes

�ab
mn(q) = − J2

Kμ2

16(2π )2v3ζ

∞∫
−∞

dx

∞∫
1−x2

d (η2)

(
Ȳ ab

−
x + ζ

− Ȳ ab
+

x − ζ

)
.

(24)
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Here x = ξ ± ζ is a shifted integration variable, and the fac-
tors (21) have been made dimensionless:

Ȳ ‖‖
± = 2(x ∓ ζ )x√

x2 + η2
, Ȳ ⊥⊥

± = η2 ± 2ζx√
x2 + η2

. (25)

In order to proceed, we need two integrals:

I1 =
∞∫

−∞
dx

(
1

x + ζ
− 1

x − ζ

) ∞∫
1−x2

d (η2) η2√
x2 + η2

→ 2

∞∫
−∞

dx

(
1

x + ζ
− 1

x − ζ

)

×
[
λ2
√

λ2 + x2 − 2

3
(λ2 + x2)3/2 − (1 − x2) + 2

3

]

→ −8ζλ2

1∫
0

dy

√
1 + y2 − 2

3 (1 + y2)3/2

y2 − (ζ/λ)2
+ · · ·

= −8ζ (−0.942809λ2 + 0.040957ζ 2 + · · · ) (26)

and

I2 =
∞∫

−∞
dx

(
1

x + ζ
+ 1

x − ζ

)
x

∞∫
1−x2

d (η2)√
x2 + η2

→ 2

∞∫
−∞

dx

(
1

x + ζ
+ 1

x − ζ

)
x
(√

x2 + λ2 − 1
)

→ 8λ2

1∫
0

dy
y2
√

1 + y2

y2 − (ζ/λ)2
+ · · ·

= 8(1.14779λ2 − 0.53284ζ 2 + · · · ). (27)

Both integrals are divergent and require an ultraviolet cut-off
λ = v�/|μ|. Arrows represent replacements of the ultraviolet
integral bounds with λ, and the final results show only the
leading powers of λ for each power of ζ (i.e., the numerical
coefficients in front of λ2, ζ 2 are the lowest-order terms in the
respective expansions over λ−1 = |μ|/v�). We readily find

�‖‖
mn(q) = 0,

�⊥⊥
mn (q) = − J2

Kμ2

16(2π )2v3ζ
(I1 − 2ζ I2)

= − J2
K

2(2π )2v
(−1.352771 �2 + 0.25618075 q2) (28)

to the leading order in � and q.

B. Opposite-chirality nodes

With χm = −χn, the formulas (20) reduce to

Y ‖‖
± = 2k2

⊥ ± q
(
k‖ ± q

2

)√(
k‖ ± q

2

)2 + k2
⊥

, Y ⊥⊥
± = k2

⊥ + 2k‖
(
k‖ ± q

2

)√(
k‖ ± q

2

)2 + k2
⊥

,

Y ⊥⊥′
± = ∓2ik‖ ε‖⊥⊥′

, Y ‖⊥
± = Y ⊥‖

± = 0. (29)

It is easy to see that the features Y ⊥⊥′
− = −Y ⊥⊥′

+ and χm =
−χn cause the cancellation of all contributions to the chiral
two-spin interactions:

�⊥⊥′
mn = 0. (30)

The physical implication is that the electron scattering be-
tween opposite-chirality Weyl nodes does not contribute to
the Dzyaloshinskii-Moriya (DM) interactions between local
moments. This is consistent with the symmetry transforma-
tions of the DM interaction (invariant under time reversal,
nontrivial under inversion). If a DM interaction emerged from
the opposite-chirality nodes, then it would exist in a TR-
breaking Weyl semimetal with only two nodes. Furthermore,
the same-chirality channel (23) cannot produce a DM interac-
tion in inversion-symmetric Weyl semimetals either, because
for every pair of χ = +1 nodes there is an identical pair of
inversion-related χ = −1 nodes separated by the same wave
vector, and �⊥⊥′

mn ∝ χm + χn . Ultimately, the DM RKKY in-
teraction exists only when the inversion symmetry is broken.

The other nonzero components of the �mn tensor are de-
termined using the same procedure as in the previous section.
The formula (24) applies for the opposite-chirality nodes as
well, provided that we use the appropriate dimensionless ver-
sions of (29):

Ȳ ‖‖
± = 2

η2 ± ζx√
x2 + η2

, Ȳ ⊥⊥
± = η2 + 2(x ∓ ζ )x√

x2 + η2
(31)

(recall x = ξ ± ζ ). Then

�‖‖
mn(q) = − J2

Kμ2

8(2π )2v3ζ
(I1 − ζ I2)

= − J2
K

2(2π )2v
(−0.409962 �2 + 0.2459415 q2),

�⊥⊥
mn (q) = − J2

Kμ2

16(2π )2v3ζ
I1

= − J2
K

2(2π )2v
(0.942809 �2 − 0.01023925 q2).

(32)

C. Induced interactions in real space

Here we determine the interaction coupling Jab
i j in the ef-

fective spin Hamiltonian (2)

Heff =
∑

i j

Jab
i j n̂a

i n̂b
j + · · · (33)

using (10):

Jab
i j = −a6

∑
m,n

ei(Qn−Qm )(ri−r j )
∫

d3q

(2π )3
�ab

mn(q) eiq(ri−r j ).

(34)
It will be convenient to express the contribution of any Weyl
node pair m, n to (33) as the interaction between complex
rectified spins

ŝi = ei(Qn−Qm )ri n̂i. (35)
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Microscopic spins n̂i will tend to form clusters modulated
at “large” wave vectors Qn − Qm, and these clusters will be
represented by the “smooth” field ŝi.

