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One-dimensional model for deconfined criticality with Z3 × Z3 symmetry
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We continue recent efforts to discover examples of deconfined quantum criticality in one-dimensional models.
In this work we investigate the transition between a Z3 ferromagnet and a phase with valence bond solid (VBS)
order in a spin chain with Z3 × Z3 global symmetry. We study a model with alternating projective representations
on the sites of the two sublattices, allowing the Hamiltonian to connect to an exactly solvable point having VBS
order with the character of SU(3)-invariant singlets. Such a model does not admit a Lieb-Schultz-Mattis theorem
typical of systems realizing deconfined critical points. Nevertheless, we find evidence for a direct transition
from the VBS phase to a Z3 ferromagnet. Finite-entanglement scaling data are consistent with a second-order or
weakly first-order transition. We find in our parameter space an integrable lattice model apparently describing
the phase transition, with a very long, finite, correlation length of 190878 lattice spacings. Based on exact results
for this model, we propose that the transition is extremely weakly first order and is part of a family of deconfined
quantum critical points described by walking of renormalization group flows.
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I. INTRODUCTION

One of the broad objectives of recent studies in con-
densed matter physics is to describe quantum phase transitions
outside the scope of the usual Landau-Ginzburg theory of
symmetry breaking. Within this topic, a number of spiritu-
ally similar proposals have been categorized as a “deconfined
quantum critical points” (DQCP). This label was originally
used for a model of spins with SU(2) symmetry on the
two-dimensional (2D) square lattice to describe a transition
between a phase with Néel antiferromagnetic order and a one
with columnar valence-bond solid (VBS) order. Senthil et al.
[1,2] proposed a mechanism for a continuous transition which
relies on emergent symmetry, leading to a theory in terms
of fractionalized fields. This description inspired a variety of
other proposals, which are united by the property that the
natural variables for the system at the critical point are con-
fined on either side of the transition. Meanwhile, the original
proposal has been extensively tested in numerical studies,
which are consistent with either a second-order or very weakly
first-order transition [3–20].

The low-energy theory for the Néel-VBS transition is the
noncompact CP1 model of complex scalars coupled to a U(1)
gauge field which, however, does not include monopole terms
in the action. Quantum Monte Carlo simulations suggest that
the IR theory hosts an emergent symmetry, with the three
components of the Néel order parameter and two components
of the VBS order parameter transforming together as an
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SO(5) vector [12]. This emergent symmetry, which is real-
ized anomalously, proved to be useful for understanding the
transition through various dualities to theories appearing on
the surface of a three-dimensional symmetry protected topo-
logical (SPT) phase [21].

Surprisingly, conformal bootstrap bounds on unitary CFTs
with SO(5) symmetry turn out to exclude the conformal data
measured in numerics, most notably for the SO(5) vector
which is too relevant to satisfy consistency conditions [22].
This discovery followed earlier observations of unusual nu-
merical features such as drifting “universal” quantities and
inconsistencies in finite-size scaling [6,7,11,14]. The reso-
lution may be that the phase transition is in fact weakly
first order (or pseudocritical), a phenomenon thought to be
generically a result of renormalization group (RG) walking
[11,21,23–30]. In this scenario, the transition displays approx-
imate conformal symmetry below some long, but finite, length
scale. At intermediate distances the system’s properties are
governed by nonunitary complex fixed points which can be
viewed as analytic continuations of a unitary CFT; however,
eventually the theory is trivial. For the DQCP with SU(2)
symmetry such a description requires a fixed point with in-
herent SO(5) symmetry and a tunable parameter providing
access to the pseudocritical regime [21]. Some proposals in
this direction have identified as a candidate a nonlinear sigma
model with WZW term continued to d = 2 + ε dimensions,
with SO(4 + ε) symmetry [31,32].

A complementary perspective on the above story arises
from framing the phenomenology of the DQCP in models in
1D, where one breaks the global symmetry to some discrete
subgroup. In Ref. [33] a transition was considered between
an Ising ferromagnet and a dimerized VBS phase in a 1D
system with Z2 × Z2 symmetry. Exact lattice dualities lead
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to a mapping to microscopic variables which unify these
order parameters and allow a controlled low-energy theory,
which turns out to be a one-component Gaussian theory (a
Luttinger liquid) with a single relevant cosine term and contin-
uously varying critical indices. In these variables an emergent
U(1) × U(1) symmetry is manifest at the transition. Studies of
a concrete spin system established many nontrivial properties
of this theory [34–36]. There are also connections to the web
of 1+1 dualities considered in Ref. [37]. Another example of
DQCP in 1D has also been observed by using long-ranged
Heisenberg terms to circumvent the Mermin-Wagner theorem;
such a model (which can be realized on the boundary of a SPT
state in 2D [38]) exhibits a direct transition between a gapless
phase with AFM order and one with VBS order [39].

One may wonder to what extent the lessons learned from
the Z2 × Z2-symmetric DQCP in 1D are representative of a
more general class, as opposed to being somehow special. In
the present work we begin to address this question through
detailed studies of a concrete lattice model with Z3 × Z3

symmetry. We will end up arguing that the evidence suggests
that a family of DQCP in Zq × Zq-symmetric models in 1D
in fact exhibits pseudocritical behavior due to RG walking,
a situation reminiscent of the current status of the canonical
DQCP with SU(2) symmetry in 2D. The putative transition
in our Zq × Zq-symmetric DQCP appears to be described by
an integrable model with very long correlation length, and
the availability of analytical results make it a particularly
appealing candidate for controlled studies of the RG walking
scenario for a very weakly first-order DQCP.

This paper is organized as follows. In Secs. II and III
we introduce our lattice Hamiltonian and present numerical
results from matrix product states on the phase diagram and
evidence for a DQCP. In Sec. IV we present some low-energy
continuum theories related to the lattice model and calculate
supporting results in a fine-tuned two-component Gaussian
theory that appears to capture many (but not all) aspects of the
numerical results. In Sec. V we provide details on exact results

for an integrable model suggested by numerics to describe
the DQCP, which leads us to conclude the transition is very
weakly first order. In Sec. VI we use exact diagonalization
studies to identify some light primary fields in the complex
CFTs associated with the RG walking conjecture. Finally, in
the Appendices we expand on background information and
further technical details related to various aspects of this work.

II. MODEL WITH Z3 × Z3 SYMMETRY

A quantum chain respecting an internal Z3 × Z3 symme-
try is most naturally realized using a three-dimensional local
Hilbert space, placed on the sites of a 1D lattice. We pro-
vide detailed motivation and clarification about the form of
our Hamiltonian by reviewing the group SU(3) and relevant
previous results on lattice models with SU(3) symmetry in
Appendix A.

A. Lattice Hamiltonian

We choose the following generators of the global internal
symmetry group:

gx =
∏

j

gx, j =
∏

j

Xj, gz =
∏

j

gz, j =
∏

k

Z†
2kZ2k+1, (1)

which are written using the Z3 clock operators

X =
⎡⎣0 0 1

1 0 0
0 1 0

⎤⎦, Z =
⎡⎣1 0 0

0 ω 0
0 0 ω−1

⎤⎦, (2)

with ω = ei 2π/3 being the primitive cubic root of unity. Be-
cause of the commutation relation ZX = ωXZ the Zz

3 × Zx
3

symmetry is realized projectively on a single lattice site.
The projective representations are classified by H2[Z3 ×
Z3, U(1)] = Z3 and labeled by {[0], [1], [2]}, where for class
[r] we have gz, jgx, j = ωrgx, jgz, j . The sublattice of odd-
numbered (even-numbered) sites hosts the [1] ([2]) projective
representation of Z3 × Z3.

