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Modeling multiorbital effects in Sr2IrO4 under strain and a Zeeman field
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We present a comprehensive study of a three-orbital lattice model suitable for the layered iridate Sr2IrO4.
Our analysis includes various on-site interactions (including Hubbard and Hund’s) as well as compressive strain,
and a Zeeman magnetic field. We use a self-consistent mean-field approach with multiple order parameters
to characterize the resulting phases. While in some parameter regimes the compound is well described by an
effective J = 1/2 model, in other regimes, the full multiorbital description is needed. As a function of the
compressive strain, we uncover two quantum phase transitions: first a continuous metal-insulator transition,
and subsequently a first-order magnetic melting of the antiferromagnetic order. Crucially, bands of both J = 1/2
and J = 3/2 nature play important roles in these transitions. Our results qualitatively agree with experiments of
Sr2IrO4 under strain induced by a substrate and motivate the study of higher strains.
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I. INTRODUCTION

The combination of strong correlations, spin-orbit cou-
pling (SOC), and multiple relevant orbitals has proven to
lead to many interesting states including spin and orbital
orders, topological states and unconventional superconductiv-
ity [1–6]. The iridate family of compounds displays a very
rich phenomenology due to a combination of all of these
factors [1,7,8]. The five d orbitals are usually split by crystal
fields into two groups, eg and t2g, with twofold and threefold
degeneracy, respectively. On the other hand, strong spin-orbit
coupling may lead to further energy splitting which in turn
may reduce the number of relevant bands. Early works on the
iridates noted that the spin-orbit coupling affects the system to
such an extent that the local total angular momentum states,
referred to here as J eigenstates, do not mix. Moreover, the
strong SOC allows one to project onto the J = 1/2 subspace
and arrive at a simplified effective one-orbital model. In this
work, we go beyond this effective Jeff = 1/2 model and ex-
amine regimes where considering a larger subspace, with
multiple orbitals, is deemed necessary.

Sr2IrO4 is the single-layer compound in the Ruddlesden-
Popper series of perovskite iridates and is a spin-orbit coupled
Mott insulator with a canted antiferromagnetic order, as seen
in Fig. 1. In each layer, the iridium atoms are arranged
in a square lattice. Each iridium site is surrounded by an
oxygen octahedron which is rotated with respect to the crys-
tallographic axes, by a staggered angle φ ≈ ±12◦ [9]. The
magnetic moment roughly follows the rotation of each octa-
hedron, resulting in the canted order. In this state, the system’s
properties are dominated by the J = 1/2 bands, which are
separated from the J = 3/2 bands [10–12]. A projected effec-
tive model therefore seems appropriate. This view is further
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supported by the x-ray absorption spectra that indicate scat-
tering paths corresponding to an order formed by J = 1/2
pseudospins [13].

The appropriate effective one-orbital model is surpris-
ingly similar to the one used successfully to describe many
of the features of the cuprate high-Tc superconductors. A
three-orbital model can take into account both the J = 1/2
and J = 3/2 subspaces. Previous studies of this multiorbital
model of Sr2IrO4 predict that superconductivity could occur
in this compound as well. However, d-wave superconductivity
seems only possible for interorbital interaction parameters in
the lower end of the predicted range [14–16]. These predic-
tions indicate that the effective one-orbital model, Jeff = 1/2,
might only be valid in some regimes. The system enters other
regimes when effects, such as of doping, are no longer small
compared to the energy scale of the spin-orbit coupling.

In this paper, we take the approach that the three-orbital
model is necessary. Including the six bands of the three t2g

orbitals, allows us to study several regimes where the ef-
fective one-orbital model may be insufficient. We consider
the effects of an epitaxial strain and an external magnetic
field on undoped Sr2IrO4. Strain and a Zeeman field are both
orbital dependent effects: the strain deforms the lattice and
changes the interorbital overlaps; the Zeeman field couples to
the magnetic moment which depends on the orbital as well as
the spin angular momentum.

When considering strain, we should note that Sr2IrO4 is
sensitive to changes in lattice geometry via a strong Jahn-
Teller effect [17]. Epitaxial strain affects the lattice constants
as well as the rotation angle φ. Strain is introduced by
growing Sr2IrO4 on a substrate with a mismatch in lattice
parameters [18–21]. In Sr2IrO4, an epitaxial strain which
changes the lattice parameters by 0.5% is not only easily
achievable but also enough to reduce the Néel temperature
by 30 K [18,19]. Epitaxial strain is thus a suitable handle for
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FIG. 1. (a) The structure of a single layer of Sr2IrO4 without
strain, ε = 0. The IrO6 octahedra are rotated in-plane by an angle
of φ ≈ ±12◦ with the sign opposite on neighboring octahedra. This
yields an angle θ0 ≈ 156◦. The arrows represent the total magnetic
moments in the ground state, μ = −μB(L + gS), which are arranged
in a canted antiferromagnetic fashion with a small net moment along
the a axis. (b) When compressive strain, ε, is applied to the layer, the
angle θε decreases as the rigid octahedra are rotated closer together.
A tensile strain has the opposite effect, resulting in a larger angle θε .

tuning interactions and lattice deformations. Ab initio calcula-
tions have previously identified contributions from different
J states to the experimentally observed magnetic order, as
well as excitations between the states for some strain values
[22,23]. Compressive epitaxial strain mainly modifies the lat-
tice structure by increasing the rotation angle of the octahedra
surrounding the iridium sites, see Fig. 1(b).

The same effect can be achieved by other means. Two
recent promising methods to modify the rotation angle, are
electrical current [24] and “field altering” via growth in a
magnetic field [25]. In particular, the method of “field alter-
ing” in combination with doping has recently been proposed
to provide a more favorable environment for observing su-
perconductivity in Sr2IrO4 [25]. These experiments motivate
us to study trends for a range of strain values and a range of
interaction parameters.

Another regime where it might be important to include
all three orbitals is reached when a Zeeman field is applied.
The field couples to the total magnetic moment which is
a combination of the orbital and spin angular momentum,
and therefore mixes the local J states. This mixing has been
largely neglected in previous literature as the Zeeman field
effects were studied in the context of the effective J = 1/2
model [12,26–29]. Previously, both experiments and model-
ing of the Sr2IrO4 compound have observed a metamagnetic
transition at small fields [13,30–33]. This transition aligns the
canting of the antiferromagnetic order between layers in the
compound, at a field around 0.3 T [17,34]. In this work, we
consider higher fields as we expect to be able to see effects
originating from in-plane interaction within each layer after
the metamagnetic transition has taken place.

Some recent work with orbital resolved measurements in a
magnetic field has, in addition, shown unequal contributions
from each of the t2g orbitals to the magnetic moment [35]. For
the simpler Jeff = 1/2 projected model, contributions from
each orbital are assumed to be equal. This motivates our
choice to study the three-orbital model in a Zeeman field.

