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Hidden wave function of twisted bilayer graphene: The flat band as a Landau level
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We study zero-energy states of the chirally symmetric continuum model (CS-CM) of twisted bilayer graphene.
The zero-energy state obeys the Dirac equation on a torus in the external non-Abelian magnetic field. These
zero-energy states could form a flat band—a band where the energy is constant across the Brillouin zone. We
prove that the existence of the flat band implies that the wave function of any state from the flat band has a zero
and vice versa. We found a hidden flat band of unphysical states in the CS-CM that has a pole instead of a zero.
Our main result is that in the basis of the flat band and hidden wave functions the flat band could be interpreted as
a Landau level in the external magnetic field. From that interpretation we show the existence of extra flat bands
in the magnetic field.
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Introduction. Twisted bilayer graphene (TBG) has recently
drawn a lot of attention from the physics community due to
its interesting properties and applications [1–42]. One of the
most prominent features is the recent discovery of correlated
insulators and superconductivity, which are observed in a nar-
row range of twist angles near θ = 1.05◦, which is usually
referred to as the magic angle. At this angle the system devel-
ops a nearly flat band near charge neutrality. Recently, the flat
band was explored analytically in a chiral model of TBG that
neglects the hoppings within the same sublattices of different
TBG sheets [43]. In this paper we continue the exploration of
the mathematical structures of the flat band and demonstrate
the connection with the vector bundles over the Riemann
surfaces of higher genus that could provide some deeper
understanding of the physics behind the chirally symmetric
continuum model (CS-CM) of twisted bilayer graphene. From
a physical standpoint this will allow us to study the behavior
of flat bands in an external magnetic field.

TBG consists of two graphene sheets placed on top of each
other at small angle θ � 1 that form a long-period pattern
(moiré pattern). One can estimate that the period of the re-
sulting superlattice is of the order L(θ ) ∼ a

θ
� a, where a

is the graphene lattice constant. That allows us to consider a
continuum model for the Hamiltonian instead of a lattice one.
This approach was used by Bistritzer and MacDonald [44,45]
and by Lopes dos Santos et al. [46]. Thus we can write an
effective Hamiltonian for this model [43] as

H0 =
(

iv0 �σθ/2 �∇ T (r)
T †(r) iv0 �σ−θ/2 �∇

)
, T (r) =

(
taa(r) tab(r)
tba(r) tbb(r)

)
,

where we already used the fact that the superlattice is much
bigger than the interatomic lattice of separate sheets of
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graphene. Therefore we can use the Dirac equation to de-
scribe excitations in each individual graphene sheet. The
off-diagonal term T is responsible for hopping between sheets
of the TBG and sublattices a and b of the individual graphene
sheets. The H0 acts on the four-dimensional wave function
� = (ψa1, ψb1, ψa2, ψb2)T , where the second index relates to
the individual graphene sheets of the TBG and the first index
relates to the sublattice of the given graphene sheet.

The numerical study of that model confirmed the existence
of the flat band at magic angle θ∗

1 ≈ 1.05◦. The modification
studied here neglects the coupling between the sublattices of
the graphene taa = tbb = 0. In this case, the system acquires
an additional chiral symmetry and is usually referred to as
a chirally symmetric continuum model (CS-CM). After an
appropriate change of basis the Hamiltonian of the CS-CM
can be cast in the following form:

H = UH0U
−1 =

(
0 D
D∗ 0,

)
, where

D =
(

2i∂̄ + W (�r) V (�r)
U (�r) 2i∂̄ − W (�r)

)
, (1)

where �r is the vector in the two-dimensional (2D) graphene
sheet, ∂̄ = 1

2 (∂x − i∂y) is the antiholomorphic derivative along
the sheet, and V (r),U (r) are the hopping potentials between
the two sheets of the TBG that could be expressed linearly
through tab(r) and tba(r). This Hamiltonian acts on the rotated
wave functions �U = U� = (φ,ψ )T = (φ1, φ2, ψ1, ψ2)T .