The general lattice Hamiltonian we consider is

H = H[Jx, Jz, K] = −
∑

j

[(JxXjXj+1 + JzZ†
j Z j+1 + H.c.) + K (1 + XjXj+1 + H.c.)(1 + Z†

j Z j+1 + H.c.)] (3)

= −
∑

j

(JxXjXj+1 + JzZ†
j Z j+1 + H.c.) + 6K

∑
j

(∑
a

T
a
jT

a
j+1 − 1

6

)
. (4)

In the second line the K term is written using standard SU(3)
spin operators connecting to an integrable model with VBS
ground state, as reviewed in Appendix A. We generally restrict
all coupling constants to be real and non-negative.

Other internal symmetries of Eq. (3) include time rever-
sal �, which we implement as complex conjugation in the
Z eigenbasis, and charge conjugation symmetry C : |n〉 →
|3 − n mod 3〉. Together C and gx generate the S3 permuta-
tion symmetry of the local basis state labels. With periodic
boundaries on the lattice, the model is invariant under the
generator of translation T1, as well as spatial inversion I about
a site. While T1 is a symmetry of H , it does exchange the
projective symmetry groups on the sublattices. The action of

the symmetries on the clock operators is

gx : (Xj, Zj ) �→ (Xj, ω
−1Zj ), (5)

gz : (Xj, Zj ) �→ (ω2p j−1Xj, Zj ), (6)

� : (Xj, Zj ) �→ (Xj, Z†
j ), i �→ −i , (7)

C : (Xj, Zj ) �→ (X †
j , Z†

j ), (8)

T1 : (Xj, Zj ) �→ (Xj+1, Zj+1), (9)

I : (Xj, Zj ) �→ (X− j, Z− j ), (10)
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where we use p j to denote the parity of j:

p j = 1 − (−1) j

2
=
{

0, j even,

1, j odd.
(11)

B. Classical picture of phases

In the limiting case Jx = K = 0, Jz > 0, the ground state
is a ferromagnetic phase in the Z basis which breaks Zx

3,
leading to a three-dimensional ground-state manifold spanned
by basis

BzFM =
{⊗

j

|0〉 j,
⊗

j

|1〉 j,
⊗

j

|2〉 j

}
. (12)

The ground states in the zFM phase are of course subject
to quantum fluctuations but remain connected to this simple
basis of product states.

Similarly, for Jz = K = 0, Jx > 0 the ground states exhibit
ferromagnetic order in the X eigenbasis (local basis states
denoted |0x〉, |1x〉, |2x〉 = | − 1x〉):

BxFM =
{⊗

j

|0x〉 j,
⊗

j

|(1−2p j )x〉 j,
⊗

j

|(2p j −1)x〉 j

}
.

(13)

Setting Jz = Jx = 0, K > 0 recovers the Hamiltonian HbQ

of Eq. (A8) which respects the full SU(3) symmetry. As
described in Sec. A 2, the ground state of this model is known
to preserve SU(3) but spontaneously breaks the translation
symmetry generator T1 to T2 = (T1)2, thus breaking a Z/2Z =
Z2 symmetry and leading to twofold ground-state degener-
acy [40]. While the ground states at this point are finitely
correlated, including additional terms discussed in Sec. A 2
connects to a Majumdar–Ghosh-like point in the same phase.
Thus we take the classical picture of the VBS phase to be
spanned by

BVBS =
{⊗

k

|ψs〉2k−1,2k,
⊗

k

|ψs〉2k,2k+1

}
, (14)

where |ψs〉 j, j′ = 1√
3
(|00〉 j, j′ + |11〉 j, j′ + |22〉 j, j′ ).

Although every unit cell hosts a nontrivial projective rep-
resentation, this system does not have an LSM anomaly
[41–43], and it turns out that one can construct a gapped
symmetric ground state. This symmetric phase is actually
an SPT phase characterized by a fractionalized entanglement
spectrum; as such, there is no simple classical picture of this
state. In Appendix B we develop an analytic MPS for this
phase.

III. RESULTS FROM UNIFORM MATRIX
PRODUCT STATES

In order to reduce the three-dimensional parameter space
of Eq. (3) to a two-dimensional phase diagram, we perform a
change of variables to the anisotropy δ = Jz−Jx

Jz+Jx ; that is, Jz =
J (1 + δ) and Jx = J (1 − δ), and we set J = 1. We find the
phase diagram using the variational uniform matrix product

state numerical method [44]. We use an adiabatic protocol
for determining the phase boundary, fully optimizing a trial
state far away from the transition, then using this state as the
initial condition for the variational procedure with a slightly
perturbed Hamiltonian. In this way the state is tuned toward
the phase transition but biased toward a particular symmetry-
breaking order. Because at the mean-field level the phase
transition is first order, the energy landscape of the MPS
close to the transition will develop two local minima, with
one being metastable on each side. The two choices of initial
conditions, locating the trial states close to one or the other
energy minimum, allow a comparison of trial energies which
determines very precisely the exact location of the crossing
for a given MPS bond dimension [34]. Scaling with bond
dimension provides an estimate of the true location of the
phase transition, based on the understanding of MPS as a
dressed mean-field approximation [45].

For the purposes of data uniformity, we add a very small
symmetry-breaking term to the Hamiltonian when prepar-
ing the initial variational states (i.e., at the very start of the
adiabatic protocol scan inside each phase), so that all data
are comparable across values of χ . In particular, in the state
coming from the zFM side, we break gx by biasing toward
⊗ j |0〉 j , as this ground state is invariant under the C symmetry
generator. The symmetry-breaking term is removed during the
rest of the adiabatic protocol scan. All scans are performed
independently of one another.

A. Numerical phase diagram

As we will describe in Sec. IV A, the point (δ, K ) = (0, 0)
maps under duality to two decoupled three-state clock models
tuned to the self-dual point, supported on the two sublattices
of the dual lattice. The critical theory describing each sub-
lattice is the CFT for the three-state self-dual Potts model,
the minimal model with c = 4/5. Accordingly, this point in
the phase diagram is critical with c = 8/5. The K pertur-
bation in this language has the form of an energy-energy
term coupling the two clock models in a way that preserves
self-duality. The corresponding field theory operator is RG
relevant but is in fact integrable, known to lead to a massive
fixed point [46] which presumably describes the VBS phase
in our context. The δ term has support on the energy operator
for each of the two Potts models and is strongly relevant,
breaking self-duality and precluding a perturbative expansion
about this point. (It is interesting that the model with only
δ perturbation is also an integrable deformation of this CFT
[47].)

Our numerical data, shown in Fig. 1, are consistent with
a “wedge” shape; that is, at δ = 0 the system is in the VBS
phase for any finite K > 0. (For K < 0 we find a direct
first-order transition between the zFM and xFM phases along
δ = 0.) The data are consistent with a second-order transition
between the zFM and VBS ordered phases, without contin-
uously varying critical exponents. However, as we describe
later, the situation turns out to be more complicated but also
very interesting.