In this work, we aim to give further insight into how
quantum phase transitions can arise in Sr2IrO4 under a com-

pressive epitaxial strain, with the addition of a Zeeman field.
In Sec. II, we introduce a three-orbital Hubbard-Kanamori
model with on-site interactions. The interactions are treated
with a self-consistent mean-field approximation. The mean-
field decoupling includes all possible uniform and staggered
order parameters, except superconductivity. We include a Zee-
man field which is applied in different directions and couples
to the full magnetic moment μ = −μB(L + gS), where μB is
the Bohr magneton. The compressive epitaxial strain is mod-
elled as a linear change in hopping parameters. This allows us
to reach higher compressive epitaxial strain than previously
modeled. We are considering a two-atom unit cell in the
canted lattice, as in Fig. 1, where the mean-field order parame-
ters are calculated without assuming any relation between the
two sublattices. A set of 42 independent order parameters is
therefore used. These parameters describe order in the orbital
and spin angular momentum and can be expressed in the
J-state basis or the orbital basis. By considering the full set
of order parameters the contributions to the order from each
J state as well as contributions from order parameters mixing
J states, are considered. Section III presents the results where
our model predicts phase transitions from an insulating anti-
ferromagnet into metallic states at high strains. In Sec. III A,
details are given for the transitions which are induced by
a compressive strain. The Fermi surfaces for the metallic
orders are predicted to include several J states, highlighting
the necessity of the multiorbital model. In Sec. III B, the
contributions to the magnetic moment from our set of order
parameters are considered when a field is applied. Changes to
the contributions of order parameters from different J states
are predicted as a function of strain and field. Finally, in
Sec. IV, we relate our results to experimental findings and
discuss implications of entering regimes where the Jeff = 1/2
model is insufficient.

II. MODEL

In Sr2IrO4, the octahedral crystal fields around the iridium
splits its d levels into t2g and eg orbitals. Without doping, the
three t2g orbitals, dyz, dxz, and dxy, are filled with five electrons
while the eg orbitals are unoccupied at higher energy. Besides
the intra- and interorbital hopping, these atomic states are also
subject to a large on-site spin-orbit coupling and interactions.
While the Hubbard interaction strength U is rather moderate,
around 1–2 eV, the spin-orbit coupling (SOC) is strong, λ ≈
0.4 eV. The strong SOC splits the six t2g bands roughly in two
groups: four bands of mainly J = 3/2 character and two bands
of mainly J = 1/2 character. In the undoped compound, the
Fermi level is placed in such a way that the J = 3/2 bands
are filled and J = 1/2 bands are half-filled. The interaction
strength is therefore enough to form an AFM state dominated
by the J = 1/2 pseudospins [13]. This state is depicted in
Fig. 1. The anisotropy of the system causes the interactions
to be significantly stronger in the plane than out of plane.
A combination of the anisotropy and the in-plane staggered
rotations of the iridium sites causes the magnetic order to form
in the plane along the crystallographic b axis with a canting
angle of the magnetic moment along the a axis in each plane.
In this work, given the large anisotropy, we model the system
as a single layer.
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A. Hubbard-Kanamori model

Before we introduce the strain and Zeeman field, we recall
the Hamiltonian of the system:

H = Hkin + HSOC + HI, (1)

where Hkin is the kinetic part, HSOC is the spin-orbit
coupling, and HI contains the on-site interactions, as de-
fined below. The kinetic part includes hopping between
nearest- and next-nearest- neighboring sites for each of
the d orbitals α = yz, xz, xy, with inter- and intraorbital
hopping. In order to study uniform and staggered orders,
we consider a unit cell with two sites, with sublattices
s = A, B. The sublattices include the staggered rotation
φs = ±φ, with opposite signs for sublattice A and B.
For both sublattices defined in the same global basis c =
(cA,yz,↑, cA,yz,↓, cA,xz,↑, cA,xz,↓, cA,xy,↑, cA,xy,↓, cB,yz,↑, cB,yz,↓,

cB,xz,↑, cB,xz,↓, cB,xy,↑, cB,xy,↓), the labeling of orbital and spin
directions are along the crystallographic a and b axes. The
rotation of each site can be taken into account in the kinetic
Hamiltonian which therefore includes nonzero hoppings be-
tween the dyz and dxz orbitals. Our Hamiltonian follows the
form of Ref. [36], which uses a Slater-Koster approach [37].
For each spin σ =↑,↓ the kinetic terms take the form (in
momentum space):

Hkin =
(

HAA HAB

H†
AB HBB

)
, (2)

HAA =
⎛
⎝ εd ε1d 0

ε1d εd 0
0 0 ε

xy
d

⎞
⎠,

HAB =
⎛
⎝εyz −εrot 0

εrot εxz 0
0 0 εxy

⎞
⎠, (3)

where

εxy = 2t (cos kx + cos ky), εyz = 2(tδ cos kx + t1 cos ky),

εxz = 2(t1 cos kx + tδ cos ky), εrot = 2t ′(cos kx + cos ky),

ε
xy
d = 4tn cos kx cos ky + μxy, ε1d = 4t1d sin kx sin ky,

εd = 4tnd cos kx cos ky. (4)

The nearest-neighbor hopping for dyz and dxz orbitals is
nearly one dimensional in-plane, with t1 along the direction
in which they are orientated and a smaller tδ along the
other direction. The dyz-dxz interorbital hopping, t ′, and the
nearest-neighbor hopping between dxy orbitals, t , are equal
in both directions. For the next-nearest neighbors, along the
diagonal of the square lattice, the hopping is tn for dxy and tnd

for the dyz and dxz orbitals. The dyz-dxz interorbital hopping
is t1d along the diagonal. In the absence of strain we use the
following values: (t, t1, tδ, t ′, tn, t1d , tnd ) = (−0.211,−0.186,

−0.055,−0.042,−0.118,−0.004, 0.021) eV. These values
are extrapolated from those calculated for compressive
epitaxial strain by the lineraziation given in detail below
in Sec. II C. The hopping amplitudes have been calculated
by Seo et al. [23] through ab initio for varying strain. The
corresponding rotation angle of the sites is φs = ±12.3◦
and μxy = 0.7t [8,38] takes the tetragonal splitting into

account, with the value of t being fixed to that of ε = 0.
In general, the tetragonal splitting is expected to change
under compression as the tetragonal elongation of the oxygen
octahedra increases [34]. Works considering a superexchange
Hamiltonian predict that for an increased elongation, either
an order along the c axis can be favored or the canting
moment can be suppressed [39,40]. An additional small
staggering of the distortion has been observed to stabilize
the canted magnetic moment [41]. However, we chose to
study the strain-induced hopping modifications separately
as there are conflicting predictions on how the energy
splitting depends on strain. Ab initio calculations predicted
a μxy where the absolute value decreases until μxy changes
sign [22,42], while recent RIXS data observed a linearly
increasing absolute value of μxy [43]. Section IV expands on
how strain-dependent distortions could affect our results.