The spectrum of the model is governed by the following
eigenvalue problem:

H�U = E�U ⇔
{
Dψ = Eφ

D∗φ = Eψ.
(2)

Since we are interested in the existence of a flat band near
charge neutrality, these equations simplify, and we should
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study only the following equation:

− i

2
Dψ = (∂̄ + Ā)ψ = 0, D∗φ = 0,

where Ā = − i

2

(−W (�r) V (�r)
U (�r) W (�r)

)
. (3)

Due to the enhanced chiral symmetry the equations on ψ

and φ are decoupled, which allows for a deeper analytical
investigation of the properties of the CS-CM. These equations
could be interpreted as a Dirac equation in a non-Abelian
magnetic field Ā ∈ su(2) on a Riemann surface [47,48]. We
will use this interpretation to bolster our intuition and draw
interesting conclusions. Since we study a periodic system, we
should impose Bloch boundary [49] conditions

ψ�k (�r + �a1,2) = ei�k�a1,2ψ�k (�r), (4)

where �a1,2 are the periods of the moiré superlattice and the
vector �k defines the location in the moiré Brillouin zone
(MBZ). If the solution exists for any point k in the MBZ, then
the system has a flat band. One can show that such potentials
exist [43]. However, for a general chosen potential Ā, the
system of Eqs. (3) and (4) has a smooth finite solution only
at finite numbers of points k in the MBZ.

The purpose of this paper is to consider a generic potential
Ā in Eq. (3) and get general properties independent of the
concrete form of Ā that could shed light on the physics behind
the CS-CM. Our main result is that once a system possesses
a flat band we can separate TBG into a system of two indi-
vidual sheets with positive and negative effective magnetic
fields, which support Landau levels of different chirality [50].
The negative magnetic field could be canceled by an external
magnetic field, resulting in additional flat bands. Therefore the
number of flat bands increases in the presence of the magnetic
field. This is the main physical result of this paper.

The paper is organized as follows. First, we will build
an integral of motion of Eq. (3), which, as was shown in
Ref. [43], is related to the Fermi velocity. Hence we will
refer to it as a Fermi integral of motion IF . We prove that
the flat band appears if and only if this invariant is equal to
zero, IF = 0. Then we demonstrate that the system of Eqs.
(3) and (4) admits an additional solution, which is singular
and therefore unphysical. This second solution will allow us
to rewrite the system of equations in the form of two Dirac
equations on a torus with effective magnetic fields. This shows
the direct connection of the flat band to the Landau levels.
Finally, we will show that introducing an external magnetic
field can make the second solution nonsingular. Hence this
leads to additional flat bands which, in principle, could be
seen in experiment. The mathematical details are delegated
to Appendixes A and B.

Fermi integral, zeros of wave functions, and the flat band.
For simplicity, let us consider Eq. (3) alone without taking into
account boundary conditions (4):

Dψ = (∂̄ + Ā)ψ = 0, ψ = (ψ1, ψ2)T ∈ C2, tr Ā = 0.

(5)

We start by studying the properties of the vector-valued func-
tion ψ that satisfy the equation Dψ = 0. Such equations have

been broadly studied in some fields of mathematics. Hence, to
simplify further computation and exploit the results, we adopt
some mathematical terminology. We assume that our TBG is
separated into geometric domains Uα such that when we jump
from one domain to another we should appropriately change
the vector-valued function ψ :(

ψ1α

ψ2α

)
= gαβ

(
ψ1β

ψ2β

)
.

The collection ψ = {ψα} is said to be a section of a vector
bundle E , which is a collection of domains {Uα} with trans-
lation functions gαβ . If there is only one domain, the bundle
is said to be trivial. An example of a nontrivial vector bundle
is provided by separating the TBG into a set of fundamental
domains by acting with translations �a1,2. Translation functions
in this case are boundary conditions (4).

From the mathematical point of view, the holomorphic
equation ∂̄ψ = 0 is similar to Eq. (5): Dψ = 0. Then mathe-
maticians say that if Dψ = 0, then the wave function ψ is a
meromorphic function and Ā is a holomorphic connection. If
ψ is also finite everywhere, we would call such a function
holomorphic. The convenience of such terminology is that
such ψ share a lot of properties with usual holomorphic func-
tions studied in the complex analysis.

From the physical point of view, any wave function must
be finite. So we must assume that ψ is also a holomorphic
function in the above sense of vector bundle [51] E .

Let us consider two finite solutions ψ1, ψ2 of Eq. (5). One
can compute the Wronskian of these solutions

IF (ψ1, ψ2) = det(ψ1, ψ2) = IF (r), then

∂̄IF (r) = − tr Ā · IF (r), tr Ā = 0 ⇒ IF (r) = IF (z),

(6)

where we have used the fact that Ā ∈ su(2) and hence is
traceless. We come to the conclusion that the Wronskian IF (z)
must be an analytic function. If ψ1,2 are finite everywhere,
IF (z) is holomorphic and therefore must be constant (because
of the Liouville theorem) across the plane of TBG. Because
of this property we can consider IF as an integral of motion of
Eq. (5). This property could be generalized to other systems
and will provide a necessary and sufficient condition for the
existence of a flat band in the system.