The slice δ = 1 is indicated on Fig. 1, which in the original
parameters of Eq. (3) sets Jx = 0 and Jz = 2. For Jx = 0 the
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FIG. 1. The phase diagram of H [δ, K] is determined from ex-
trapolation in MPS correlation length of optimized variational MPS
using an adiabatic protocol. The dashed line at δ = 1 has an enhanced
U(1) × U(1) onsite symmetry. The inset shows an example of the
finite-entanglement process of approximating Kc. Each data point
indicates a crossing of trial energies for states biased toward each
symmetry-breaking order, which we scan along slices of constant δ.
The data shown is for δ = 1, with bond dimensions from 90 to 300
and correlation lengths between roughly 50 and 175 lattice spacings.
The numerically extrapolated critical point is Kc(ξ → ∞) = 2.0002.
Evident in this data is a nonuniversal correction to the asymptotic
scaling form, the magnitude of which is decreasing with 1/ξ . We
examine the (δ, K ) = (1, 2) point in the phase diagram in detail in
Secs. V and VI.

Hamiltonian takes a simpler form:

H[Jx = 0, Jz, K]

= −3
∑

j

[
Jz
∑

α

|αα〉〈αα| j, j+1 + K
∑
α,β

|αα〉〈ββ| j, j+1

− (Jz + K )
]
. (15)

Along this line the global symmetry Zz
3 × Zx

3 is enhanced to
U(1)2

�Zx
3, where generators of the U(1) × U(1) symmetry

can be constructed from any linearly independent combina-
tions of Z and Z† [48].

We represent the U(1) × U(1) symmetry generators by

N1 =
∑

j

n1, j =
∑

j

(−1) j |1〉〈1| j, (16)

N2 =
∑

j

n2, j =
∑

j

(−1) j |2〉〈2| j . (17)

A group element is written as

u(ϕ1, ϕ2) = ei (ϕ1N1+ϕ2N2 ) =
∏

j

ei (ϕ1n1, j+ϕ2n2, j ), (18)

and we have gz = u(−2π/3, 2π/3). The action of the other
symmetry generators on na, j (a = 1, 2) is given by

gx : n1, j �→ n2, j, n2, j �→ (−1) j − n1, j − n2, j, (19)

� : na, j �→ na, j, i �→ −i , (20)

FIG. 2. Entanglement scaling is shown at the precise phase tran-
sition for several values of δ. We draw data points in random order
to emphasize consistency. Numerical c are obtained by fits to critical
scaling of entanglement entropy S = c

6 ln ξ . States are optimized at
the critical point but break gx slightly. The best estimates for the exact
locations of the phase transition are (δ, Kc ) = (0.6, 1.327), (1.0,2.0),
(1.4,2.664), which were determined by numerical extrapolations in
the thermodynamic limit similar to inset in Fig. 1.

C : n1, j �→ n2, j, n2, j �→ n1, j, (21)

T1 : na, j �→ −na, j+1, (22)

I : na, j �→ na,− j . (23)

Note that the appearance of (−1) j in Eq. (19) indicates
that each site forms a projective representation of the onsite
symmetry group generated by gx and N1,2. Furthermore, gx

commutes with N1,2 only in the N1 = N2 = 0 sector.

B. Central charge

Through a somewhat different protocol than was used to
find the phase diagram, we are able to estimate the central
charge at the phase transition. In this case we optimize MPS
at the phase transition beginning from random initial states of
small bond dimension; we then increase the bond dimension
of the optimized state and reconverge. As a result, individual
data points are not independent of one another, although the
data for differing δ are independent. We do not explicitly
break any symmetries in this scheme.

In Fig. 2 we show results for the central charge measured
at the phase transition along cuts δ = 0.6, 1.0, 1.4. In this
figure we have used the extrapolated critical values Kc(δ) and
generated MPS for these points over a large range of bond
dimensions χ from 30 to 360, corresponding to ξ ranging
from approximately 10 to 200. The entanglement entropy
measurements are consistent with the expected critical scaling
S = c

6 ln ξ , where ξ is the correlation length induced in the
wave function by the finite MPS bond dimension.

We find nearly the same central charge at these fairly
widely separated points on the phase boundary. This pro-
vides initial evidence that the phase boundary is controlled
by a single fixed point. For values of δ close to 0 there
is a crossover which interferes with the accurate scaling,
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but otherwise all results are consistent with a single fixed
point.

C. Critical exponents

With optimized MPS ground states in hand describing
the phase transition, measuring correlation functions of lat-
tice operators with suitable symmetry properties allows for
probing the universality based on critical indices. At a criti-
cal point various correlations display quasi-long-range order
with asymptotic scaling given by CO(r) = 〈O†(0)O(r)〉 −
〈O†(0)〉〈O(r)〉 ∼ r−2
O for a local observable O(r).

We focus on the line δ = 1 and measure correlations at the
phase transition, including of observable Zj which carries gx

charge. We also consider S+
1, j , which is charged under N1 but

not N2:

S+
1, j =

⎡⎣ 0 p j 0
1 − p j 0 0

0 0 0

⎤⎦, (24)

where p j is the parity of j from Eq. (11).
We also consider the U(1) current with temporal part n1, j

and spatial part j1, j derived from the conservation of N1.
Explicitly,

j1, j ∼ (−1) j
(
T 1

j T 2
j+1 + T 2

j T 1
j+1 − T 6

j T 7
j+1 − T 7

j T 6
j+1

)
, (25)

in the notation of Appendix A. In order to extract long-
wavelength correlations of the conserved currents, we mea-
sure

Cn1 (r = j′ − j) ≡ 〈(n1, j + n1, j+1)(n1, j′ + n1, j′+1)〉 (26)

and similarly for Cj1 (r).
The counterparts S+

2, j , n2, j , and j2, j are related to these
operators by C. These are all sensible for the transition at
δ = 1; away from this line definite charge under gz is carried
by Xj or X †

j , depending on p j . However, Xj and X †
j are simply

linear combinations of the U(1) × U(1) raising and lowering
operators as well as other terms related by permutation sym-
metry, which we expect is respected at the critical point. So the
critical exponent governing S+

1, j and S+
2, j will also determine

the decay of correlations of Xj . We confirmed the symmetry
numerically but do not show these results, instead summariz-
ing this family of operators by S+

1, j only, and similarly for n1, j

and j1, j .
We also measure the 0-momentum and π -momentum com-

ponents of the energy term Ej = T
a
jT

a
j+1 which is invariant

under the full internal symmetry group:

ε0
j = Ej + Ej+1, (27)

επ
j = Ej − Ej+1. (28)

The operator επ
j is the natural lattice operator for VBS corre-

lations, being in the singlet sector of all internal symmetries
[actually the entire SU(3)] but odd under Z2 translation sym-
metry.

Finally, we wish to investigate the conjecture that the crit-
ical theory at the point δ = 1 in fact controls the entire phase
boundary. This would imply that the U(1) × U(1) symmetry
of the line δ = 1 is emergent at the transition for other values
of δ; equivalently, terms breaking the symmetry are irrelevant

at the transition for δ = 1. We measure correlations of a term
which carries charge under U(1)2 but preserves all symmetries
of H in Eq. (3). Specifically, consider the following operator:

A =
∑

j

A j (29)

with

Aj =
∑
h∈S3

(|h(1)〉〈h(0)| j ⊗ |h(0)〉〈h(2)| j+1 + H.c.). (30)

The sum is over elements of the permutation group, and
the term corresponding to the identity element e = (012) is
S+

1, jS
+
2, j+1 + S−

1, jS
−
2, j+1. It is easy to see that A respects gz,

gx, C, �, and lattice symmetries, while all terms in A break
N1 and N2. We thus interpret A as a fieldlike term driving
U(1) × U(1) symmetry breaking, hence maintaining critical-
ity to leading order in the field.