The atomic spin-orbit interaction, with the coupling λ, is
defined at each site from spin and orbital angular momentum
along the same axes as

HSOC = λ

2

∑
j,i

∑
αβ,σσ ′

Li
αβσ i

σσ ′c†
jασ c jβσ ′ , (5)

where i = x, y, z, σ = (σ x, σ y, σ z ) are the Pauli matrices in
the spin basis σ =↑,↓, and the matrices

L =

⎛
⎜⎝

⎡
⎢⎣

0 0 0

0 0 −i

0 i 0

⎤
⎥⎦,

⎡
⎢⎣

0 0 i

0 0 0

−i 0 0

⎤
⎥⎦,

⎡
⎢⎣

0 −i 0

i 0 0

0 0 0

⎤
⎥⎦

⎞
⎟⎠ (6)

are the orbital angular momentum operators, projected onto
the t2g subspace and written in the orbital basis α = yz, xz, xy.
The interactions in the multiband model on each site take the
form of the Kanamori-Hubbard interactions [44]

HI = U
∑
j,α

n jα↑n jα↓

+
∑

j,α �=β

JH[c†
jα↑c†

jβ↓c jα↓c jβ↑ + c†
jα↑c†

jα↓c jβ↓c jβ↑]

+
∑

j,α<β,σ

[U ′n jασ n jβσ̄ + (U ′ − JH)n jασ n jβσ ] (7)

with the intraorbital interactions U , the Hund’s coupling JH,
and the interorbital repulsion U ′. For simplicity the spheri-
cally symmetric value U ′ = U − 2JH is taken. For Sr2IrO4 the
Hund’s coupling is approximated to be in the range 0.05U −
0.2U [14–16,45].

B. Zeeman coupling

We consider the effect of an external magnetic field H
through the Zeeman field. The field couples to the full
magnetic moment μ = μB(L + gS), with g ≈ 2 being the gy-
romagnetic ratio. The additional term in the Hamiltonian is

HZ = μB

∑
j,s

∑
α,σ

[∑
β

H · Lαβc†
s, jασ cs, jβσ

+1

2

∑
σ ′

gH · σσσ ′c†
s, jασ cs, jασ ′

]
. (8)
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For realistic magnetic fields, the Zeeman energy is signifi-
cantly smaller than the spin-orbit coupling λ ≈ 0.4 eV, and
the gap ≈0.5 eV. For example, a field of H ≈ 10 T corre-
sponds to an energy of the order of gμBH = 1.2 meV.

C. Epitaxial strain

We model the effect of a compressive strain on the sys-
tem by modifying the hopping parameters linearly with the
strain. We use a linearization of the set of values for the
hopping parameters calculated by Seo et al. [23]. In Ref. [23],
the compound is grown on three different substrates which
have lattice constants that are smaller than that of Sr2IrO4 :
(LaAlO3)0.3(Sr2TaAlO6)0.7, NdGaO3, and LaAlO3. The re-
sulting misfit strain modifies the lattice constants in the
Sr2IrO4 thin film. X-ray diffraction measurements find these
modified lengths and ab initio calculations are performed
for those structures. The calculations therefore provide three
data points for the hopping parameters at given values of
the compressive strain. In this work, we use those three data
points to fit a linear dependence of the hopping with the strain.
Our linearization results in the proportional changes, ρ, which
modify our hopping amplitudes as

t (ε) = t (1 + ρε), t1(ε) = t1(1 + ρ1ε),

t ′(ε) = t ′(1 + ρ ′ε), tn(ε) = tn(1 + ρnε),

tδ (ε) = tδ (1 + ρδε), t1d (ε) = t1d (1 + ρ1dε),

tnd (ε) = tnd (1 + ρndε), φ(ε) = φ(1 + ρφε). (9)

For a compressive strain (ε < 0) the resulting values
are (ρ, ρ1, ρ ′, ρn, ρδ, ρ1d , ρnd , ρφ ) = (0.014,−0.251,

−0.309,−0.048, 0, 0,−0.02,−0.085). The values used for
ε = 0 are those given by this linearization. As illustrated in
Fig. 1, the effect of compressive strain is mainly to increase
the relative rotation angle between adjacent octahedra.
However, by using these values we are not restricted to
consider only rotation effects. The rotations change the
overlap integrals between orbitals on different sites. The
nearest-neighbor interorbital dyz-dxz hopping, as well as the
next nearest neighbor intraorbital dxy hopping are increased
under strain. On the other hand, the nearest neighbor dxy

hopping is decreased. Our linearized strain model allows us
to predict what orders can arise when we reach strain values
beyond the experimentally achieved ε = −1.9% [23].

D. Mean-field approximation

In mean-field theory, one approximates the Hamiltonian
by a quadratic one, so that the quartic interaction terms are
decomposed by introducing a variety of order parameters.
This yields an auxiliary Hamiltonian for which the spectrum
can be found by diagonalizing a single-particle Hamiltonian.
The resulting eigenstates are then used as variational states
to calculate the expectation value of the original interacting
Hamiltonian for a given electron density. The energy is mini-
mized with respect to the order parameters, thus determining
their values. With two atoms per unit cell, three orbitals and
two spin states, each unit cell has 12 creation/annihilation op-
erators. A mean-field order parameter is the expectation value
of a bilinear operator 〈c†

αcβ〉. Our mean-field decomposition is

done by choosing to include the full set of on-site order param-
eters under the condition of a hermitian auxiliary/mean-field
Hamiltonian. For each of the sites in the unit cell, we form a
6×6 hermitian matrix of order parameters, meaning that we
calculate a total of 2×21 = 42 independent complex-valued
order parameters. The set of order parameters is therefore
〈c†

γ1
cγ2〉s, where γi is a label combining the spin label σ and

the orbital label α in each sublattice s = A, B. The order pa-
rameters are calculated in iterative steps through the coupled
set of self-consistency equations, as given in Appendix A.
The calculated order parameters are used as input into the
Hamiltonian in order to repeat the process in iterative steps
until the input and output, of the form presented in Table I,
differ by less than the total tolerance of 10−5. The calculations
were performed on a 200×200 grid of momentum k points. A
range of initial conditions are considered to ensure that the
global minimum of the energy functional is found.