�ab
mn given by (23), (28), and (32) was originally con-

structed in the basis (q̂, θ̂, φ̂) for spin vectors. We will convert
�ab

mn to the fixed basis (x̂, ŷ, ẑ) aligned with ri j = ri − r j =

|ri j |ẑ and solve the integral in (34) using spherical coordinates
q = (q, θ, φ). The matrix representation of �ab

mn in the fixed
basis is

�̂mn = M̂‖�
‖‖
mn + M̂⊥�⊥⊥

mn + M̂ch�
⊥⊥′
mn , (36)

where

M̂‖ =
⎛⎝cos2 φ sin2 θ

sin(2φ)
2 sin2 θ cos φ sin(2θ )

2
sin(2φ)

2 sin2 θ sin2 φ sin2 θ sin φ sin(2θ )
2

cos φ sin(2θ )
2 sin φ sin(2θ )

2 cos2 θ

⎞⎠,

M̂⊥ =
⎛⎝1 − cos2 φ sin2 θ − sin(2φ)

2 sin2 θ − cos φ sin(2θ )
2

− sin(2φ)
2 sin2 θ 1 − sin2 φ sin2 θ − sin φ sin(2θ )

2
− cos φ sin(2θ )

2 − sin φ sin(2θ )
2 sin2 θ

⎞⎠,

M̂ch =
⎛⎝ 0 cos θ − sin φ sin θ

− cos θ 0 cos φ sin θ

sin φ sin θ − cos φ sin θ 0

⎞⎠.

It becomes quickly apparent that integrating out φ preserves
only those matrix elements of �̂mn which correspond to the
“longitudinal” (a, b) = (‖, ‖), “transverse” (a, b) = (⊥,⊥),
and “chiral” (a, b) = (⊥,⊥′) channels relative to ri j = |ri j |ẑ.
This is required by symmetry. Since

�abŝa
i ŝb

j = �⊥⊥(ŝx
i ŝx

j + ŝy
i ŝy

j

)+ �‖‖ŝz
i ŝ

z
j + · · ·

= �⊥⊥(ŝx
i ŝx

j + ŝy
i ŝy

j + ŝz
i ŝ

z
j

)+ (�‖‖ − �⊥⊥)ŝz
i ŝ

z
j + · · ·

(37)

in the fixed basis, �⊥⊥ corresponds to the Heisenberg inter-
action and �‖‖ − �⊥⊥ corresponds to the Kitaev interaction.
The chiral channel �⊥⊥′

builds the Dzyaloshinskii-Moriya in-
teraction. The following θ integration is also straightforward,
and the integral over q can be carried out exactly as well at
least in the longitudinal and transverse channels (although the
final analytical expressions are somewhat complicated and not
particularly insightful).

Ultimately we represent the two-spin interactions

Heff =
∑
m,n

(HH,mn + HK,mn + HDM,mn) + · · · (38)

as combinations of Heisenberg (H), Kitaev (K), and
Dzyaloshinskii-Moriya (DM) couplings between the rectified
spins (35) in each node-pair channel:

HH,mn = a6J2
K�5

(2π )4v

∑
i j

f H
mn(�|ri j |) ŝi ŝ∗

j ,

HK,mn = a6J2
K�5

(2π )4v

∑
i j

f K
mn(�|ri j |) (ŝi r̂i j )(ŝ

∗
j r̂i j ),

HDM,mn = χm + χn

2

sgn(μ)

8

a6J2
K�5

(2π )4v

×
∑

i j

f DM(�|ri j |) r̂i j (ŝi × ŝ∗
j ). (39)

Here r̂i j is the unit vector along ri j = ri − r j , and the di-
mensionless functions f H, f K, and f DM are plotted in Fig. 2.
By grouping together the (i, j) and ( j, i) terms in the sums,
we immediately obtain manifestly Hermitian Hamiltonians in
terms of the microscopic spins:∑

i j

f ab
i j ŝa

i ŝb∗
j =

∑
i j

f ab
i j cos [(Qn − Qm)(ri − r j )]n̂

a
i n̂b

j . (40)

This makes it apparent that n̂i wants to make sign-changing
oscillations at the wave vector(s) Qm − Qn, which can even
be collinear as in NdAlSi [49].

If the neighboring local moments are separated by the
lattice constant a, then their induced interactions have an
extended range of the order of 5–10 (�a)−1 lattice sites
(note that �a < 1). The Heisenberg interaction is peaked at
short distances, being ferromagnetic (for the rectified spins
ŝi) in the same-chirality channels and antiferromagnetic in
the opposite-chirality channels. A ferromagnetic coupling will
simply realize a microscopic n̂i spin texture modulated at the
internode wave vector(s) Qn − Qm. Every Weyl node con-
tributes one same-chirality channel without a modulation from
the intranode electron scattering, and it is naively expected
that these channels are most influential in the ultimate spin
texture. At the same time, the induced Kitaev interactions
are peaked at finite distances between the spins, and have
the same ferromagnetic/antiferromagnetic character (for the
rectified spins) as the Heisenberg coupling in the same chan-
nel. The resulting spin orientations are preferentially along the
lattice bonds at least in the ferromagnetic same-chirality chan-
nels. The opposite-chirality channels with extended-range
antiferromagnetic couplings are frustrated and may end up
favoring spin orientations away from the lattice bonds.