Based on the above interpretation, we can predict the slope
of the phase boundary in the phase diagram at δ = 1 in
Fig. 1. As mentioned there, the critical point H∗ appears to be
(δ, K ) = (1, 2), where Jz = K . Now we suppose that A turns
out to be the most relevant symmetry-breaking operator, and
moreover that H∗ + λA remains critical to leading order in λ.
Decomposing this term into the (δ, K ) basis, which control
terms (XjXj+1 − Z†

j Z j+1 + H.c.) and 6T
a
jT

a
j+1, respectively,

yields the unique solution

Aj = (XjXj+1 + 1
3 Z†

j Z j+1 + H.c.
)+ 2T

a
jT

a
j+1 (31)

= (XjXj+1 − Z†
j Z j+1 + H.c.) + 5

3

(
6T

a
jT

a
j+1

)
+ 4

3

[
(Z†

j Z j+1 + H.c.) − 6T
a
jT

a
j+1

]
. (32)

The final line in Eq. (32) simply changes the overall scale of
H∗, allowing it to be removed from the perturbation term in
this picture. So as a consequence of the conjectured irrele-
vance of this U(1)2 symmetry-breaking term, we predict that
the critical manifold in these variables has slope dδ/dK = 3

5
at (δ, K ) = (1, 2); this is highly consistent with the numerical
data shown in Fig. 1.

1. Direct approach

The most straightforward approach to determining scaling
dimensions is simply to measure the correlation function in
real space and fit to a power-law form. We refer to this as the
“direct approach,” following terminology used in Ref. [49].
This is very similar to the procedure used in Ref. [34] to
fit critical indices for the transition between Ising FM and
VBS. As was the case there, we determine a power law for
the decay of correlations for a single bond dimension (usually
the largest studied). However, in contrast to that work we will
always use the connected correlations; accordingly, we will
not obtain bounds on exponents as we did there but rather
simple estimates. We suspect that this measurement will tend
to overestimate operator scaling dimensions as a result of the
finite length scale induced by the MPS bond dimension even
at a critical point. In addition, the direct approach suffers
from ambiguity in determining the appropriate intermedi-
ate power-law region between nonuniversal short-distance
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FIG. 3. Direct measurements of correlations are taken from an
MPS of bond dimension χ = 300 optimized for the phase transition
at δ = 1, with translation invariance; that is, biased toward breaking
gx . These operators are described in Sec. III C, and all correlations
measure the connected component. In the trace of Cε0 we include
only odd separations r in the interest of visual clarity; the power law
is unaffected.

behavior and eventual exponential decay. We show the results
of these measurements in Fig. 3.

There is already an interesting observation visible in the
raw data; namely, that the magnetic zFM and VBS observables
have very similar power laws. This is suggestive of some
enhanced symmetry unifying the two order parameters at the
putative critical point, a characteristic property of DQCP.

2. Finite-entanglement scaling approach

As mentioned previously, finite-entanglement approxi-
mations necessarily induce a length scale; here the MPS
correlation length ξ introduces some scaling function to the
critical correlations which eventually decays exponentially.
One technique to counteract this is referred to as “finite-
entanglement scaling” (FES) [49], which is based on the
observation that irrespective of the functional form of the
correlations with a length scale, one finds that CO(sξ ) ∼
(sξ )−2
O . Here s is a dimensionless fraction which is kept
fixed as one varies bond dimension (and hence ξ ). We employ
this more sophisticated strategy which incorporates data from
multiple optimized MPS in Fig. 4, and provide a comparison
with the direct results.

One sees that the direct approach tends to overestimate
scaling dimensions as compared to FES, with the exception of
the S+

1,2 operators, whose raw data is not amenable to a power-
law fit. Other results are qualitatively consistent with the direct
approach, with highly relevant operators in the magnetic and
translation symmetry-breaking sectors, along with other less-
relevant operators charged under the U(1) symmetries and in
the singlet sector. The expectation that the conserved space-
time current components n1 and j1 have scaling dimension 1 is
reasonably well satisfied. Additionally, the similarity between
the zFM and VBS order parameters is maintained in this

FIG. 4. In the FES approach we measure the correlations CO(sξ )
for a range of fixed dimensionless fractions s and varying ξ . The
top panel shows data for the spatial part of the U(1) current j1, j .
For s > 1 the raw data is already in the exponential decay regime
of Fig. 3, while this approach still exhibits consistent power-law
scaling; thus FES is indeed largely insensitive to the scaling function
induced by finite MPS bond dimension. In the bottom panel we
show scaling dimensions as a function of s. 
 j1 and 
n1 are visually
identical for all values of s. We do not include A, whose correlations
decay too quickly to use this method. Horizontal lines marked 
d

indicate values found by power-law fits in the direct approach in
Fig. 3. In the table, we provide FES results at s = 1.

approach, albeit with slower power laws. The correlations CA

decay below the measurement error threshold too quickly to
effectively treat with the FES method and are not shown.

From the scaling dimensions 
Z , 
επ , and 
ε0 measured
in correlation functions we can provide numerical estimates
of the critical indices characterizing the transition. The FES
scaling dimensions generally depend on s, and there is no
a priori best value of this parameter to choose. Fortunately
our measurements do not vary widely, and for lack of a better
option we will choose s = 1. These values are given in Fig. 4,
and the reader is free to decide how seriously to take the
numbers. The correlation length exponent we compute is ν =
1/(2 − 
ε0 ) ≈ 1.2 and the order parameter exponents are
βzFM = ν
Z ≈ βVBS = ν
επ ≈ 0.35. Due to the strong irrel-
evance of the A perturbation breaking U(1) × U(1) symmetry,
we predict that these critical indices describe an extended
region of the phase boundary.

We revisit these measurements in Sec. VI and compare
with results from exact diagonalization, identifying these op-
erators with primary fields in a putative CFT where possible.
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IV. THEORIES OF PHASE TRANSITION

A. Domain wall description

We write the standard duality mapping to Z3 domain wall
variables on the dual lattice. Denote these operators by Z̃ j+1/2

and X̃ j+1/2:

X̃ j+1/2 = Z†
j Z j+1, (33)

Z̃ j+1/2 =
∏
i� j

Xi, (34)

Z̃†
j−1/2Z̃ j+1/2 = Xj . (35)

The dual operators satisfy Z̃X̃ = ωX̃ Z̃ . In these variables H is
written (up to constant terms)

H̃ = −
∑

j

[(JxZ̃†
j−1/2Z̃ j+3/2 + JzX̃ j+1/2 + H.c.)

+ K (1 + Z̃†
j−1/2Z̃ j+3/2 + H.c.)

× (1 + X̃ j+1/2 + H.c.)], (36)

and the generators of the Zx
3 × Zz

3 symmetry as

gx =
∏

j

Z̃†
j−1/2Z̃ j+1/2 = 1, gz =

∏
k

X̃2k+1/2. (37)

That on a periodic chain gx appears trivial is a symptom of this
duality failing to account for the global symmetry aspects of
the model on such a chain. In Appendix C, we formulate the
duality on a periodic chain and account for all global aspects
by using a dual Z3 gauge field. We can view the analysis in
this section as being performed in a fixed gauge.