Our analysis assumes no relations between the order pa-
rameters on the different sites. Uniform orders are considered
by calculating the net value of the order parameters from both
sites, (A + B)/2, and staggered orders are the difference in
order parameters between sites, (A − B)/2. Such staggered
orders include commensurate charge density waves (CDW),
spin density waves (SDW), orbital density waves (ODW), and
spin-orbit density waves (SODW). It is convenient to rewrite
the order parameters in order to directly describe the spin
and orbital angular momentum. The order parameters nyz, nxz,
and nxy are the filling of each orbital. The spin Si and the
orbital angular momentum Li are calculated in each direction
i = x, y, z. Order parameters that couple spin and orbital de-
grees of freedoms, like the bare SOC, �i are included as well.
Suppressing the sublattice label, these order parameters are
given by

Si
α = 1

2

∑
σ,σ ′

σ i
σσ ′ 〈c†

ασ cασ ′ 〉, (10)

Li
σ =

∑
α,β

Li
αβ〈c†

ασ cβσ 〉, (11)

�i = 1

2

∑
α,β

∑
σ,σ ′

Li
αβσ i

σσ ′ 〈c†
ασ cβσ ′ 〉. (12)

Once a set of self-consistent order parameters has been
found in the orbital and spin basis, they can also be ex-
pressed in the J basis. This basis represents the eigenstates
of the non-interacting model in the λ → ∞ limit, in which
the hopping can be neglected. Order parameters expressed in
this basis represent contributions of each J state as well as
a measure of the mixing between states. The transformation
c̃m,τ = ∑

α,σ U α,σ
m,τ cα,σ , generates the basis c̃m,τ at each site

where m = | j, jz〉 : 1 = |1/2,±1/2〉, 2 = |3/2,±1/2〉, 3 =
|3/2,±3/2〉 are the pseudospins and τ = +,−. The same
transformation is applied for both sublattices, which defines
the J states in the global basis. It is important to note that J
states that are defined for local rotated orbitals are different
states and such a definition may slightly shift the resulting
contributions of each state. In the J basis, order parameters
are constructed as a linear combination of the ones discussed
above in Eqs. (10)–(12). These order parameters are given by
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TABLE I. The order parameters are given in the three-orbital basis, as in Eqs. (10)–(12), as well as in the basis of J states, as in Eqs. (14)
and (15). The calculation is performed at λ = 0.38 eV, U = 0.9 eV, and JH/U = 0.1, with no strain or field, meaning that the state is the
canted antiferromagnet in Fig. 1(a). The differences between order parameters in the two sublattices are given as the staggered value. The net
values of the order parameters are defined as the average for the two-site unit cell. For the L and Syz,xz,xy order parameters, the staggered values
are along the b axis, while the net values are along the a axis. The order parameters � renormalize the spin-orbit coupling strength.

nyz nxz nxy L Syz Sxz Sxy �x �y �z

staggered 0 0 0 −0.47 0.13 −0.15 0.11 0 0 0
net 1.66 1.63 1.71 0.15 0.040 −0.042 −0.037 0.32 0.30 0.35

n1 n2 n3 J1 J2 J3 J12 J13 J23

staggered 0 0 0 −0.29 −0.0047 0.0040 −0.023 0.011 0.0005
net 1.02 1.99 1.99 0.12 0.0018 0.0012 0.0035 −0.0010 −0.0002

〈c̃†
m,τ c̃n,τ ′ 〉 and are transformed from the orbital basis as

〈c̃†
mτ c̃nτ ′ 〉 =

∑
α,β,σ,σ ′

(
U ασ

mτ

)∗
U βσ ′

nτ ′ 〈c†
ασ cβσ ′ 〉 (13)

with the matrix U given in Appendix B. In this basis, we
consider the order parameters:

Ji
m = 1

2

∑
τ,τ ′

σ i
ττ ′ 〈c̃†

mτ c̃mτ ′ 〉, (14)

Ji
mn = 1

2

∑
τ,τ ′

σ i
ττ ′ 〈c̃†

mτ c̃nτ ′ 〉 (15)

for the J states m, n = 1, 2, 3, and the pseudospins τ, τ ′ =
+,−. In addition, the filing of each J state is given by

nm =
∑

τ

〈c̃†
mτ c̃mτ 〉. (16)

This transformation extends the analysis of Mohapatra and
Singh in Ref. [38], who studied the contributions Jm, with-
out strain and a Zeeman field. In this work, we include the
additional mixing Jmn, which includes effects beyond those
that can be projected onto the individual subspaces of the J
states. The amount of mixing Jmn allows us to see whether
strain and Zeeman fields require us to go beyond the effective
Jeff = 1/2 model.

III. RESULTS

First, our mean-field solution in the absence of Zeeman
field and strain is in agreement with previous stud-
ies [10,12,14–16,38,45,46]. In Fig. 2, we present the band
structure for λ = 0.38 eV, U = 0.9 eV, and JH/U = 0.1. Un-
der these conditions, both this work and other studies, find a
band gap close to the experimentally observed value [1]. The
resulting state is an antiferromagnet along the b axis with a
small staggered canting angle of φμ ≈ ±14◦ along the a axis.
This angle is larger than the rotation of the underlying lattice
and slightly larger than what is observed in experiments [9].
The magnetic order canting angle does not precisely match
the lattice rotation angle due to the tetragonal distortion and
a non-zero Hund’s coupling. An angle difference is captured
by our model and even by the projected J = 1/2 model [11].
The resulting eigenstates are expressed in the two bases, the
orbital and the J basis, and the contributions of each state can
be calculated at all k points for each band. For orbitals defined
in the global basis the eigenstates |n(k)〉 can be expressed
in the components |n(k)〉 = ∑

α,σ,s ηα,σ,s,n(k)|α, σ, s〉. The

transformation onto the J basis is done for each site in-
dividually in the global basis with the matrix U given
in (B1) in Appendix B, |n(k)〉 = ∑

m,τ,s η′
m,τ,s,n(k)|m, τ, s〉 =∑

m,τ,s

∑
α,σ η′

m,τ,s,n(k)(U ασ
mτ )∗|α, σ, s〉. The weight of an or-

bital in an eigenstate at a given k point is calculated as

Pn,α (k) =
∑

s=A,B

∑
σ=↑,↓

|ηα,σ,s,n(k)|2, (17)

in the original three-orbital basis and:

Pn,m(k) =
∑

s=A,B

∑
τ=+,−

|η′
m,τ,s,n(k)|2, (18)

in the J-state basis. The values are displayed for the full
bandstructure in Fig. 2 and the figure is complemented by the
values of the order parameters in Table I. The magnetic order
receives the largest contribution from the J = 1/2 states, as
given by Eq. (14). Similarly, as can be seen in the lower panels
of Fig. 2, the J = 1/2 states are dominant in the two bands
closest to the Fermi level, except near the � point. Expressed
in the orbital basis, the same bands are a mixture of all three
orbitals, with the contribution of dxy being slightly smaller.
Additional bands that appear close to the Fermi level, at the
� point, are bands of |3/2,±3/2〉 character. However, Table I
shows that these states offer only a small contribution to the
AFM order. Similarly, the order parameters which mix the
|1/2,±1/2〉 and the |3/2,±1/2〉 states have a contribution
of about 5%–10% of the one of J = 1/2, which is not negli-
gible. A similar discrepancy in the magnetic order has been
identified previously [10] by observing a larger ratio of orbital
angular momentum, compared to spin angular momentum,
than expected from a pure J = 1/2 order.