Perhaps the most interesting induced interactions in this
system are Dzyaloshinskii-Moriya (DM). They vanish at the
relativistic μ = 0 point [74] and become large when the Fermi
pockets on the Weyl nodes have significant size. The sign of
the DM interaction is different for electron and hole pockets,
and only the same-chirality channels (including the intran-
ode electron scattering) contribute to it when the inversion
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FIG. 2. The plots of functions f H, f K, and f DM that capture the
dependence of the two-spin interactions on the distance between the
spins in the Hamiltonian (39). (a) and (b) The same-chirality and
opposite-chirality channels, respectively, showing the Heisenberg
f H (red, solid line) and Kitaev f K (blue, dashed line) functions at
μ = 0. The fainter thinner curves are obtained without the q2 terms
in (28) and (32) in order to demonstrate that zeroth-order terms in
the expansions over q make the decidedly dominant contributions.
The amplitudes of these functions receive nonanalytic corrections
of the order of |μ|/v� when the chemical potential is away from
the Weyl nodes. (c) The Dzyaloshinskii-Moriya function f DM for
several values of xμ = 2|μ|/v�; the trend of amplitude increase with
xμ is eventually halted near the cutoff. All functions have an envelope
∼(�r)−2 at large r.

symmetry is broken. The DM interaction is peaked for the
spins separated by about 2–5 (�a)−1 lattice sites, and its
maximum strength is not much below that of the Heisenberg
and Kitaev interactions. The effect of such DM couplings on
spin textures remains to be studied, but in general one expects
a tendency to twist the spins into incommensurate “spiral”
patterns, possibly developing hedgehogs [9].

In comparison with earlier studies [50–54], we ob-
tained the same set of RKKY couplings: Heisenberg,
Ising-like, and DM. The assumed spherical symmetry of
Weyl nodes implements the same relationship between
spin projections and lattice directions in the Ising-like
terms as the Kitaev interaction. Previous calculations which
departed from this symmetry obtained slightly different
Ising-type interactions (often dubbed “frustrated-spin” and
“Ising” couplings). Similarly, the spherical node symme-
try directs the DM vector strictly along the spatial dis-
placement between the spins, while a reduced symmetry
considered elsewhere allows other orientations of the DM
vector.

The main difference between the present results and most
earlier studies (except Ref. [55]), is the naive long-range
behavior of the RKKY interactions. Here the RKKY interac-
tions lose strength as 1/r2 at largest distances, while power
laws 1/r3 for μ �= 0 and 1/r5 for μ = 0 were found in
Refs. [50–54]. This discrepancy appears to be due to the focus
on different length scales. Our goal is to address the dynam-
ics of magnetic Weyl semimetals like NdAlSi, where dense
local moments live on a lattice. If one wants to understand
the magnetism in such materials, one must understand how
the moments interact at all length scales, from the nearest-
neighbor lattice sites to possibly much larger distances. In the
field theory context, our system defines physical cut-off length
scales, the lattice constant a and the inverse momentum cut-
off �−1 of the linear Weyl spectrum. When we compute the
RKKY interactions, the ultraviolet divergence of the momen-
tum integrals translates into the dependence of the interactions
on the cutoffs. This cannot be ignored when the moments
are dense, so we kept only the largest powers of the cut-off
� in the RKKY interaction formulas. All such terms be-
come a delta-function potential in the continuum limit, whose
renormalized interaction strength absorbs the cutoff. Next to
these short-range terms, we can neglect the “universal” ones
which do not depend on the cutoff and define a long-range
potential in the continuum limit. The previous mentioned
studies retain only these universal terms (missing the delta
potential), and then the fixed units of the RKKY interactions
ensure a different power-law dependence of the interaction
on r.

The motivation to extract the universal behavior in con-
densed matter physics is tied to the complexity of microscopic
details, here expressed in the band structure at high ener-
gies. The universal features are immune to the physics at
the cut-off scale. Still, focusing on the universal part of
the RKKY couplings does not solve the problem of having
much stronger nonuniversal interactions at short distances—
especially in the case of Weyl electrons whose density of

155151-9
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states grows quadratically fast with energy. The strategy to
push the field theory down to very short length scales pays off
in the case of NdAlSi [49] despite the possible contamination
from non-Weyl high energy states. At least this contamination
is limited or suppressed by the nonlinear energy dispersion.
Since the nature of the cutoff is clear, we get a usable estimate
of the RKKY interaction strength and its character on the
lattice.

IV. THREE-SPIN INTERACTIONS

The coupling of itinerant electrons to local moments can
generate the chiral spin interaction εi jkε

abcn̂a
i n̂b

j n̂
c
k on triplets

of lattice sites i, j, k. This is the only three-spin interaction
allowed by the spin-rotation symmetry, but it requires a bro-
ken time-reversal (TR) symmetry. One way to break TR is
spontaneously through the magnetic state of local moments.
In such a state, the local moments impose an effective Zeeman
field on itinerant electrons, which reorganizes the electron
spectrum in a manner that enables the emergence of a chiral
spin interaction. Capturing this effect requires at least fourth
order of perturbation theory because at least four local spins
are involved: one in the Zeeman coupling and three in the chi-
ral interaction. Then, the ensuing chiral interaction is driven
by the “magnetic” flux of the spin-orbit SU(2) gauge field
through i jk lattice plaquettes as in the Hubbard model [9].
We will not pursue here this complicated and perturbatively
weak effect.