The action of the symmetries on the dual variables is

gx : (X̃ j+1/2, Z̃ j+1/2) �→ (X̃ j+1/2, Z̃ j+1/2), (38)

gz : (X̃ j+1/2, Z̃ j+1/2) �→ (X̃ j+1/2, ω
p j−1Z̃ j+1/2), (39)

� : (X̃ j+1/2, Z̃ j+1/2) �→ (X̃ †
j+1/2, Z̃ j+1/2), i �→ −i , (40)

C : (X̃ j+1/2, Z̃ j+1/2) �→ (X̃ †
j+1/2, Z̃†

j+1/2), (41)

T1 : (X̃ j+1/2, Z̃ j+1/2) �→ (X̃ j+3/2, Z̃ j+3/2), (42)

I : (X̃ j+1/2, Z̃ j+1/2) �→ (X̃−( j+1/2), Z̃−( j+1/2)). (43)

The dual Hamiltonian Eq. (36) can be viewed as two in-

dividual three-state clock models residing on the “even” and
“odd” sublattices of the dual lattice (locations 2k + 1/2 and
2k + 3/2, k ∈ Z, respectively), with energy-energy coupling
between them. Physically, when all domain walls are gapped
(that is, 〈Z̃odd〉 = 〈Z̃even〉 = 0) the zFM order is preserved. The
threefold degeneracy of this phase is encoded in the gauge
sector presented in full in Appendix C.

Other phases can be obtained by various condensation pat-
terns of the domain wall variables. For example, condensing
〈Z̃odd〉 = 〈Z̃even〉 �= 0 breaks gz but preserves gx, C, �, and
T1. We thus identify this with the particular classical state⊗

j |0x〉 j in the xFM phase. The other classical states in this

phase break C and T1 but preserve T1C. These correspond to
〈Z̃odd〉 = ω±1〈Z̃even〉 �= 0. It appears naively that there are a
total of nine degenerate minima; however, when global sym-
metry aspects are accounted for, there are indeed only three
degenerate ground states.

By instead condensing domain walls as 〈Z̃odd〉 �= 0 and
〈Z̃even〉 = 0, or vice versa, one finds a phase which breaks
translation symmetry and has twofold ground-state degener-
acy. We identify this condensate with the VBS phase in the
lattice model. While this order parameter appears to trans-
form nontrivially under gz in the above equation, its value is
not gauge invariant, and this phase in fact respects the full
internal symmetry group. From the perspective of the zFM in
this language, the VBS is a particular Higgs phase, with the
transition accomplished by condensing domain walls on only
one sublattice of the dual lattice.

One can write a schematic theory of coarse-grained domain
walls described by complex fields wA ∼ Z̃odd, wB ∼ Z̃even,
transforming as

gx : (wA,wB) �→ (wA,wB), (44)

gz : (wA,wB) �→ (wA, ω−1wB), (45)
� : (wA,wB) �→ (wA,wB), i �→ −i , (46)

C : (wA,wB) �→ (w†
A,w

†
B), (47)

T1 : (wA,wB) �→ (wB,wA), (48)

I : (wA,wB) �→ (wA,wB). (49)

The associated Lagrangian reads

L = LA + LB + LAB, (50)

Lα = t |wα|2 + u3
(
w3

α + c.c.
)+ u4|wα|4 + · · · , (51)

LAB = λ|wA|2|wB|2 + · · · , (52)

where Lα is a schematic theory for the Z3 ordering transition

on each sublattice. Gradient terms are omitted for simplicity.
In addition to the usual mass term t and quartic term u4,
the symmetries allow the Z3 anisotropy term u3, which en-
ergetically distinguishes three particular directions to capture
the qualitative physics of the underlying Z3 clock variables
Z̃odd/even.

In the absence of coupling between the two sublattices, the
critical point (on each sublattice) is obtained by tuning
the parameter t . Schematically, for “renormalized” trenorm > 0
the fields wA and wB are both gapped, which for the orig-
inal system corresponds to the zFM phase. In contrast, for
trenorm < 0 both fields condense; in the original system this
corresponds to the xFM phase. This is not a tractable field the-
ory for describing the Z3 criticality; instead, the actual critical
properties are known from exact solutions of lattice models or
study of the IR theory, which is a conformal minimal model.
Nevertheless, this schematic writing simplifies the discussion
of the domain wall theory.
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LAB represents coupling between the Z3 systems on the
two sublattices. In our model, this has the form of energy-
energy coupling, for which we write the most relevant term
with amplitude λ [50]. It is known from the CFT description
of the Z3 criticality that the energy-energy coupling is relevant
at the decoupled point.

Consider now the full theory including LAB. By lowering
t , one allows domain walls to proliferate and destroy the
zFM order. Focusing on the quartic terms, if λ < 2u4 both
domain walls want to condense simultaneously, leading to the
xFM phase. (As described previously, the above Lagrangian
does not include the dual Z3 gauge field needed to account
for global symmetry aspects, which reduces the ground-state
degeneracy in this case to only three ground states.) If instead
λ > 2u4, then it is energetically favorable for only one domain
wall species to condense, with two possibilities: either 〈wA〉 �=
0, 〈wB〉 = 0 or 〈wA〉 = 0, 〈wB〉 �= 0, which correspond to the
two degenerate ground states of the VBS phase.

In our lattice model, the above two regimes correspond to
K < 0, where we find a transition from the zFM to the xFM
phase, and to K > 0, where we find the VBS phase. Further-
more, along the δ = 0 line we find a first-order zFM-xFM
phase boundary for K < 0 while the VBS phase immediately
opens up for K > 0. This is consistent with the relevance of
the energy-energy coupling at the decoupled point (δ, K ) =
(0, 0), taken together with the above schematic energetics
picture of the preferred domain wall condensation patterns
for K < 0 and K > 0. Moreover, in our model along the
line δ = 0, the domain wall theory is invariant under a si-
multaneous duality transformation for each species A and B,
treated as their own Z3 chains, which we interpret as main-
taining the “thermal” variable teff = 0 and allowing only the
energy-energy coupling to flow. The runaway flows are then
interpreted as leading to coexistence of zFM and xFM on
one side—having wA and wB both gapped or both condensed
being energetically equal by the above self-duality—and the
VBS phase on the other side.

We can now discuss the zFM-VBS phase boundary, which
requires perturbing from the decoupled point in both t and
λ directions in the field theory (both δ and K in our lat-
tice model). In the low-energy theory at the decoupled point
(δ, K ) = (0, 0) both couplings t and λ are relevant, with scal-
ing dimensions 4/5 and 8/5, respectively. The leading flow
equations are dt/d� = (6/5)t + · · · and dλ/d� = (2/5)λ +
· · · ; in particular, t (�) ∼ λ(�)3 along the flows near the de-
coupled point. To be on the phase boundary, the couplings
t and λ must balance one another. Thus we predict that the
phase boundary has the shape δc(K ) ∼ K3 near the decoupled
point.

Unfortunately, we do not know the ultimate fate of this
type of balanced flow of two relevant couplings. One possi-
bility is that the flow leads to a new fixed point with only
one relevant direction, which would then describe a generic
continuous zFM-VBS transition. The alternative is that there
is no such new fixed point, and a runaway flow is interpreted
as corresponding to a first-order zFM-VBS transition. The
above “theory” does not provide a controlled way to study
this question, but we hope that it will motivate more research
in this problem.