A. Strain-driven phase transitions

In this section, we discuss the effects of strain. The mag-
netic moment for both the staggered AFM order and the net
moment is shown in Fig. 3. As the compressive strain is
increased the antiferromagnetic order decreases and two phase
transitions occur. At lower strain values, the staggered mag-
netic moment in the insulating (AFM-I) order continuously
decreases until the gap closes, in a continuous Lifshitz tran-
sition into an antiferromagnetic metal (AFM-M). The strain
dependence of the band gap is plotted in Fig. 7 in Appendix C.
As the strain increases further, the antiferromagnetic order
continues to decrease until a strain value where a first order
transition into a paramagnetic metal (PM-M) occurs. The
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FIG. 2. The band structure is shown for the antiferromagnetic insulating state in Sr2IrO4, calculated for λ = 0.38 eV, U = 0.9 eV, and
JH/U = 0.1, with no applied strain or field. As there are 6 states per site, the band structure consists of 12 bands forming a staggered order. In
the top row, the weight from each orbital dyz, dxz, and dxy is projected onto the eigenstates at each k-point in the Brillouin zone as in Eq. (17).
The large spin-orbit coupling mixes the orbitals, so the bands closest to the Fermi level have contributions from all three orbitals. The second
row shows the eigenstates projected onto the J = 1/2 and J = 3/2 states as in Eq. (18). The J = 1/2 bands dominate near the Fermi level
except near �, where J = 3/2 takes over.

transitions are driven by the increasing bandwidth of the
J = 1/2 bands and an increase in the energy of the J = 3/2
bands. We will describe several multiorbital aspects of the
strain-driven phase transitions: (i) the changes in multiorbital
contributions close to critical strain, (ii) the additional bands
contributing to the Fermi surface in the metallic state, and (iii)
the dependence of the critical strain on model parameters.

Approaching the first transition by increasing the strain,
we see a decrease in the staggered magnetic moment. The

0 1 2 3 4 5 6
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AFM-M

AFM-I

net μ, Hx=0.02t
staggered μ, Hx=0.02t
net μ, Hx=0
staggered μ, Hx=0

FIG. 3. The total magnetic moment is plotted for increasing com-
pressive strain. The staggered moment is the difference between the
two sublattices and the net moment results from the canting of the
moments at both sites. The strain-driven transitions take place both
under zero field as well as under a large Zeeman field Hx = 0.02t ,
along the a direction. The critical strain values, at which the gap
closes and the system first goes into a metallic AFM (AFM-M) and
subsequently into a paramagnetic (PM-M) state, are marked for zero
field by vertical dashed lines. As shown in Fig. 9, these transitions
are only slightly shifted by the field. When a field is applied there is
a small remaining AFM moment, below 2×10−2, that appears right
after the transition into the PM-M state. The evolution of the band
gap with strain is shown in Fig. 7.

decrease is mostly felt in the J = 1/2 subspace, and therefore
the relative contribution of the J = 3/2 states to the magnetic
order is increased. As the underlying rotations of the lattice
increase, so does the canting angle of the antiferromagnetic
state. The changes in orbital contributions are discussed fur-
ther in Sec. III B. At higher strains in the metallic state, several
bands cross the Fermi level. The resulting Fermi surfaces
are shown in Fig. 4 for several strain values. Different parts
of the Fermi surface have a different character, as shown in
Fig. 5. In this figure, both possible bases are projected onto
the Brillouin zone. Pockets around the M and X points are
clearly dominated by the J = 1/2 states. However, another
pocket near the � point originates from a band with a high
|3/2,±3/2〉 contribution. In the orbital basis, the pockets can
be described as alternating sections of dyz and dxz orbitals,
where the sections dominated by each orbital are related by
a rotation of π/2, see Fig. 5.

The two phase transitions, as indicated in Fig. 3, are de-
termined to occur at ε = −3.47%, the point at which the
indirect gap closes, and at ε = −4.9%, where the order pa-
rameters for the staggered magnetic moment become lower
than 2×10−2. The Fermi surfaces appearing at lower strain
values have small pockets of J = 1/2 and J = 3/2 character
which gradually increase in size as the strain increases. In the
AFM phase, the canting angle of the AFM order is larger
than the rotation angle of the underlying lattice. As a result,
a small band splitting can be observed close to the � point
for the pockets of J = 3/2 character. As the size of the pocket
increases at higher strain values and the AFM order decreases,
this splitting is decreased. In the paramagnetic phase, an addi-
tional pocket of J = 1/2 character appears at the M point.

The value of the critical compressive strain that we ob-
tain as the transition point between metallic and insulating
magnetically ordered states depends on our model parameters.
Figure 7 in Appendix C shows a range of critical compressive
strains for other possible values of the interaction U . In our
model, the critical strain value mainly depends on the size
of the initial gap. Therefore, the critical strain increases with
spin-orbit coupling and with the interaction U , and decreases
with the Hund’s coupling JH. The agreement between exper-
imental work and our predictions for the decreasing AFM
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FIG. 4. Fermi surfaces (E = 0) for the strain-driven transitions at zero field. The dominant bands are identified as being of mainly | j, jz〉 =
|1/2, ±1/2〉 and of | j, jz〉 = |3/2, ±3/2〉 character, by the same method as in Fig. 5. As the strain is increased the indirect gap in the AFM
order decreases and eventually closes at ε = −3.47%. For Fermi surfaces in the metallic AFM (AFM-M) phase, such as at ε = −4%, some
band splitting can be observed. The splitting occurs at these points as the resulting FM component corresponds to a larger canting angle than
the underlying rotation of the lattice. At ε = −5%, the system becomes a paramagnetic metal and an additional J = 1/2 surface appears
around the M point.

order as a function of strain, as well as possible values for
a realistic critical strain are discussed below.

When a Zeeman field is applied only minimal changes to
the critical strain are observed. This is shown in the phase
diagrams in Fig. 9 in Appendix D. Additional effects to or-
bital contribution from a magnetic field are discussed in the
following section.

FIG. 5. The Fermi surface at zero field and a compressive strain
ε = −5% is shown with the calculated contributions from each or-
bital, in the upper row, and from each J state, in the lower row. As
in Fig. 2, orbital weights for each state are calculated for eigen-
states at each k point in the Brillouin zone, according to Eqs. (17)
and (18). As shown in Fig. 4 the bands can be described mainly by
the | j, jz〉 = |1/2, ±1/2〉 states around the M and X points, and by
the | j, jz〉 = |3/2, ±3/2〉 states around the � point.

B. Orbital contributions

At the strain-driven phase transitions depicted in Fig. 3,
contributions from the J states, Jm, and the mixing between
those states, Jmn, change by different amounts. The contri-
butions from the spin angular momentum and the J states to
the net moment are shown in Fig. 6, both without an applied
field and for a Zeeman field in-plane along the a axis (Hx).
The figure shows how the strain and the Zeeman field affect
the magnetic order. As the insulating AFM order decreases
under strain, the order in J = 1/2 decreases while the order
in other states remain roughly constant. While strain increases
the staggered rotation angle of the AFM state and therefore all
J states, the Zeeman field tends to affect orbitals depending on
their relative orientation to the field.