From flat band to zero Wronskian IF = 0. Here, we prove
that we cannot have a flat band unless IF = 0. Therefore,
applying negation, a flat-band wave function has a zero, and
hence IF = 0. We will say in a minute which two solutions
we need to pick up. For the application to TBG we should
study Eq. (3) on a torus as was explained in the previous
section. Namely, we can consider TBG as a torus C/
, where

 = ma1 + na2, m, n ∈ Z, a1,2 = ax

1,2 + iay
1,2. We must im-

pose boundary conditions (4) to glue the wave function as we
shift along lattice 
. These boundary conditions are the gluing
functions of the vector bundle over the torus. Without loss of
generality we will set a1 = 1 and a2 = τ .

We define C2
K to be the vector bundle with boundary con-

ditions (gluing functions) (4) with quasimomentum K . Again,
Eq. (5) with connection Ā defines a meromorphic section of
this vector bundle.
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For the sake of argument, we assume that there are at
least two points K1, K2 in the MBZ where the solution exists.
We would like to stress that K1,2 are different from special
points K, K ′ usually considered in the study of TBG, where
due to discrete symmetry C3 the band must have zero energy
E = 0. Of course, in the TBG the potential must respect the
C3 symmetry, and therefore the Dirac points must exist at
points K, K ′. However, in the general twisted bilayer material,
such symmetry could be absent, and to make the discussion
more general, we make an assumption that there are at least
two points K1,2 where the gap closes. Therefore, to keep the
discussion general, we just assume that due to some lucky
choice of Ā in Eq. (3) a system has zero energy at some points
K1,2 of the MBZ.

Relation (6) still holds true as it is not sensitive to boundary
conditions. If we have two holomorphic solutions ψK1,2 at two
different points of the Brillouin zone K1,2, we can compute the
Wronskian

IF,K1+K2 (z) = IF
(
ψK1 , ψK2

) = det
(
ψK1 , ψK2

)
, (7)

but because the IF (z) is holomorphic and bounded in the
complex plane of TBG [due to periodicity conditions (4)
and the fact that ψK1 , ψK2 are finite], we must conclude that
IF (z) = const. Moreover, using boundary conditions (4), we
have

IF,K1+K2 (z + a1,2) = IF,K1+K2 (z)ei(K1+K2 )a1,2 . (8)

However, if K1 + K2 �= 0 and IF (z) is constant, the boundary
conditions are satisfied only if IF (z) = 0. Hence there are only
two possibilities:

(1) IF (z) = 0, and K1, K2 are arbitrary.
(2) IF (z) �= 0, but K1 = −K2.
We start with the second possibility. We normalize the

solutions such that IF = 1. Then we immediately get that
ψK1 , ψ−K1 are nowhere zero, because otherwise the Wron-
skian would be equal to zero at points where ψ±K1 = �0. Since
IF (z) is nonzero, the solutions ψK1 and ψ−K1 are linearly
independent at each point of the TBG. If we consider now
matrix M = (ψK1 , ψ−K1 ), it satisfies the following equation:

(∂̄ + Ā)M = 0, Ā = −∂̄M · M−1, (9)

where we used the fact that if det M �= 0, the matrix M is
invertible. We would like to point out that Eq. (9) does not
mean Ā is a pure gauge (and hence a flat connection), since
M ∈ SL(2,C) rather than SU (2) and therefore is not a gen-
uine gauge transformation.

Let us consider another solution ψ of Eq. (5). Since ψ±K1

are linearly independent, we can always represent ψ as a
linear combination of these solutions:

ψ = v1(r)ψK1 + v2(r)ψ−K1 .

Applying the operator D = ∂̄ + Ā, we get

Dψ = ∂̄v1 ψK1 + ∂̄v2 ψ−K1 = 0. (10)

Since ψ±K1 are linearly independent at each point of the torus
C/
, it follows that the coefficients vi must be holomorphic,
∂̄vi = 0. The functions ψ and ψ±K1 are finite and nonzero ev-
erywhere; hence vi are bounded. From the maximum principle
for analytic functions on a complex plane, vi are constant.

Therefore, if we have an arbitrary solution of Eq. (5) at point
k of the Brillouin zone, we must have

ψk = vk,K1ψK1 + vk,−K1ψ−K1 , vk,±K1 ∈ C, (11)

but it is easy to see that with any choice of numbers v±K1 we
are not able to satisfy boundary conditions (4) in the MBZ.
Therefore we cannot have a flat band if IF �= 0.

From zero Wronskian to a flat band. Let us prove the
converse. Namely, if IF = 0 for some points K1, K2 in the
MBZ, the system develops a flat band. In other words, Eq. (5)
has a solution at any point k in the MBZ.