The presence of an external magnetic field B violates
the TR symmetry and induces a chiral interaction at the
third order of perturbation theory. We will derive the chi-
ral interaction here by calculating the three-leg diagram in

Fig. 1(b),

�abc(q21, q13) ≡ �abc(q1, q2, q3)

= i
J3

K

3

∫
d4k

(2π )4
tr[G(k + q1)σ aG(k + q2)σ bG(k + q3)σ c]

(41)

whose external legs correspond to n̂a(q2 − q1), n̂b(q3 − q2),
n̂c(q1 − q3). Writing the incoming 4 momenta of local mo-
ments as differences between q1, q2, q3 achieves a convenient
formal symmetry at the expense of a small redundancy:
adding the same vector to all qi is inconsequential, so we will
also work with q21 = q2 − q1, q13 = q1 − q3 as independent
vectors when needed. We will include only the Zeeman effect
of the external magnetic field B in the electron Hamiltonian

Hn(k) = (vχnk − B)σ − μ (42)

and neglect the orbital effect which is more fragile in the
presence of disorder.

Just as in the case of two-spin interactions, we need to work
with small momentum displacements q, k from the Weyl node
wave vectors Qn in order to use the Green’s function (11) with
the low-energy Hamiltonian (42). This amounts to selecting
any three Weyl nodes (labeled 1,2,3) and interpreting all wave
vectors in (41) as “small” displacements from Q1, Q2, Q3.
The obtained Feynman diagrams �abc

123 should be eventually
summed over all node triplets to obtain the three-spin interac-
tion coupling Jabc

i jk in real space.
Using the electron Green’s functions (11), the trace in (41)

is found to be

tr
[
G1σ

aG2σ
bG3σ

c
] ≡ T abc

123 = X abc
123

∏
s=±1

1

ω1 + μ − s
∣∣vχ1k1 − B

∣∣+ i0+sgn
(
s
∣∣vχ1k1 − B

∣∣− μ
)

× 1

ω2 + μ − s
∣∣vχ2k2 − B

∣∣+ i0+sgn
(
s
∣∣vχ2k2 − B

∣∣− μ
)

× 1

ω3 + μ − s
∣∣vχ3k3 − B

∣∣+ i0+sgn
(
s
∣∣vχ3k3 − B

∣∣− μ
) , (43)

where ωn = ω + 
n and kn = k + qn for n = 1, 2, 3 are in-
troduced to shorten the notation. Obtaining the factor X abc

123
is straightforward but tedious; X abc

123 has many terms. We will
dramatically simplify the analysis by discarding the irrelevant
parts of X abc

123 on the basis of symmetry. The general three-spin
interaction

H3 =
∑
i jk

Jabc
i jk n̂a

i n̂b
j n̂

c
k (44)

is consistent with lattice rotation and spin SU(2) symmetries
only if Jabc

i jk = Jεi jkε
abc. The spin-orbit coupling among the

itinerant electrons promotes the global SU(2) symmetry into
a gauge symmetry, by the virtue of admitting an effective
SU(2) gauge field Aa

i j coupled to spin currents ja
i j ∼ εabcn̂b

i n̂c
j

(the spin-vector Ai j on the lattice bond i j points parallel to
the bond orientation ri − r j in a Weyl semimetal). However,
the index structure of Aa

i j admits only gauge-invariant scalar
contributions in the makeup of the chiral spin interaction, so
we still have the symmetry requirement Jabc

i jk = Jεi jkε
abc. The

kernel J is sensitive only to a subset of the trace (43) terms
T abc

123 . Let us write (8) explicitly

Jabc
i jk = Jεi jkε

abc ∝ F̂123
i jk T abc

123 (45)

using the integration operator

F̂123
i jk ≡ 33

∫
d3q1

(2π )3

d3q2

(2π )3

d3q3

(2π )3

d4k

(2π )4
(2π )4δ3(q1+q2+q3)

×ei(q2−q1 )ri ei(q3−q2 )r j ei(q1−q3 )rk (46)
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[the factor 33 is the Jacobian of the transformation from
the momentum and frequency variables in (8) to the sym-
metrized ones used here]. This immediately reveals that only
the components behaving as T abc

123 ∝ εabc contribute to J . The
following argument will establish that the relevant terms also
satisfy T abc

lmn ∝ εlmn. An innocuous cyclic permutation of the
lattice site labels i jk can be undone in F̂123

i jk by a cyclic ex-
change of qn integration variables, at the expense of inducing
a cyclic permutation of the 123 indices in T abc

123 . Hence, the
relevant T abc

lmn terms are invariant under cyclic permutations of
lmn. An order-changing permutation of i jk changes the sign
of the chiral coupling Jabc

i jk and requires more care. It can be

still compensated in F̂123
i jk by an exchange of two qn integration

variables, but this flips the signs ei(qm−qn ) → e−i(qm−qn ) in all
three exponential factors of (46). The remedy is to again
change the integration variables, as qn → −qn, kn → −kn.
Now, the original F̂123

i jk is restored, but the T abc
lmn factor takes

all frequency and momentum variables with reversed signs
in addition to having its lmn indices in the altered order. An
inspection of the Green’s functions reveals that the trace has
the property:

T abc
123 (−qn,−kn; μ, B) → −T abc

123 (qn, kn; −μ,−B). (47)

Coincidentally, charge conjugation transforms the Weyl
Hamiltonian (42) by χn → −χn, μ → −μ (B does not
change sign). Since the effective local moment Hamiltonian is
charge neutral, the chiral coupling must behave as J (μ, B) =
J (−μ, B). We also have J (μ, B) = −J (μ,−B) under time
reversal. This allows us to absorb the last remaining sign
changes of μ and B in (47) and conclude that the relevant parts
of the trace (43) behave as T abc

lmn ∝ εlmn. Note that the product
of denominators in (43) is invariant under all permutations of
the 123 indices, so we only need to calculate the parts of X abc