The changes in contributions to the net moment under
strain are minor. The net moment increases as the staggered
AFM order follows the increased underlying staggered rota-
tion of the octahedra surrounding the Ir sites. In the metallic
AFM order, the contribution from the J = 1/2 states to the net
moment mainly decreases while the others remain constant.
When a high in-plane field is applied there are additional
distinguishing effects between the AFM and the PM. In the
insulating AFM state, there is some increased mixing con-
tributions to the net moment, as the field does not couple
purely to the J states. The J = 1/2 states however still clearly
dominate in the antiferromagnetic phase.

For the orbital angular momentum basis, the spin order Sα ,
in each orbital, α, is also plotted in Fig. 6. For zero field the
orbitals start out with close to equal spin order and as the strain
is increased the Sxy order decreases. When the in-plane field
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FIG. 6. Order parameters for the net magnetization are plotted for an increasing compressive strain, both in the J-basis and as spin
contributions from each orbital. These plots display the strain-driven transitions into metallic states shown in Fig. 3. In the J basis, order
parameters Jm for each state and order parameters Jmn mixing J states, as in Eqs. (14) and (15), are shown. There are minor changes in the
contributions from each order parameter with strain, before the transition out of the insulating antiferromagnetic (AFM-I) state. However, once
a field is applied there is a clear difference in contributions to the net moment between AFM and PM orders.

is applied, the AFM-I state has a larger contribution from the
Syz order while this dominance does not remain in the para-
magnetic state. For an out-of-plane field (Hz ), this results in
a larger contribution from the dxy orbital, which corresponds
to an increased mixing between |1/2,±1/2〉 and |3/2,±1/2〉
in the J-state basis. An in-plane field (Hx ) increases contri-
butions from the dyz orbital, or a mixing between the states
|1/2,±1/2〉 and |3/2,±3/2〉.

In addition, in Fig. 8 in Appendix C, the parameters
λ and JH take on a range of possible values. At differ-
ent values the amount of mixing between J states (at zero
strain) changes. The mixed J order parameters, Jmn, in
Eq. (15) are useful as they indicate whether a projected
J = 1/2 model is appropriate. Regimes with larger Jmn val-
ues can therefore be identified as promising starting points
for future studies of possible interband fluctuations and
orders.

IV. DISCUSSION

In this work, we have presented a mean-field, zero tem-
perature, analysis of the six-band Hubbard-Kanamori model
for undoped Sr2IrO4. A self-consistent mean-field treatment
considers a two-atom unit cell and all 42 possible local
order parameters. We study the undoped compound in the
presence of both strain and a Zeeman field. In the absence

of strain and field our model predicts an insulating canted
antiferromagnetic state, in agreement with previous studies
[10,12,14–16,38,45,46] and experimental evidence [47–50].
Upon applying a compressive strain our model predicts two
transitions: a Lifshitz transition into an antiferromagnetic
metallic state and, at higher strain, a first order transition
into a metallic paramagnet. These transitions exist for a range
of plausible interaction strengths. The inclusion of multiple
bands is crucial to model these transitions. A decreased J =
1/2 AFM order can in principle be described by projecting the
effects of the strain onto the effective one-orbital Jeff = 1/2
model. However, the strain causes the appearance of addi-
tional bands at the Fermi level that are missed by a Jeff = 1/2
model.

Our predictions for the strain effects agree with trends from
previous theoretical and experimental studies. For example,
in Ref. [19], the strain is shown to cause a decrease in the
AFM order manifested in a lowered Néel temperature. As
found in our model, the increased importance, due to strain,
of the J = 3/2 states also agrees with the observed inten-
sity increase in optical transitions between J = 3/2 and 1/2
states found in other studies [42,43,51]. In addition, trans-
port measurements observe a steady decrease in resistivity
as the compressive epitaxial strain is increased [52]. Such a
trend can be expected from our calculations, as they predict
a decreasing gap. At the highest measured strain value for
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epitaxial strain, ε = −1.9%, the behavior is determined to
still be insulating [52]. Therefore a transition has not been
reached at that point. Our model predicts the same behavior. It
is however important to note that generally mean-field theory
overestimates ordering. Fluctuations not taken into account
here may shift the phase boundaries. Moreover, the interaction
and spin-orbit coupling strength aren’t directly measurable
and we therefore choose parameters that match the previously
found band structure [10,12,38,45,46]. To get a range of pos-
sible strain values which will be relevant for future studies, a
relation between possible initial gaps and the critical strain is
given in Appendix C.

Our results also include effects of various parameters on
the mixing between different total angular momentum sectors.
When the mixing between J states is small, the Jeff = 1/2
model can describe the ordered state well. However, for a
larger mixing the full six-band model is necessary. We find
that a larger strain, larger Hund’s coupling, and lower spin-
orbit coupling all increase the mixing. The Zeeman field also
results in increased mixing, which depends on the direction
of the field. It is worth noting that the mixing can be traced
by studying the orbital content of each band. The orbital
dependence of the magnetic state was recently determined,
by Jeong et al. in Ref. [35], from the symmetry of occupied
orbitals as measured by polarized neutron diffraction ex-
periments. A similar experiment could potentially observe
the strain-induced changes in orbital contributions found
here.

The comparisons of our results to experiments with pres-
sure are limited due to our one-layer model. For epitaxial
strain/hydrostatic pressure, the distance between layers in the
perovskite structure increases/decreases. Under pressure, the
resulting increased interlayer interactions affect the magnetic
order [53]. Additionally, our model may not be capturing all
aspects of the strain-driven phase transitions. At high hydro-
static pressures, experiments are possibly pointing towards
frustration from enhanced nearest- and next-nearest-neighbor
interactions in an insulating quantum paramagnet [53]. Sim-
ilarly as transport measurements not displaying any anomaly
at the Néel temperature [7], studies considering hydrostatic
pressure found a separation in the behavior between magnetic
order and insulating properties [34], which is beyond the
scope of our mean-field theory. As can be seen in Fig. 4,
we predict that several of the bands are located close to the
Fermi surface during the strain-driven transitions. This regime
could therefore potentially host strongly correlated interband
effects.