We start by noticing that since IF (z) = 0 and ψK1,K2 satisfy
Eq. (5), then wave function ψK1 has a zero. Let us prove
this statement by contradiction. Assume the opposite: that
ψK1 (r) �= 0 at any point of the torus, C/
, or fundamental
domain of TBG. Because the torus is compact, the minimum
min

r∈C/

|ψK1 (r)| = m > 0 is reachable. If IF (z) = 0, the wave

functions ψK1,K2 are proportional to each other:

ψK2 (r) = γ (r)ψK1 (r), DψK2 = ∂̄γ (r)ψK1 (r) = 0,

where γ (r) is bounded as |γ (r)| <
|ψK2 (r)|

m and holomorphic,
∂̄γ (r) = 0. Then the function γ (r) = γ (z) must be constant
by the maximum principle. However, this is impossible since
ψK1,K2 satisfy different boundary conditions. Hence we must
conclude that ψK has at least one simple zero [52].

We can now follow the procedure described in Ref. [43]
and construct a solution at any point k of the Brillouin zone.
The specific potential studied in Ref. [43] had an extra prop-
erty: IF ∝ vF , and hence such solution implied the existence
of a flat band. Our reasoning managed to generalize this con-
dition to an arbitrary potential Ā.

Hidden wave function. We can draw some additional con-
clusions from the existence of the holomorphic section with
a zero at any point K of the Brillouin zone. For the sake of
argument we will assume that ψK has one simple zero, but
this could be easily generalized to the case of multiple zeros.

Let us notice that at general K there can be only one
holomorphic section ψK . Indeed, if there are two holomorphic
linearly independent sections ψ1,2

K , their Wronskian must be
a holomorphic nonzero double-periodic function with spe-
cific boundary conditions. However, this implies that 2K =
0 mod 
 and the Wronskian is constant. We come to the
conclusion that if the other solution exists, it must be mero-
morphic.

Let us spell out the motivation as to why a singular wave
function satisfying Eqs. (3) and (4) actually exists. The holo-
morphic section ψK (flat-band wave function) of the bundle
C2

K forms a sub-bundle, which we denote as γ . Then one can
consider an exact short sequence:

0 → γ → C2
K → (γ )⊥ → 0, (12)

where (γ )⊥ = C2
K/γ . Roughly speaking, we split the two-

dimensional Hilbert space into two one-dimensional ones.
The first one is defined to be along the flat-band function ψK

at each point of the TBG. The second one is chosen to be
alongside any other linearly independent wave function. For
the sake of argument, one can think of the orthogonal wave
function ψ⊥.
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The bundles γ and (γ )⊥ or wave functions ψ and ψ⊥
are one-dimensional wave functions on periodic TBG and
therefore could be assigned (first) Chern numbers c1. These
numbers could be computed in a fashion similar to the case
of the usual Chern numbers in the topological insulators, but
where the computations are performed in real space rather
than in a momentum space. From the mathematical point of
view [53] the Chern number c1 is just the number of zeros
minus the number of poles. Since the CK bundle is in some
sense trivial, the Chern numbers for the sub-bundles γ and
(γ )⊥ must satisfy the following relation:

c1((γ )⊥) = −c1(γ ), (13)

suggesting that if γ has a holomorphic section, (γ )⊥ has a
section, but instead of a zero it has a pole. This reasoning
is not enough for the proof of its existence, because (12)
may not split. In other words, the wave function ψ⊥ is ill
defined: Going around a torus cycle will not only produce a
phase but also add a multiple of ψ . From the physical point of
view it means that we cannot simply represent this 2D system
as a stack of two topological materials with opposite Chern
numbers.

Luckily, the theory of vector bundles over the Riemann
surfaces was actively studied by Donaldson [54]. One can
show that the short sequence (12) is split over the torus. Below
we present a physical construction that can be used to find
the solution explicitly. In Appendix B we prove the existence
using algebro-geometric methods.

Let us start from a holomorphic section ψK that is a so-
lution of Eq. (5), satisfies boundary conditions (4), and has a
zero at some point z0. Let us assume for a moment that we
somehow managed to find another solution φK that is linearly
independent of ψK . If such a solution exists, the Wronskian
Ĩ (ψK , φK ) should be a meromorphic function

det(ψK , φK ) = Ĩ (z) (14)

that satisfies double-periodic boundary conditions Ĩ (z +
a1,2) = e2i �K�a1,2 Ĩ (z) [see Eq. (4)]. Unlike the previous section,
φK might have poles, so we cannot conclude that Ĩ is constant.
However, an analytic function with these properties exists
and is unique up to a normalization factor [53]. Namely, this
function is represented as

Ĩ (z) = e2i �K�a1z ϑ (z − z0; τ )