123
that transform according to

X abc
lmn = X (q1, q2, q3, k) εlmnε

abc. (48)

Using again the short-hand notation kn = k + qn, the calcula-
tion of (43) yields

X = 1

(3!)2
εlmnε

abcX abc
lmn

= 1

3!
εabc
[− 4v3χ1 χ2 χ3 ka

1kb
2kc

3

+ 4v2Ba
(
χ2 χ3 kb

2kc
3 + χ3 χ1 kb

3kc
1 + χ1 χ2 kb

1kc
2

)]
. (49)

We will greatly benefit from extracting the dependence of this
and other expressions on the combinations of external wave
vectors which are invariant under cyclic permutations:

�q ≡ q2 × q1 + q3 × q2 + q1 × q3,

�q′ ≡ χ1(q3 × q2) + χ2(q1 × q3) + χ3(q2 × q1),

q̃ ≡ χ1(q3 − q2) + χ2(q1 − q3) + χ3(q2 − q1). (50)

Defining qmn = qm − qn and recalling q1 + q2 + q3 = 0, we
also have q1(q2 × q3) = 0 and

�q′ = χ1 + χ2 + χ3

3
�q,

�q = q21 × q13 = q32 × q21 = q13 × q32. (51)
Then, expressing (49) in terms of the original integration
variable k gives us

X = 4χ1χ2χ3v
2

3!

[
v k �q − χ1 + χ2 + χ3

3
B�q

+ (B × k )̃q
]
. (52)

Having the trace T abc
lmn ∝ εlmnε

abcX , we can proceed with
the derivation of (41) specializing to a particular triplet 123 of
Weyl nodes:

�abc
123 = i

J3
K

3

∫
d4k

(2π )4
T abc

123

= − 2χ1χ2χ3J3
Kv2

3 · 3!
εabc

∫
d3k

(2π )3

[
v k �q − χ1 + χ2 + χ3

3
B�q + (B × k )̃q

][θ (μ − |vχ1k1 − B|) − θ (μ + |vχ1k1 − B|)
|vχ1k1 − B|

× 1

|vχ1k1 − B|2 − |vχ2k2 − B|2
1

|vχ1k1 − B|2 − |vχ3k3 − B|2 + cyclic123

]
. (53)

We substituted the trace (43), (48), (52) and integrated out the loop frequency ω. The cyclic index permutations in the second
square bracket produce three terms; we will change integration variables k → k − qn + χnB/v in each term n = 1, 2, 3 and use
the properties

qn�q = 0, qn × q̃ =
(
χn − χ1 + χ2 + χ3

3

)
�q (54)

that stem from (50) and (51). This yields

�abc
123 = −2χ1χ2χ3J3

Kv2

3 · 3!
εabc

∫
d3k

(2π )3

×
[
θ (μ − v|k|) − θ (μ + v|k|)

v|k|
k (v �q − B × q̃)

(v2|k|2 − |v(k + q21) + (χ1 − χ2)B|2)(v2|k|2 − |v(k − q13) + (χ1 − χ3)B|2)
+ cyclic123

]
.

(55)
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We will integrate out the wave vector k in polar coordinates. One can easily show using (50) that

[vq21 + (χ1 − χ2)B](v�q − B × q̃) = 0,

[−vq13 + (χ1 − χ3)B](v�q − B × q̃) = 0.

If we decompose the vector k = k‖ + k⊥ into the component k‖ = k‖ l̂ parallel to v �q − B × q̃ = |v �q − B × q̃|l̂ and the
component k⊥ perpendicular to it, then k‖ is perpendicular to both vq21 + (χ1 − χ2)B and −vq13 + (χ1 − χ3)B. Hence

�abc
123 = − 2χ1χ2χ3J3

Kv2

3 · 3!
εabc

∫
d2k⊥
(2π )2

k+∫
k−

dk‖
2π

[
θ
(
μ − v

√
k2
‖ + k2

⊥
)

− θ
(
μ + v

√
k2
‖ + k2

⊥
)

v
√

k2
‖ + k2

⊥

× k‖ |v �q − B × q̃|
[v2k2

⊥ − |v(k⊥ + q21) + (χ1 − χ2)B|2][v2k2
⊥ − |v(k⊥ − q13) + (χ1 − χ3)B|2]

+ cyclic123

]
. (56)

Naively, the integral over k‖ should vanish by being the inte-
gral of an odd function in a symmetric interval. However, this
integral needs to be cut off by � and the integration interval is
symmetric only before shifting k by the amount proportional
to the external field B. Limiting the original unshifted k by �

corresponds to

k± = ±� − (qi − χiB/v)l̂

= ±� + (B�q)
χ1 + χ2 + χ3

3|v �q − B × q̃| ,

and the k‖ integral in (56) receives contribution only from
one of its boundary regions whose extent is proportional to
B�q. Since k‖ is large in that region, we can take k‖ ≈ ±�

everywhere in the integral and neglect k⊥, etc. next to it,
thus keeping only the terms with the leading power of �.
Interestingly, this leading power is �0 since a diverging k‖
cancels out in (56). Hence, integrating out k‖ yields

�abc
123 = 2J3

K

3π · 3! v3

χ1χ2χ3(χ1 + χ2 + χ3)

3
(B�q) εabc

×
∫

d2k⊥
(2π )2

[
1

(k2
⊥ − |k⊥ + q21|2)(k2

⊥ − |k⊥ − q13|2)