B. Theory for U(1) × U(1)-symmetric model

1. Bosonized variables

The apparently emergent U(1) × U(1) symmetry invites
treatment via bosonization [51–53]. Consider the model
along the δ = 1 line where it has microscopic U(1) × U(1)
symmetry. This model can be approximated by two cou-
pled U(1) rotors with variables (na, j, φa, j ), a = 1, 2, defined
by

(−1) j |a〉〈a| ∼ na, j, S+
a, j ∼ ei φa, j , (53)

where [na,i, φa′, j] = i δaa′ δi j .
To begin writing the field theory description, we first de-

termine the average filling in this system. The filling number
is constrained by the action of gx in Eq. (19); for a fully
symmetric state we have

〈n1, j〉 = 〈n2, j〉 = (−1) j

3
. (54)

Next, to capture fluctuations δna ≡ na − 〈na〉, we introduce
bond variables θa, j+1/2, where

δna, j = 1

π
(θa, j+1/2 − θa, j−1/2). (55)

We choose θa, j+1/2 as follows:

θa,2k−1/2 =
∑

j′�2k−1

π na, j′ ,

θa,2k+1/2 =
∑
j′�2k

π na, j′ + π

3
. (56)

The commutator between θa and φa′ is

[θa, j+1/2, φa′, j′ ] = i π δaa′ �( j + 1/2 − j′), (57)

where �(x) is the Heaviside step function.
To get to the low-energy theory, we define long-wavelength

fields θ1,2(x) and φ1,2(x) in continuum space, where θ1,2(x)
are real-valued with periodicity π and φ1,2(x) have periodicity
2π . These fields satisfy[

∂xθa(x)

π
, φa′ (x′)

]
= i δaa′ δ(x − x′). (58)

The action of the symmetries on the fields can be de-
duced from their lattice operator counterparts in Eqs. (53)
and (56):

u(ϕ1, ϕ2) : (φ1, θ1, φ2, θ2)

→ (φ1 + ϕ1, θ1, φ2 + ϕ2, θ2), (59)

gx : (φ1, θ1, φ2, θ2) → (−φ1 + φ2, θ2,−φ1,−θ1 − θ2),

(60)

� : (φ1, θ1, φ2, θ2) → (−φ1, θ1,−φ2, θ2), i → −i , (61)

C : (φ1, θ1, φ2, θ2) → (φ2, θ2, φ1, θ1), (62)
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T1 : (φ1, θ1, φ2, θ2)

→
(
−φ1,−θ1 + π

3
,−φ2,−θ2 + π

3

)
, (63)

I : (φ1(x), θ1(x), φ2(x), θ2(x))

→
(
φ1(−x),−θ1(−x) + π

3
,

× φ2(−x),−θ2(−x) + π

3

)
. (64)

We are now ready to write down the low-energy theory.

The symmetry-allowed Gaussian part reads

L0 =
2∑

a=1

{
i

π
∂τφa∂xθa + v

2π

[
g(∂xφa)2 + 1

g
(∂xθa)2

]}

+ v

2π

(
−g∂xφ1∂xφ2 + 1

g
∂xθ1∂xθ2

)
, (65)

with a single tunable “Luttinger parameter” g and one “veloc-
ity parameter” v. There are two types of symmetric scattering
terms:

(1) Type I:

λI
m

{
cos

[
2m(θ1 + θ2) − 2mπ

3

]
+ cos

(
2mθ1 + 2mπ

3

)
+ cos

(
2mθ2 + 2mπ

3

)}
, m ∈ Z ; (66)

(2) Type II:

λII
m [cos (2m(θ1 − θ2)) + cos (2m(θ1 + 2θ2)) + cos (2m(2θ1 + θ2))], m ∈ Z. (67)

The scaling dimensions for generic exponentials of the
fields at the Gaussian fixed point are given by [54]:

dim[exp(i (2m1θ1 + 2m2θ2))] = 2g√
3

(
m2

1 − m1m2 + m2
2

)
,

(68)

dim[exp(i (p1φ1 + p2φ2))] = 1

2
√

3g

(
p2

1 + p1 p2 + p2
2

)
.

(69)

We now list some important operators in this bosonized
language [identified either microscopically or by using the
symmetry transformations in Eqs. (59)–(64)] along with their
scaling dimensions at the Gaussian fixed point.

(i) As discussed before, operators carrying unit charges
under U(1) × U(1) are S+

1,2 ∼ exp(i φ1,2), which have scaling
dimensions dim[S+

1,2] = 1
2
√

3g
.

(ii) The operator A defined in Eq. (30), which breaks
U(1) × U(1) to Zz

3, reads

A ∼ cos(φ1 + φ2) + cos(2φ1 − φ2) + cos(φ1 − 2φ2), (70)

and dim[A] =
√

3
2g .

(iii) The zFM order parameter is given by

OzFM ∼ cos

(
2θ1 + 2θ2 − 2π

3

)
+ e2i π/3 cos

(
2θ1 + 2π

3

)
+ e−2i π/3 cos

(
2θ2 + 2π

3

)
, (71)

and dim[OzFM] = 2g√
3
.

(iv) The VBS order parameter reads

OVBS ∼ cos
(

2θ1 + 2θ2 − π

6

)
+ cos

(
2θ1 + π

6

)
+ cos

(
2θ2 + π

6

)
, (72)

and dim[OVBS] = 2g√
3
.

It is interesting to note that at the Gaussian fixed point,
the zFM and VBS order parameters have the same scaling
dimension, which also coincides with the scaling dimension
of the leading allowed scattering term, given by Eq. (66) with
m = 1. Furthermore, we have the relation

dim[S+
a ]

dim[A]
= dim[S+

a ] dim[OzFM] = 1

3
. (73)

When g >
√

3, all allowed scattering terms are irrelevant
and this system is in a stable gapless phase described by the
Gaussian fixed point, with power-law exponents as described
above. This phase is stable as long as the U(1) × U(1) sym-
metry is present microscopically. Note, however, that we did
not find this phase in our lattice model along the δ = 1 line,
but it would be interesting to look for it in some model defor-
mations in the future. On the other hand, if the U(1) × U(1)
symmetry is broken down to Zz

3 and the A term is allowed,
one cannot simultaneously make this term and all scattering
terms irrelevant and the gapless phase is unstable.

2. Gapped phases and “classical phase diagram” in the
bosonized variables

We now develop the representation of various gapped
phases in this theory. Different gapped quantum phases
correspond to different patterns of 〈φ1,2〉 or 〈θ1,2〉. As a conse-
quence of the Mermin-Wagner theorem, in the U(1) × U(1)-
symmetric model φ1,2 never condense and we always have
〈exp(i φ1)〉 = 〈exp(i φ2)〉 = 0.

For quantum states preserving T1, we require 〈θ1,2〉 = π/6
or −π/3 (mod π ). For quantum states preserving gx, we re-
quire 〈θ1〉 = 〈θ2〉 = 0 or ±π/3 (mod π ). We are then able to
represent the gapped phases appearing in the previous sections
as follows:

(i) 〈θ1〉 = 〈θ2〉 = −π/3 gives a fully symmetric phase.
The detailed study of this SPT phase is presented in Ap-
pendix B 2.
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FIG. 5. Four distinct phases appear in the classical phase dia-
gram obtained by analyzing the minima of Eq. (74).

(ii) 〈θ1〉 = 〈θ2〉 = 0 or π/3 gives the two degenerate
ground states of the VBS phase.

(iii) (〈θ1〉, 〈θ2〉)= (π/6, π/6), (π/6,−π/3), (−π/3, π/6)
gives the three degenerate zFM ground states.