ϑ (z − z∞; τ )
, z0 − z∞ = �K �a2 − τ �a1

π
,

where ϑ (z; τ ) is a Jacobi theta function. Since ψK is finite
everywhere, φK must have a pole at the point z = z∞. From
this we get a simple linear equation that φK should satisfy

φ1
Kψ2

K − φ2
Kψ1

K = Ĩ (z). (15)

Having determined Ĩ , let us now construct φK . At any point
z ∈ C/
 this equation has at least one solution. Since at point
z = z0 both sides of Eq. (15) have a simple zero, we can
analytically continue the solution at this point. Let us pick an
arbitrary solution to Eq. (15) and denote it as ζK (r). Any other
solution of Eq. (15) is

ζ λ
K (r) = ζK (r) + λ(r)ψK , (16)

where λ(r) is an arbitrary function.

We can derive a relation for the function ζK (r). Namely, we
apply an operator ∂̄ to the Wronskian to get

∂̄ Ĩ (z) = ∂̄ det(ψK , ζK )

= det(DψK , ζK ) + det(ψK ,DζK )

= det(ψK ,DζK ) = 0. (17)

This means that in general DζK is proportional to the wave
function ψK

DζK = η(r)ψK , (18)

for some function η(r) which may have singularities. To clar-
ify what we have done, the solution ζK is just an arbitrary
solution to Eq. (15) and does not satisfy Eq. (5). In Eq. (15)
we can arbitrarily choose ζ 1

K . It could have some singularities.
To avoid this problem, we set ζ 1

K = 1 on the torus. Then the
singularities of ζ 2

K come only from the function Ĩ (z).
As we discussed before the function ζK is not unique, so

we can consider ζ λ
K from Eq. (16). This freedom allows us to

set the right-hand side of Eq. (18) to zero. Indeed,

ζ λ
K = ζK + λ(r)ψK , Dζ λ

K (r) = DζK (r) + ∂̄λψK (r)

= [η(r) + ∂̄λ(r)]ψK . (19)

Therefore we just need to solve the following equation on a
torus:

∂̄λ = −η + Cδ(2)(z − z0), (20)

with periodic boundary conditions λ(r + a1,2) = λ(r). The
term proportional to the δ function is allowed since ψK

has a zero at point z = z0. To solve (20), we make a two-
dimensional Fourier transform over the torus

λ(k) =
∫

d2�rλ(�r)eikxx+ikyy. (21)

Then Eq. (20) could be cast as

k̄λ(k) = −η(k) + Ceikz0 , k = kx + iky. (22)

This equation has a solution for any k if we tune C = η(0).
This way the right-hand side is zero at k = 0, so dividing by k̄
we get

λ(k) = −kη(k)

|k|2 , λ(0) = 0. (23)

Therefore we managed to find a second solution to Eq. (5)
with boundary conditions (4) that is singular but linearly in-
dependent of the holomorphic solution.

One can check that λ(r)ψK is finite everywhere and there-
fore the pole of ζK could not be removed. We have checked
numerically that if one follows the above procedure the result-
ing wave function has a simple pole and satisfies the system
of Eqs. (5) and (4).

Hidden Landau levels. In this section we use units such
that the fundamental magnetic flux �0 = h

e = 1. We have two
solutions at the Brillouin point K : ψ0

K with a zero at a point z0

and ψ∞
K with a pole at a point z∞. We wish to change the basis

to these functions because the original operator D in (3) would
look very simple in this basis. Unfortunately, we cannot do
this with original ψ∞

K , ψ0
K because they have a pole and a zero.
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We can introduce finite everywhere wave functions ψ̂∞, ψ̂0

ψ̂∞ = ei �K�a1z− 1
2 B1zz̄ϑ (z − z∞; τ )ψ∞

K ,
(24)

ψ̂0 = ei �K�a1z+ 1
2 B1zz̄

ϑ (z − z0; τ )
ψ0

K ,

where B1 is a constant magnetic field corresponding to flux
1 in the moiré lattice. The Jacobi theta function cancels the
corresponding zero and pole.

One can introduce the matrix S which changes the basis:

S = (ψ̂0, ψ̂∞),

det S = det(ψ̂0, ψ̂∞) = 1. (25)

Then since det S = 1, we can invert this matrix at each point
of the lattice C/
. This matrix allows us to rewrite the Dirac
operator as

D̂ = S−1DS =
(

∂̄ − 1
2 B1z 0
0 ∂̄ + 1

2 B1z

)
. (26)

With the use of transformation S we managed to remove the
potential Ā from the original Dirac operator D defined in
Eq. (3) but at the cost of introducing two effective magnetic
fields. We would like to point out that the same consideration
could be repeated for a holomorphic part of the Hamiltonian
D∗ with the same type of arguments and results.