+ cyclic123

]
+ · · · (57)

with lower powers of � and higher orders of B (the dots)
neglected. Let us label the remaining cyclically permuted
integrals over k⊥ by I1 + I2 + I3. We can integrate out k⊥ =
(k⊥, θ ) using polar coordinates. In I1 for example, align the x
axis with q21 and assume that q13 makes the angle φ with it.
Then, writing q21 = |q21| and q13 = |q13| we get

I1 = − 1

(2π )2q21q13

�∫
0

dk⊥

2π∫
0

dθ

× k⊥
(2k⊥ cos θ + q21)[2k⊥ cos(θ − φ) − q13]

. (58)

The θ integral is of the form

P

2π∫
0

dθ
1

(cos θ + a)
(

cos(θ − φ) − b
)

= −4π
(a cos φ + b) θ (a−1)√

a2−1
+ (b cos φ + a) θ (b−1)√

b2−1

2a2 + 4ab cos φ + 2b2 + cos(2φ) − 1
(59)

and obtains using the Cauchy’s residue theorem. We keep only
its principal part because we are not interested in dissipation.
Substituting in (58) and changing the integration variable into
ξ = 4k2

⊥ gives us

I1 = π

4(2π )2q21q13

×
{ q2

21∫
0

dξ
(q21 + q13)q13

q13

√
q2

21 − ξ

1

(q21 + q13)2 + ξ
( q21q13

q21q13

)2 − ξ

+
q2

13∫
0

dξ
(q21 + q13)q21

q21

√
q2

13 − ξ

1

(q21 + q13)2+ξ
( q21q13

q21q13

)2 − ξ

}
.

(60)

The final ξ integration is straightforward. Using again the
definition and properties (50), (51) of �q we finally obtain

I1 + I2 + I3 = − πW

(2π )2|�q| , (61)

where

W =
3∑

n=1

arctan [tan(φn)] (62)

and

tan(φ1) = |q21 × q13|
q21q13

, . . . (63)

involve the angles φ1, φ2, φ3 ∈ (0, π ) between the pairs of
vectors (q21, q13), (q32, q21), (q13, q32), respectively. Since
q21 + q32 + q13 = 0, these vectors lie in the same plane and
form a triangle whose exterior angles are φ1, φ2, φ3. Note that
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W is not simply the sum of φn due to

arctan
(

tan(φn

)
=
{
φn, φn < π

2 ,

φn − π, φn > π
2 .

(64)

Instead, W = −π if all three angles φn are obtuse and W = 0
otherwise. In other words, W selects only acute triangles made
by q21, q32, q13. Combining these conclusions with (57), we
have

�abc
123 = εabcJ3

K

3 · 3!(2π ) v3

χ1χ2χ3(χ1 + χ2 + χ3)

3

B�q
|�q| W123,

(65)

where

W123 =
{

1, q21, q32, q13 make an acute triangle,
0, otherwise. (66)

A. Induced chiral interactions in real space

Based on (65), here we obtain the interaction coupling

Jabc
i jk = −a9

∑
lmn

eiQml ri eiQnmr j eiQlnrk

×
∫

d3qml

(2π )3

d3qln

(2π )3
�abc

lmn(qml , qln) eiqml ri j e−iqlnr jk

= − εabca9J3
K

3 · 3!(2π ) v3

∑
lmn

χlχmχn(χl + χm + χn)

3

×eiQml ri eiQnmr j eiQlnrk BpJ p
lmn (67)

in the real-space Hamiltonian

Heff = · · · +
∑
i jk

Jabc
i jk n̂a

i n̂b
j n̂

c
k + · · · . (68)

We will first focus on a particular (l, m, n) = (1, 2, 3) triplet
of Weyl nodes and i jk triplet of lattice sites. We wrote Qmn =
Qm − Qn and ri j = ri − r j to shorten the notation. The chal-
lenge is to compute the integral

J a
123 =

∫
d3q21

(2π )3

d3q13

(2π )3

εabcqb
21qc

13

|q21 × q13| eiq21ri j e−iq13r jkW123 (69)

that stems from (65). Due to the unbiased sampling of the mo-
mentum space, the vector J a

123 takes rotational bias only from
ri j and r jk . Exchanging ri j and r jk can be compensated by
(q21, q13) → (−q13,−q21), which changes the sign of J a

123.
The property J a

123(r jk, ri j ) = −J a
123(ri j, r jk ) and its vector

transformations under rotations imply

J a
123(ri j, r jk ) = εabcrb

i jr
c
jk J123(|ri j |, |r jk|, ri jr jk ). (70)

Hence, finding J a
123 reduces to the calculation of the scalar

J123 = εabcrb
i jr

c
jk

|ri j × r jk|2 J
a

123 = ri j × r jk

|ri j × r jk|2

×
∫

d3q21

(2π )3

d3q13

(2π )3

q21 × q13

|q21 × q13| eiq21ri j e−iq13r jkW123.

(71)

The presence of the acute triangle filter W123 given by (66)
complicates this integral very much.

Since the Weyl node cut-off momentum � is smaller than
the microscopic lattice cut-off π/a, the effect of spin inter-
actions is mostly felt on the short separations r between the
spins which satisfy �|r| � 1. These separations can still span
multiple lattice constants a. We may expand the exponential
factors of (71) to quadratic order in the limit �|r| � 1 and
approximately obtain after some manipulations:

J123 ≈
∫

d3q21

(2π )3

d3q13

(2π )3

[(ri j × r jk )(q21 × q13)]2

2|ri j × r jk|2|q21 × q13| W123

= 1

2

∫
d3q21

(2π )3

d3q13

(2π )3

[ẑ(q21 × q13)]2

|q21 × q13| W123. (72)

Here ẑ is the unit vector along ri j × r jk , and all dependence
on ri j or r jk has dropped out of the integral. Consequently,
the integral is controlled by a single scale � and it must eval-
uate to J123 ≈ λ�8 given its units, where the dimensionless
constant λ > 0 is hard to calculate. We have

J a
123

�|r|�1−−−−→ λ�8 εabcrb
i jr

c
jk, (73)

so the chiral spin interaction initially grows with the distance
between the spins.