The classical phase diagram of this two-component Lut-
tinger liquid theory is obtained by minimizing the energy of
the scattering terms. We first consider the symmetric scatter-
ing term Eq. (66) with m = 1, which we label V I

1 . Its scaling
dimension is 2g/

√
3, the lowest among symmetric terms; it

is relevant for g <
√

3. When λI
1 < 0, V I

1 is minimized at
θ1 = θ2 = −π/3, and thus gives the symmetric phase. When
λI

1 > 0, it is instead minimized at θ1 = θ2 = 0 or π/3, and
thus gives the VBS phase. If we also have g > 1/

√
3 so

that the next scattering term—Eq. (67) with m = 1—is irrele-
vant, the VBS to SPT transition is obtained when the single
relevant coupling λI

1 changes sign and is described by the
Gaussian theory in Eq. (65). The correlation length exponent
at this transition is set by the scaling dimension of V I

1 : ν =
1/(2 − 2g/

√
3), while the power-law correlations of various

observables are governed by the scaling dimensions we have
calculated. It is interesting that even though zFM order is not
present on either side of the transition, its correlations decay
with the same power law as the VBS order present on one
side.

To describe the zFM phase and its transition to the VBS
phase, we add the next scattering term [Eq. (67) with m = 1],
labeled V II

1 . Thus the combined scattering term is

V = V I
1 + V II

1 . (74)

When g < 1/
√

3, both V I
1 and V II

1 are relevant.
We parametrize λI,II

1 by λ and α, where λI
1 = λ cos α and

λII
1 = λ sin α. For each α, we identify all minima of Eq. (74),

and associate classical phases with the minima by analysis of
symmetry properties. The resulting phase diagram is shown in
Fig. 5.

When arctan(1/8) < α � π/4, then (θ1, θ2)min =
(π/6, π/6), (π/6,−π/3), or (−π/3, π/6), which gives
the zFM phase. We can also identify representative lattice
wave functions for these three states by studying their

transformation properties under C and gx:(π

6
,
π

6

)
∼
⊗

j

|0〉 j,
(π

6
,−π

3

)
∼
⊗

j

|1〉 j,

×
(
−π

3
,
π

6

)
∼
⊗

j

|2〉 j . (75)

When −π/2 < α < arctan(1/8), we find (θ1, θ2)min =
(0, 0) or (π/3, π/3), which gives the VBS phase.

When −π − arctan(1/3) � α < −π/2, (θ1, θ2)min =
(−π/3,−π/3), and we find the symmetric phase.

When π/4 < α < π − arctan(1/3), we get six degenerate
minima, which can be parameterized by a single variable
υ:

(θ1, θ2)min =
(π

6
± υ,

π

6
∓ υ
)
,
(π

6
∓ υ,−π

3

)
,

×
(
−π

3
,
π

6
± υ
)
. (76)

The physical picture of this phase can be obtained by ana-
lyzing the symmetries of these minima and their relation to
nearby phases. Denoting the above minima as A±,B±,C±,
they transform in a three-cycle way under gx : A± → B± →
C± → A±, while they are exchanged pairwise under lat-
tice translation T1 and inversion about a site I : A+ ↔
A−,B+ ↔ B−,C+ ↔ C−. Furthermore, A±/B±/C± are ex-
changed pairwise under symmetries C, gxC, or Cgx. At the
point α = π/4, the optimal υ = 0 and these pairs merge to
give the three ground states of the zFM phase in Eq. (75). We
conclude that the phase with υ �= 0 also has magnetic order
similar to zFM with additional translation and site inversion
symmetry breaking (but preserves bond inversion symmetry).
However, the lattice symmetry breaking is different from the
VBS order: The VBS order parameter is zero in all these
states for any υ, and, more directly, the VBS ground states
are invariant under C and gx, which is not the case here.
According to the symmetry properties of this phase, we name
it a “bond-centered magnetic order” phase.

We cannot write simple product states that would have
the desired transformation properties for the bond-centered
magnetic order states, including the expected quantum num-
bers under the U(1) × U(1). However, it is possible to write
MPS wave functions for these ground states, by building
on the MPS wave function for the neighboring SPT phase
from Appendix B 2, with which the present phase connects
at α = π − arctan (1/3), υ = π/2, where all of the minima
collapse to (−π/3,−π/3) (remembering that the θ fields are
defined modulo π ). The MPS construction for this phase is
presented in Appendix B 3.

3. zFM-VBS transition in U(1) × U(1)-symmetric theory

We can now discuss the phase transition between the zFM
and VBS phases within this theory. In the above “classical”
treatment of V I

1 and V II
1 , the phase transition occurs along the

line λII
1 = λI

1/8 with positive λI,II
1 ; this is a “level crossing”

transition and is first order. This treatment is appropriate when
both bare couplings λI

1 and λII
1 are large. On the other hand,

we can consider starting from the Gaussian theory when these
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bare couplings are small. In the regime g < 1/
√

3, both cou-
plings are relevant and start flowing to larger values. We may
speculate that the (almost) continuous zFM to VBS transition
observed in our numerical study occurs when these couplings
during their flow balance each other in just the right way,
but unfortunately we do not have a controlled means to study
this.

Nevertheless, it is intriguing that some of the relations
among the various scaling dimensions at the Gaussian fixed
point appear to be approximately satisfied in our numerical
study at the (pseudo-)critical point (δ, K ) = (1, 2). Namely,
we find numerically that the zFM and VBS order parameters
have very close scaling dimensions, while they are equal
in the Gaussian theory. We also find that Gaussian theory
relations in Eq. (73) are approximately satisfied. The scal-
ing dimensions are consistent with a naive estimate geff ≈
0.25. For such geff, both V I

1 and V II
1 would be relevant (in

fact, one more scattering term with coefficient λI
2 would

also be relevant), consistent with these couplings flowing
away from the Gaussian fixed point. For such a value of
geff, the term A breaking the U(1) × U(1) symmetry down
to gz is irrelevant, which is consistent with the observed
emergent U(1) × U(1) symmetry along the zFM-VBS phase
boundary.

We remark that the above relations among various expo-
nents in the Gaussian theory follow from the fact that there
is a single Luttinger parameter in the theory, which in turn
is dictated by the microscopic symmetries. It is possible that
the corresponding approximate relations found in the numer-
ical study of the (pseudo-)critical point are also primarily
due to the symmetries rather than proximity to the specific
two-component Luttinger liquid theory. However, we do not
know how to guess a better description, while the Luttinger
liquid theory at least provides some framework for discussing
observables and noticing these relations.

V. CONNECTION TO INTEGRABLE STATISTICAL
MECHANICS MODELS

A. Classical model of nonintersecting strings

Focusing on the line of enhanced symmetry δ = 1 which
has significantly informed our study so far, one observes in
Fig. 1 that this slice appears to intersect the phase boundary
exactly at the point (δ, K ) = (1, 2), at which Jx = 0 and Jz =
K . Up to constants and an overall scale, this point is equivalent
to

H∗ = −
∑

j

[
(q − 2)

∑
α

|αα〉〈αα| j, j+1 +
∑
α,β

|αα〉〈ββ| j, j+1

]
.

(77)

for q = 3. The above finding suggests that this Hamiltonian
may be special, and in order to understand it we first return
to another special instance of our Hamiltonian, namely, the
point Jx = Jz = 0, which up to normalization and constants
maps exactly to the pure biquadratic spin-1 Hamiltonian HbQ,
Eq. (A8). This Hamiltonian is associated with the transfer op-
erator of a particular 2D statistical mechanics model realizing
“nonintersecting strings” (NIS).