This shows that in this basis we have just effectively split
TBG into two sheets with effective magnetic field B1. The
magnitude of this field is the same in both sheets but differs
in sign. The form of the equations is exactly the same as for
the Landau level problem on a torus (see Appendix A and
Ref. [50] for a detailed discussion). Since the matrix S is non-
singular, the physical solutions for this auxiliary problem must
be finite too. In one layer the effective magnetic field supports
a wave function with a zero, while in the other the solution has
a pole and is therefore unphysical. An analogous conclusion
was derived from the different arguments in Ref. [55], but in
our case we managed to show that our system does split into a
sum of two systems with nonzero Chern numbers for a generic
potential.

What is the advantage of representation (26)? The key
feature of this representation is that it allows us to easily study
the system in an external magnetic field. Such an external
field corresponds to adding an identity matrix to the antiholo-
morphic connection in Eq. (5). It will not be sensitive to the
transformation in Eq. (26). Therefore the equation for the zero
mode has the following form:

D̂B f =
(

∂̄ − 1
2 B1z + ĀU (1) 0

0 ∂̄ + 1
2 B1z + ĀU (1)

)
f = 0,

f = ( f−, f+), (27)

where ĀU (1) is a gauge potential for the external magnetic field
that creates a magnetic field in the direction perpendicular
to the plane of the TBG. Again, physical solutions of these
equations are the ones with no singularities. We see that we
got a simple Landau problem again! We dedicate Appendix A
to a detailed description of this well-known problem.

The most important consequence of this is the emergence
of extra flat bands. For simplicity we assume that ĀU (1) has a

flux �ext = ∫
d2x[∂Ā − ∂̄A] ∈ Z through the moiré superlat-

tice. Equation (27) shows us that the system decouples into
two noninteracting layers with fluxes �tot ≡ � = �ext ± 1.
The result of Appendix A is that for �ext � 1 there are no flat
bands, for �ext = 0 there is exactly one, and for �ext � −1
there are 2|�ext| flat bands.

Note that we have studied only the antiholomorphic part of
the Hamiltonian (1). The holomorphic part (the other chiral-
ity) exhibits the same properties but for �ext → −�ext. This
means that in total there are 2|�ext| flat bands for |�ext| > 0
and for �ext = 0 there are only two flat bands. We would like
to point out that if we did not take into account the hidden
wave function, we would expect to have |�ext| + 2 flat bands
in the presence of the external magnetic field.

Physical consequences and conclusion. Let us summarize
our key findings. We started from the CS-CM-type Hamilto-
nian (1) with a generic Ā and assumed that it has a flat band.
We proceeded by deriving an extra (nonphysical) zero-mode
ψ∞

K of the Hamiltonian (1). This solution let us define the
transformation S [Eq. (25)] and represent the original Dirac
operator in the form (26). This new form is very simple, and
it allowed us to explicitly demonstrate the emergence of extra
flat bands in the presence of an external transverse magnetic
field.

TBG is believed to be approximately described by the
CS-CM [44,45]. As was shown in Ref. [43], such a system
possesses a flat-band solution at θ = 1.05◦. Since we derived
some general properties of the solutions of the CS-CM, we
can argue that our results are applicable to TBG. At the
first magic angle θ = 1.05◦, unity fundamental flux through
a moiré lattice corresponds to a magnetic field of about 13 T.
Such magnetic fields are accessible; hence our prediction of
extra flat bands can be, in principle, verified in experiment.
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APPENDIX A: LANDAU LEVELS ON A TORUS

In this Appendix we briefly review the wave functions on
a torus; we will mostly follow Haldane and Rezayi [50]. We
consider a complex torus C/
,
 = {n + mτ ; n, m ∈ Z} and
want to find solutions to the following equation:

D̂B f = (
∂̄ + 1

2 eBz
)

f = 0, F = ∂̄A − ∂Ā = B, (A1)

which is either of the two equations in (27). To establish the
boundary conditions, we consider a shift of z by a lattice
vector ai = 1, τ to get(

∂̄ + 1
2 eBz + 1

2 eBai
)

f = 0. (A2)
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To remove the change in the gauge potential, we should make
a gauge transformation

f → f e− 1
2 eBai z̄+ 1

2 eBāiz; (A3)

this can be used to define the boundary conditions. Namely,

T1 : f (z + 1) = ψ (z)e− 1
2 eBz̄+ 1

2 eBz,

Tτ : f (z + τ ) = f (z)e− 1
2 eBτ z̄+ 1

2 eBτ̄ z. (A4)

We should check the consistency of these boundary condi-
tions, that T1Tτ = Tτ T1. One can check that

T1Tτ f (z) = eeB(τ−τ̄ )Tτ T1 f (z). (A5)

The difference between these phases is eeB(τ−τ̄ ) = 1. That
gives a condition for the consistent boundary conditions (A4)

π� = eB Im τ, eB = π�

Im τ
, � ∈ Z. (A6)

These conditions give that the integral over a fundamental
period is equal to � = 1

2π

∫
Fd2z = eB

π
Im τ .