The chiral interaction eventually loses strength as a power
law of the separation between the spins when �|r| � 1. We
can estimate these attenuation powers of |r|−1 in J123, but
it should be noted that they depend on the exact manner
in which the cutoff is imposed in the momentum integral.
The most unbiased cutoff is attained by using the spherical
coordinates for momentum integration and limiting the mo-
mentum magnitude to q < �. The integral in (71) has the
units of �6, but its exponential factors introduce destructive
interference when |q21ri j | � 1 or |q13r jk| � 1, so at least two
power units (�2) are cut off and replaced with |ri j |−1|r jk|−1.
This would be all in cylindrical coordinates, but the use of
spherical coordinates cuts off another factor of �2 through
the integration of its polar angles θ . The rest of the inte-
grand performs a projection and filtering which directly affect
only the unitless angle integrations. Hence, we naively expect
J123 ≈ λ′�2/(|ri j |2|r jk|2|ri j × r jk|) and

J a
123

�|r|�1−−−−→ λ′�2

|ri j |2|r jk|2
εabcrb

i jr
c
jk

|ri j × r jk| . (74)

Here λ′ is a complicated dimensionless oscillatory function of
�|ri j | and �|r jk| which we shall not attempt to determine. A
careful calculation of (71) may still qualitatively correct this
naive expectation, but not in ways that make the attenuation
rate slower than �4/(|ri j ||r jk|) or faster than 1/(|ri j |3|r jk|3).

In summary, once all triplets 123 of Weyl nodes and lat-
tice sites i jk are summed up, we can express the chiral spin
interaction in a manifestly symmetric form

Jabc
i jk = −εabc a9�6J3

K

3 · 3!(2π ) v3

B�ri jk

|�ri jk| fi jk, (75)

where

�ri jk = ri × r j + r j × rk + rk × ri
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and

fi jk =
∑
lmn

χl + χm + χn

3χlχmχn
ei(Qml ri+Qnmr j+Qlnrk )

×
{

λ�2|�ri jk|, |ri j |, |r jk|, |rki| � 1
�

,
λ′

3�4
|ri j |2+|r jk |2+|rki|2

|ri j |2|r jk |2|rki|2 , |ri j |, |r jk|, |rki| � 1
�

.
(76)

Note that

�ri jk

|�ri jk| = ζ̂ εi jk (77)

brings the spatial Levi-Civita tensor to (75), where ζ̂ is the
unit vector perpendicular to the triangle formed by the lattice
sites i, j, k but stripped of the triangle’s orientation.

V. DISCUSSION AND CONCLUSIONS

We analyzed the s-d model of local magnetic moments
coupled to itinerant Weyl electrons, and derived the Weyl-
electron-mediated interactions between the local spins. We
obtained detailed forms of the Heisenberg, Kitaev, and
Dzyaloshinskii-Moriya (DM) interactions, and also character-
ized the chiral spin interaction in the presence of an external
magnetic field. Due to the relativistic nature of Weyl elec-
trons, the main length scale that controls these interactions
is the momentum cut-off � of the linear Weyl spectrum. The
local Kondo coupling controls only the strength of interac-
tions, while all other energy scales E (temperature, chemical
potential, magnetic field, etc.) introduce nominally small cor-
rections of the order of E/v�, where v is the Fermi velocity
(slope of the Weyl electron’s energy εk).

Making analytical progress was made possible by various
idealizations. All Weyl nodes were assumed to be identical,
isotropic, at the same energy, and of type I. Most of these
simplifications are not qualitatively significant. Nodes liv-
ing at different energies are most easily accommodated by
associating different chemical potentials to different nodes.
The consequences of this are expected to be small, since the
chemical potential was found to act as a small perturbative
parameter. A more dramatic issue in the present perturbation
theory is the implicit assumption that the Weyl electron spec-
trum is known and magnetically unbiased. This either neglects
the effect of local moments on the electron dynamics, or pre-
sumes self-consistently that the considered Weyl spectrum is
already (at least approximately) a result of the magnetic order
that would arise from the interactions that we calculate. The
full self-consistent problem of the mutual influence of local
moments and Weyl electrons is hard and beyond the scope
of this study. Nevertheless, some qualitative features of the
self-consistent picture can be readily anticipated. A magnetic
order of local moments will generally induce a compatible
spin-density wave of itinerant electrons; its ferromagnetic part
presents itself as an effective magnetic field to the local spin,
which we included in the calculations. A reconstruction of
the Weyl Fermi surfaces is implicitly included through the
renormalization of the model parameters v, �, μ and changes
in the number, chiralities, and locations of the Weyl nodes.
In specific cases, band-structure calculations can reveal how
exactly the Weyl spectrum depends on the magnetic state [49].