The model considered in our work only describes compres-
sive strain. There have however been several studies showing
interesting effects at tensile strain or for other methods de-
creasing the rotation angle of the octahedra in Sr2IrO4, such
as “field altering” or applying an electrical current [24,25].
Experiments have shown both decreasing resistivity for tensile
strain values [52] and a lower Néel temperature for sam-
ples with a tensile strain of ε = 0.4% than for those with a
compressive strain of ε = −0.7% [23]. However, ab initio
calculations at tensile strain [51] pointed towards an in-
creased charge gap which agrees with that observed in RIXS
spectra [43]. Accurately modeling the tensile regime might
require the inclusion of additional effects. In future work,

the strain value for which the pocket at the � point appears
in the Fermi surface could be adjusted by studying how the
tetragonal splitting evolves with strain. Currently, calcula-
tions in Ref. [22] suggest a lowering of the J = 3/2 band at
this point, while the measurements in Ref. [43] indicate the
opposite.

Works modeling greater tetragonal elongation in a superex-
change model, such as Ref. [39], have explored regimes our
work did not. In those regimes, the canting angle is suppressed
by the distortions. Ref. [41] found that the angles of the octa-
hedral rotation and of the canting moment followed each other
more closely with an additional staggered splitting between
sublattices. Since we did not consider tetragonal splitting as
a function of strain, the effects of an increased or staggered
splitting is beyond the scope of this work.

Another interesting aspect expected to be affected by strain
and an external field is the tendency to develop superconduc-
tivity. The mixing of J states and the appearance of additional
bands at the Fermim level might indicate that a J = 1/2 d-
wave superconducting state is less likely to develop. It is
possible, however, that while the d-wave order parameter is
less likely, another pairing function which involves multiple
bands will become favorable. This is beyond the scope of the
current manuscript and will be studied elsewhere.
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APPENDIX A: SELF-CONSISTENCY EQUATIONS

In the mean-field analysis, the order parameters are defined
as the expectation values of bilinear operators calculated for
the mean-field eigenstates |n(k)〉. Each order parameter is
given by 〈c†

γ1
cγ2〉s, where γi is the label of one of the six

local creation/annihilation operators given by α = yz, xz, xy,
and σ =↑,↓, for each of the sublattices s = A, B. The self-
consistent solution for all possible order parameters is found
iteratively and simultaneously by solving the set of coupled
self-consistency equations:

〈c†
γ1

cγ2〉s = 1

N

N∑
k

12∑
n

〈n(k)|γ1, s〉〈γ2, s|n(k)〉nF[En(k)]

= 1

N

N∑
k

12∑
n

η∗
γ1,s,n(k)ηγ2,s,n(k)nF[En(k)], (A1)
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FIG. 7. An increasing compressive strain, ε < 0, decreases the
initial insulating antiferromagnetic order. The critical strain, the
value at which the gap closes, will be determined by the value of
the gap at zero strain. The gap is plotted for different values of the
interaction parameter U , with a Hund’s coupling set to JH/U = 0.1.
As the mean-field approximation overestimates the order at zero
strain, several vales of U within the expected range are considered
to get a possible range of values for the critical strain. Similarly as
for the gap, the AFM order remains present at higher strains as U is
increased.

where nF is the Fermi-Dirac distribution and the eigenvalues
are given, for each k value, in the three-orbital basis, |γ , s〉, as
|n(k)〉 = ∑

γ ,s ηγ ,s,n(k)|γ , s〉.

APPENDIX B: TRANSFORMATION INTO THE J BASIS

The order parameters are expressed in two alternative
bases. The spin and orbital angular momenta are expressed in
the basis of the three t2g orbitals. The other basis considered is
the total angular momentum J basis, which is the eigenstates
in the large λ limit. The transformation from the orbital and
spin basis to the total angular momentum basis which is used

in Eq. (13), i.e., c̃m,τ = ∑
α,σ U α,σ

m,τ cα,σ , is given by

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1√
3

0 − i√
3

1√
3

0
1√
3

0 i√
3

0 0 − 1√
3

0 1√
6

0 − i√
6

−
√

2
3 0

1√
6

0 i√
6

0 0
√

2
3

0 1√
2

0 i√
2

0 0
1√
2

0 − i√
2

0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

where c = (cyz,↑, cyz,↓, cxz,↑, cxz,↓, cxy,↑, cxy,↓) and c̃ =
(c̃1,+, c̃1,−, c̃2,+, c̃2,−, c̃3,+, c̃3,−). The new basis is c̃m,τ where
m : 1 = |1/2,±1/2〉, 2 = |3/2,±1/2〉, 3 = |3/2,±3/2〉 and
the pseudospin projections are labeled by τ = ±.

APPENDIX C: CRITICAL STRAIN VALUES

The parameter choice of U = 0.9 eV, JH/U = 0.1, and
λ = 0.38 eV, is used for the calculation in Fig. 3. The values
are close to the middle of the possible range for the Hund’s
coupling, JH/U = 0.05 − 0.2, and the spin-orbit coupling,
λ = 0.3 − 0.7 eV, and has a value U , as well as chosen to
have a gap at zero strain close to that found in experiments
�c = 0.35–0.65 eV [10,13,45,46,54,55]. The critical strains,
the values at which the strain-driven phase transitions occur
for compressive strain, are directly dependent on the size of
the initial gap. The initial gap depends on the strength of the
various interaction terms, the SOC λ, the Hund’s coupling
JH, and the Zeeman field. Therefore the critical strain values
increase with λ and U , and decrease with JH.

In Fig. 7, we present results for calculations of the gap
when the compressive strain is increased, for a range of possi-
ble values of the interaction U . The values for U are those
which have replicated the zero strain band structure using
other methods. As a mean-field analysis tends to overesti-
mate the antiferromagnetic order we find a gap corresponding
to experimental values at zero strain for a smaller U than
other methods do [14,15,56]. The experimental compressive
strain values [23] reach up to ε = −1.9%, so a quantitative
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FIG. 8. The three-orbital model used in this work allows us to consider how the contributions from each orbital changes for different sets of
interaction strengths. The contributions to the staggered AFM order are shown at varying spin-orbit coupling λ at U = 0.9 eV and JH/U = 0.1
as well as for varying Hund’s coupling JH at U = 0.9 eV and λ = 0.38. A higher λ separates out the J = 1/2 bands from the rest, resulting in
a larger dominance of the J1 contribution, as defined in Eq. (14). A larger Hund’s coupling JH increases interorbital contributions and results
in a larger mixing between J sectors, as given in Eq. (15).
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FIG. 9. Phase transitions from the insulating AFM (AFM-I) state
into metallic states occurs under compressive epitaxial strain ε < 0.
Phase diagrams are presented for (a) an in-plane field along the a
direction (Hx ), and (b) the field is in the out-of-plane z direction. As
in Fig. 3, the AFM order decreases under an increasing strain until
the indirect gap closes into a metallic order (AFM-M) and eventu-
ally goes through a first-order transition into a paramagnetic state
(PM-M). The Zeeman field offers a minimal shift of the phase
boundaries.

prediction of the transition into a metallic state should be
found at higher compressive strain values. Stronger inter-
actions U predict higher critical strain values while going
through the same phase transitions. Within the limits of the
mean-field approximation, a prediction of a realistic band
structure at zero strain and the value for critical strain will be
a trade-off, and therefore a range of possible values are given
here.