Then we can consider a general k from the Brillouin zone
to get (

∂̄ + 1
2 eBz

)
fk (z) = 0,

fk (z + ai ) = fk (z)e− 1
2 eBai z̄+ 1

2 eBāiz+i(k,ai ), (A7)

where (k, z) = kxx + kyy = Im kz̄, k = kx + iky, z = x + iy.
For � = −1, Eq. (A7) is easy to solve; we get

fk,−1(z) = ϑ

(
z + ik

2eB
; τ

)
e

1
2 eB(z+ ik

2eB )2+i 1
2 k̄z− 1

2 eBzz̄.

The zero of this function is located at

z0 = 1

2
+ 1

2
τ − ik

2eB
, (A8)

whereas for � = +1 we get a solution with a pole:

fk,+1(z) = 1

ϑ
(
z + ik

2eB ; τ
)e

1
2 eB(z+ ik

2eB )2+i 1
2 k̄z− 1

2 eBzz̄.

If � �= −1, the solution is just

fK,�(z) =
∏

k1+...+k�=K

fki,−1(z). (A9)

It seems that there are now an infinite number of wave func-
tions at given K . One can show that there are only a finite
number of linearly independent solutions (A9).

To compute this dimension, we can use the Riemann-Roch
formula [53] for the operator D̂B in Eq. (A1). This gives
that dim ker D̂B = �, so when � is negative we do not have
any finite solutions for the Landau levels at any point of the
Brillouin zone. The case � = 0 is special—there are some
zero modes but only at special points of the Brillouin zone.

APPENDIX B: THE SPLITTING OF A SHORT EXACT
SEQUENCE AND ČECH COHOMOLOGY

In this Appendix we would like to clarify the existence
of the second solution from the cohomology point of view.
Although this approach is a bit involved, it is mathematically

rigorous and could be generalized to higher-genus Riemann
surfaces [56].

We start with the rigorous formulation of the problem.
Assume that we have a Riemann surface M with some holo-
morphic vector bundle π of rank 2, π : E → M and some
connection Ā. Namely, we have a covering of the Riemann
surface with open subsets {Uα} where the vector bundle could
be trivialized

M =
⋃
α

Uα, E |Uα
≈ Uα × C2. (B1)

When we move from one covering Uα to another Uβ , we need
to glue the section with holomorphic gluing functions g0

αβ ,
∂̄g0

αβ = 0. The connection Āβ transforms as

Āβ = ĝ−1
αβ Āα ĝαβ + ĝ−1

αβ ∂̄ ĝαβ. (B2)

We want to find holomorphic sections of these vector
bundles—a collection of functions {ψα}, such that the follow-
ing conditions are satisfied:

ψ0
α = g0

αβψ0
β, (∂̄ + Āα )ψ0

α = 0. (B3)

We can get rid of the connection Āα by solving Eq. (B3) at
each covering and performing the gauge transformation.

Then we can generally study the following problem:

ψα = gαβψβ, ∂̄ψα = 0. (B4)

So we just need to find meromorphic sections of the vector
bundle E defined by cocycles gβα in the assumption that we
have holomorphic sections of the bundle (B4) ψh. Namely,
we have a collection of holomorphic functions ψh

α (z) that
are defined at each of the coverings and satisfy boundary
conditions

ψh
α = gαβψh

β . (B5)

We want these functions ψh
α to be nonzero at any coverings

of M. Whenever we encounter a zero in some covering
Uα , ψh

α (zα
0 ) = 0, we redefine holomorphic section and gluing

functions ψ̂h
α = 1

z−zα
0
ψh

α and ĝαβ = γ 1
αβgαβ, γ 1

αβ = z−zα
0

z−zβ

0

. This

new function is nowhere zero and changes as

ψ̂h
α = γ 1

αβgαβψ̂0
β, where γ 1

αβ ∈ C, γ 1
αβγ 1

βγ γ 1
γα = 1.