Several problems are left for future studies. The need to
quantitatively explain experiments will eventually justify an
accurate analysis of anisotropies and other realistic features
of the Weyl electron spectra. This may require numerical cal-
culations, although several idealized cases of anisotropy have
been considered in previous studies [50,52,53]. The results
presented in this paper may not apply to type-II nodes [53],
and otherwise acquire small modifications in the presence of
anisotropy. The most significant effect of anisotropy is seen
in the DM and Kitaev interactions which arise due to the
spin-momentum locking of itinerant electrons. The DM vector
Di on a lattice bond in the direction x̂i is proportional to the
effective SU(2) gauge field Ai that captures the electrons’
spin-orbit coupling [9] in the continuum limit Hamiltonian
∼(pi − Aiσ)2. Consequently, the simple ∼kσ Weyl Hamil-
tonian in this study gives rise to Di = Dx̂i oriented along
the bond between the two interacting spins (when inversion
symmetry is broken). A different type of spin-momentum
locking as in Ref. [5] will accordingly alter the direction of
Di. Details of this kind are behind some of the differences
between the DM and Ising-type interactions obtained here and
in other works [50,52,53].

Beyond this, a major direction for future studies involves
the prediction of chiral magnetic orders, phase diagrams, crit-
ical behaviors, etc. from the knowledge of interactions among
the spins. This is now at hand with the help of theoretical
methods (mean field approximation, renormalization group)
and numerical approaches (Monte Carlo).

This theory provides a plausible explanation of the mag-
netic order observed in the magnetic Weyl semimetal NdAlSi
despite all complexities [49]. Still, more research is needed to
positively confirm the offered physical picture as opposed to
some alternative scenario. For example, could the observed
features of the NdAlSi magnetic order be shaped by con-
ventional instead of Weyl Fermi pockets, assuming that their
sizes and locations in momentum space are similar? Apart
from trusting the band-structure calculations, the answer is
in the currently unknown details. Conventional Fermi pock-
ets are expected to embed their Fermi wave vector in the
attenuated spatial oscillations of the induced spin coupling.
In contrast, the relativistic Weyl electrons embed their much
larger cut-off momentum, and the ensuing spin interactions
have shorter range. All other things being equal, this would
affect the spin stiffness and hence the spin dynamics. Fur-
thermore, Weyl electrons are able to induce notable DM and
chiral interactions, and thus encourage the twisting of the
spin texture. Other ways to experimentally distinguish the
influence of conventional electrons and Weyl nodes may come
from the damping of spin waves, but this will be discussed in
a forthcoming paper.

At this time, magnetic Weyl semimetals are rare, and
the ones with only Weyl pockets in the Fermi surface are
even more rare. For example, the well-known chiral magnets
Mn3Sn and Mn3Ge [29,34,75] have significant conventional
parts of the Fermi surface in addition to Weyl nodes [76,77].
Perhaps an interesting direction to look for other candidate
materials is Dirac semimetals. For example, the material
YbMnBi2 has only small conventional Fermi pockets coex-
isting with Dirac nodes, while hosting an antiferromagnetic
order [78–81]. A Dirac node can be viewed as a coalescence
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of two opposite-chirality Weyl nodes at the same wave vector,
so some insights of the theory developed here should ap-
ply. The predicted antiferromagnetic interactions induced by
the opposite-chirality internode scattering now arise between
the microscopic spins, which are identified with the rectified
spins of the ensuing commensurate �Q = 0 channel. This is
naively consistent with the observed antiferromagnetic order,
but there are many complications and open questions: (i) are
the equal-chirality ferromagnetic channels stronger or weaker,
(ii) is the extended range of antiferromagnetic interactions
short enough to avoid frustration, (iii) what are the RKKY
interactions due to the conventional Fermi pockets, (iv) are
there intrinsic spin interactions between the moments, etc.?

Looking beyond the currently known materials, the in-
duced spin interactions in Weyl semimetals have rich in-
gredients which by themselves are capable of stabilizing
unconventional magnetic states. Kitaev interactions can lead
to spin liquids as demonstrated with exactly solvable models
[56]. The DM interactions generated by Weyl electrons are

likely capable of producing magnetic states that host lattices
or liquids of hedgehogs [9]. A hedgehog lattice melted by
quantum or thermal fluctuations is a candidate for a chiral
spin liquid state [48]—a three-dimensional analog of the frac-
tional quantum Hall liquid. This and similar future research
will hopefully illuminate the path toward the realization of
such states, which possess both a profound fundamental ap-
peal and a potential for applications in quantum information
processing.
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PREDRAG NIKOLIĆ PHYSICAL REVIEW B 103, 155151 (2021)

[39] V. A. Zyuzin and A. A. Kovalev, Phys. Rev. Lett. 117, 217203
(2016).

[40] K. Nakata, S. K. Kim, J. Klinovaja, and D. Loss, Phys. Rev. B
96, 224414 (2017).

[41] A. Mook, B. Göbel, J. Henk, and I. Mertig, Phys. Rev. B 97,
140401(R) (2018).

[42] Y. Machida, S. Nakatsuji, S. Onoda, T. Tayama, and T.
Sakakibara, Nature (London) 463, 210 (2010).

[43] L. Balicas, S. Nakatsuji, Y. Machida, and S. Onoda, Phys. Rev.
Lett. 106, 217204 (2011).

[44] Y. Tokiwa, J. J. Ishikawa, S. Nakatsuji, and P. Gegenwart, Nat.
Mater. 13, 356 (2014).

[45] G. Y. Cho and J. E. Moore, Ann. Phys. 326, 1515 (2011).
[46] J. Maciejko, X.-L. Qi, A. Karch, and S.-C. Zhang, Phys. Rev.

Lett. 105, 246809 (2010).
[47] P. Ye, M. Cheng, and E. Fradkin, Phys. Rev. B 96, 085125

(2017).
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