In Fig. 8, the contributions to the staggered moment are
considered, with no strain, for some additional values of the
spin-orbit coupling λ and the Hund’s coupling JH. For a higher
SOC the J = 1/2 states, J1 as defined in Eq. (14), become
clearly more dominant as the J1 net moment increases in
magnitude while the other contributions decrease. This is to

be expected as the SOC separates the remaining bands from
those of mainly J = 1/2 character. A higher Hund’s coupling
the J = 1/2 states instead become less dominant as the con-
tribution remains constant while the mixing between J states
increases.

APPENDIX D: PHASE DIAGRAMS WITH ZEEMAN FIELD

A Zeeman field only has minor effects on the gap clos-
ing and the transition from the metallic AFM order to the
paramagnetic state. The main effect of a Zeeman field on the
strain-induced transitions is to lower the critical strain value,
by reducing the indirect gap. The orbital and spin content of
each band vary around some points of the Brillouin zone,
which is shown in Fig. 2. Therefore a Zeeman field allows
for the manipulation of the band structure with possible gap
closures at various points in momentum space. An in-plane
field (Hx) increases the band splitting around the M point of
the Brillouin zone and an out-of-plane field (Hz) results in
an increased splitting at the � point. In the phase diagrams
in Fig. 9, where compressive strain and a Zeeman field has
been applied, it is however apparent that even a large field can
only modify the critical strain by an amount around 0.01%.
The second transition, from the antiferromagnetic metallic
(AFM-M) order into the paramagnetic metal (PM-M), occurs
when the antiferromagnetic order parameters have reached a
low enough value. An out-of-plane field results only in a small
modification of the antiferromagnetic order and the second
transition remains largely unchanged. An in-plane field has
a slightly larger effect due to its effect on the canting angle
and can shift the transition point further, yet still to a minimal
amount. Although any shifts of transition points are difficult
to achieve in Sr2IrO4, due to the large fields required, their
effects might be of interest in other systems with similar
characteristics.

[1] W. Witczak-Krempa, G. Chen, Y. B. Kim, and L. Balents,
Annu. Rev. Condens. Matter Phys. 5, 57 (2014).

[2] T. Sato, T. Shirakawa, and S. Yunoki, Phys. Rev. B 91, 125122
(2015).

[3] M. Kargarian, J. Wen, and G. A. Fiete, Phys. Rev. B 83, 165112
(2011).

[4] A. Georges, L. de’ Medici, and J. Mravlje, Annu. Rev. Condens.
Matter Phys. 4, 137 (2013).

[5] J. G. Rau, E. K. Lee, and H. Kee, Annu. Rev. Condens. Matter
Phys. 7, 195 (2016).

[6] G. Chen, arXiv:2012.06752.
[7] G. Cao and P. Schlottmann, Rep. Prog. Phys. 81, 042502

(2018).
[8] J. Bertinshaw, Y. Kim, G. Khaliullin, and B. Kim, Annu. Rev.

Condens. Matter Phys. 10, 315 (2019).
[9] S. Boseggia, H. C. Walker, J. Vale, R. Springell, Z. Feng, R. S.

Perry, M. M. Sala, H. M. Rønnow, S. P. Collins, and D. F.
McMorrow, J. Phys.: Condens. Matter 25, 422202 (2013).

[10] B. J. Kim, H. Jin, S. J. Moon, J.-Y. Kim, B.-G. Park, C. S. Leem,
J. Yu, T. W. Noh, C. Kim, S.-J. Oh, J.-H. Park, V. Durairaj, G.
Cao, and E. Rotenberg, Phys. Rev. Lett. 101, 076402 (2008).

[11] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205
(2009).

[12] F. Wang and T. Senthil, Phys. Rev. Lett. 106, 136402 (2011).
[13] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H.

Takagi, and T. Arima, Science 323, 1329 (2009).
[14] Z. Y. Meng, Y. B. Kim, and H.-Y. Kee, Phys. Rev. Lett. 113,

177003 (2014).
[15] K. Nishiguchi, T. Shirakawa, H. Watanabe, R. Arita, and S.

Yunoki, J. Phys. Soc. Jpn. 88, 094701 (2019).
[16] Y. Yang, W.-S. Wang, J.-G. Liu, H. Chen, J.-H. Dai, and Q.-H.

Wang, Phys. Rev. B 89, 094518 (2014).
[17] H. Liu and G. Khaliullin, Phys. Rev. Lett. 122, 057203 (2019).
[18] A. Lupascu, J. P. Clancy, H. Gretarsson, Z. Nie, J. Nichols, J.

Terzic, G. Cao, S. S. A. Seo, Z. Islam, M. H. Upton, J. Kim, D.
Casa, T. Gog, A. H. Said, V. M. Katukuri, H. Stoll, L. Hozoi,
J. van den Brink, and Y.-J. Kim, Phys. Rev. Lett. 112, 147201
(2014).

[19] L. Hao, D. Meyers, M. Dean, and J. Liu, J. Phys. Chem. Solids
128, 39 (2019).

[20] L. Miao, H. Xu, and Z. Q. Mao, Phys. Rev. B 89, 035109
(2014).

[21] S. Geprägs, B. E. Skovdal, M. Scheufele, M. Opel, D.
Wermeille, P. Thompson, A. Bombardi, V. Simonet, S. Grenier,
P. Lejay, G. A. Chahine, D. Q. Castro, R. Gross, and D. Mannix,
Phys. Rev. B 102, 214402 (2020).

155147-11

https://doi.org/10.1146/annurev-conmatphys-020911-125138
https://doi.org/10.1103/PhysRevB.91.125122
https://doi.org/10.1103/PhysRevB.83.165112
https://doi.org/10.1146/annurev-conmatphys-020911-125045
https://doi.org/10.1146/annurev-conmatphys-031115-011319
http://arxiv.org/abs/arXiv:2012.06752
https://doi.org/10.1088/1361-6633/aaa979
https://doi.org/10.1146/annurev-conmatphys-031218-013113
https://doi.org/10.1088/0953-8984/25/42/422202
https://doi.org/10.1103/PhysRevLett.101.076402
https://doi.org/10.1103/PhysRevLett.102.017205
https://doi.org/10.1103/PhysRevLett.106.136402
https://doi.org/10.1126/science.1167106
https://doi.org/10.1103/PhysRevLett.113.177003
https://doi.org/10.7566/JPSJ.88.094701
https://doi.org/10.1103/PhysRevB.89.094518
https://doi.org/10.1103/PhysRevLett.122.057203
https://doi.org/10.1103/PhysRevLett.112.147201
https://doi.org/10.1016/j.jpcs.2017.11.018
https://doi.org/10.1103/PhysRevB.89.035109
https://doi.org/10.1103/PhysRevB.102.214402


LENA ENGSTRÖM et al. PHYSICAL REVIEW B 103, 155147 (2021)
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