(B6)

Since this section is nowhere zero we can find another set of
holomorphic functions that is linearly independent of ψ̂α at
each point. We refer to this set of functions as ψ̂∞

α and with
an analogous procedure introduce γ 2

αβ to remove all the zeros
it can possibly have. Because of this, at each covering we
can change basis to ψ̂α and ψ̂∞

α . One can check that gluing
functions in this new basis of the vector bundle become

ĝαβ =
(

γ 2
αβ hαβ

0 γ 1
αβ

)
, where

γ 2
αβγ 2

βγ γ 2
γα = 1 and hαγ = γ 2

αβhβγ + hαβγ 1
βγ . (B7)

If we got that hαβ = 0, then the functions ψ̂∞
α would change

through each other as

ψ̂∞
α = γ 2

αβgαβψ̂∞
β (B8)
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and define a legitimate section of the vector bundle E . Since
the set of functions γ 2

αβ represents a line bundle, it has a
meromorphic section: a set of meromorphic functions fα (z)
with property γ 2

αβ = fβ
fα

. Then new functions

ψ∞
α = fαψ̂∞

α (B9)

are holomorphic everywhere and transform as

ψ∞
α = gαβψ∞

β , (B10)

therefore representing a legitimate section of the orig-
inal vector bundle E but containing a pole at some
point.

Let us show that we can get rid of hαβ by a proper redefini-
tion of the arbitrarily chosen ψ̂∞

α . Namely, we notice that the
choice of ψ̂∞

α is not unique. At each covering we can make a
change

ψ̂∞
α → ψ̂∞

α + hα (z)ψ̂0
α. (B11)

It changes gluing functions as

hαβ → hαβ + γ 2
αβhβ (z) − hα (z)γ 1

αβ. (B12)

This gives that hαβ belong to H1(O(γ1γ
−1
2 )) and by Serre

duality are dual to H0(O(κγ −1
1 γ2)), where κ is a tangent

line bundle. This line bundle does not have any holomorphic
section if its Chern class is negative. We get

c1(κγ −1
1 γ2) = 2g − 2 − c(γ1) + c(γ2)

= 2g − 2 − 2c(γ1) = −2c(γ1) < 0, (B13)

and we used g = 1 (torus), c1(γ1) � 1 (ψ̂α has at least
one simple zero), and c1(γ1) + c1(γ2) = 0 [consequence of
Eq. (13)].

Since H1(O(γ1γ
−1
2 )) = 0, the cohomology class repre-

sented by hαβ is trivial, meaning that we can always pick hα

such that hαβ = 0 in Eq. (B12). Then, as we discussed above,
ψ̂∞

α will represent a meromorphic section of the vector bun-
dle E . This procedure could be generalized to higher-genus
Riemann surfaces and other vector bundles.
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assume that Ā does not have poles.

[52] Holomorphicity of γ (z) concludes that the wave function has
a simple zero ψK (z) ∼ f (z̄)(z − z0) + O(z − z0) rather than
some nonanalytical behavior.

[53] P. Griffiths and J. Harris, Principles of Algebraic Geometry
(Wiley, New York, 1978).

[54] S. K. Donaldson, An application of gauge theory to
four-dimensional topology, J. Differ. Geom. 18, 279
(1983).

[55] J. Liu, J. Liu, and Xi. Dai, Pseudo Landau level representation
of twisted bilayer graphene: Band topology and implications
on the correlated insulating phase, Phys. Rev. B 99, 155415
(2019).

[56] R. C. Gunning, Lectures on Vector Bundles on Riemann surfaces
(Princeton University Press, Princeton, 1967).

155150-8

http://arxiv.org/abs/arXiv:2009.12376
http://arxiv.org/abs/arXiv:2009.13530
http://arxiv.org/abs/arXiv:2009.14200
http://arxiv.org/abs/arXiv:2010.00588
https://doi.org/10.1088/2399-6528/ab0fa9
https://doi.org/10.1103/PhysRevX.8.031087
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevX.8.041041
https://doi.org/10.1103/PhysRevB.98.235158
https://doi.org/10.1103/PhysRevB.98.235402
https://doi.org/10.1103/PhysRevLett.121.036601
https://doi.org/10.1103/PhysRevB.98.035425
https://doi.org/10.1103/PhysRevB.98.085436
https://doi.org/10.1103/PhysRevB.98.220504
https://doi.org/10.1007/s00205-019-01444-y
https://doi.org/10.1007/s11467-018-0869-9
https://doi.org/10.1103/PhysRevLett.123.096802
http://arxiv.org/abs/arXiv:2005.12961
https://doi.org/10.1103/PhysRevB.99.144507
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevB.84.035440
https://doi.org/10.1103/PhysRevB.86.155449
https://doi.org/10.1103/PhysRevLett.108.216802
https://doi.org/10.1103/PhysRevB.31.2529
https://doi.org/10.4310/jdg/1214437665
https://doi.org/10.1103/PhysRevB.99.155415