(a) (c) (d)

FIG. 6. The three types of vertices shown here, with α �= β, are
allowed in the vertex models we consider. We consider the model on
the two-dimensional square lattice with vertex weights a, c, and d for
the configurations (a), (c), and (d ) respectively; see text for details.

These models are formulated with classical q-state degrees
of freedom assigned to the edges of a graph—we have in
mind the 2D square lattice—and weights assigned to the
vertices according to their configurations. The only nonzero
vertices are those shown in Fig. 6; when accounting for the
Sq permutation symmetry of the labels α, β = 1, . . . , q, there
are q(2q − 1) allowed vertices. To simplify the notation, we
write the weights as w(a) = a, w(c) = c, and w(d ) = d [55].
Solving the Yang-Baxter equation for the transfer matrix with
Sq symmetry yields two integrable models for each value of q,
satisfying the following conditions [56–58]:

separable: a = c + d, (78)

nonseparable: a2 = a(c + d ) + (q − 2)cd. (79)

The solution Eq. (78) is commonly known as the separable
NIS model, and we refer to that of Eq. (79) as the integrable
nonseparable case.

Schematically, under the separability condition Eq. (78),
vertices of type (a) can be decomposed into both types (c)
and (d ) and thereby removed from the partition sum. Then
one can map via a two-step duality to the self-dual point of
the q2-state Potts model [59]. The q2-state Potts degrees of
freedom reside on half of the plaquettes of the original square
lattice (one color of a checkerboard pattern) and have gener-
ally anisotropic nearest-neighbor interactions in the x̂ + ŷ and
x̂ − ŷ directions of the NIS lattice, with Boltzmann weights
set by c/d and d/c. For any c and d the model is self-dual;
the point c = d corresponds to the isotropic self-dual model.
We provide the explicit duality mapping from the separable
q-state NIS model on the square lattice to the q2-state Potts
model, as well as further discussion, in Appendix D using
Hamiltonian language.

Both integrable NIS statistical mechanics models are ex-
actly solvable for general q by the analytic Bethe ansatz
[58,60]. The structure is quite similar to the solution of the
XXZ model using magnons, with the reference states of the
method being the highest excited states (a manifold spanned
by |α1, α2, . . . , αN 〉 with αi �= αi+1). Although the solution for
the eigenvalues was performed explicitly by De Vega and Gi-
avarini [61], we are not aware of how to access the low-energy
subspace or ground-state wave functions exactly.
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B. Phases of NIS models

The weight of a single vertex can be written (with link
variables labeled in the compass pattern S,W,N,E)

w(α, γ , β, ρ)

= a δαγβρ + c (δαρδβγ − δαγβρ ) + d (δαγ δβρ − δαγβρ )

= (a − c − d ) δαγβρ + c δαρδβγ + d δαγ δβρ. (80)

Since the overall scale of w does not change the probabilities,
the vertex model has two independent parameters, which we
are free to choose. We use c/d , which characterizes lattice
anisotropy, as well as another parameter characterizing the
relative weight of the (a)-type vertices compared to the (c)-
and (d )-type vertices. One choice for such a parameter would
be a2/cd , but we will instead use a related quantity,

� = a

cd
(a − c − d ) = a2

cd
− a√

cd

(√
c

d
+
√

d

c

)
. (81)

The parameter � is convenient in that the two integrable
models correspond to � = 0 and � = q − 2. At each of these
special values of �, the NIS transfer matrices commute for
any anisotropy parameter c/d; this is simply a restatement of
Yang-Baxter solubility. In particular, the information encoded
in the eigenvectors of the transfer matrices is independent of
the “spectral variable” c/d . Accordingly, we can say that the
physics is strictly independent of the anisotropy parameter.
This conclusion does not hold at other values of � �= 0, q − 2
and the quantitative details will depend on the anisotropy;
however, we expect that the qualitative physics will still be
independent.

Using the freedom afforded by the spectral variable, one
can tune to the extreme anisotropic limit of the � = 0, q − 2
transfer matrices and take a logarithmic derivative to deter-
mine that these integrable models yield precisely the HbQ and
H∗ quantum Hamiltonians, respectively, for the case q = 3
[56,57,60,62,63]. In this section we will allow � to vary and
will argue that � < q − 2 realizes the same phase as the
separable model � = 0 which breaks the lattice translation
symmetry, while � > q − 2 realizes a magnetically ordered
phase. Hence, the integrable nonseparable model � = q − 2
appears to be at the transition between these phases.

As suggested by its name, the NIS model partition sum
can be rewritten in terms of nonlocal strings; these are
“completely packed” on the square lattice, with each edge
containing a string segment. Every vertex can connect the seg-
ments on its adjoining edges in three different ways according
to the pictures of (a)-, (c)-, and (d )-type vertices in Fig. 7.
Ignoring boundaries, one sees that allowed string configura-
tions take the form of loops lying along connected edges, all of
which are in the same state within a single loop. These loops
may self-intersect at (a)-type vertices but do not cross one
another. The partition function can be rewritten independently
of the q possibilities for the state of the edges comprising each
loop, and the sum over flavors performed explicitly, obtaining
a model in which q appears as a parameter and weights in the
partition sum are determined entirely by loop geometry. The
precise formulation in terms of unflavored strings is akin to
a high-temperature expansion for a q-state Potts model. The

(a) (c) (d)

FIG. 7. The vertex configurations of the loop model, which are
unflavored, are shown. The weight of a configuration depends only
on the geometric pattern of connections of the string segments as-
signed to the edges of the two-dimensional square lattice. The weight
of each individual vertex type can be read off from Eq. (80); the
partition sum in terms of such loops is specified in Eq. (82).

utility of this formulation is that treating q as a parameter
specifying a loop fugacity allows it to be varied continuously.

The weights of these vertices are read off from Eq. (80),
so by substituting for � using Eq. (81) we write the general
partition function in terms of the loops:

Z =
∑

σ

q�(σ )(a − c − d )na (σ )cnc (σ )dnd (σ )

= (cd )
N
2

∑
σ

q�(σ )(
√

� + γ 2 − γ )na(σ )
( c

d

) nc (σ )−nd (σ )
2

, (82)

where γ is determined from the anisotropy by

γ ≡ 1

2

(√
c

d
+
√

d

c

)
� 1. (83)

(The isotropic point with γ = c/d = 1 is a one-parameter
loop model.) In the partition sum σ denotes a configuration of
completely packed unflavored loops with connections at the
vertices drawn from Fig. 7. Here �(σ ) is a nonlocal quantity,
namely the number of loops in σ (more precisely, the number
of connected components in the graph formed by the edges
and their connections at the vertices), and na, nc, and nd are
the numbers of vertices of each type in σ .

We note parenthetically that a different variant of the NIS
model also appears in the literature where it is defined on
an oriented lattice with arrows pointing out of one sublattice
and into the other; correspondingly, assignment of weights
for the two types of vertices becomes staggered compared to
our unoriented-lattice model. The NIS model defined on the
oriented lattice coincides with the model defined on the unori-
ented lattice for c = d; thus, the results about integrability still
hold along this line, in agreement with the literature. However,
the staggered model with c �= d does not have commuting
transfer matrices even for � = 0, q − 2 and is not integrable
(this deformation corresponds to moving off self-duality and
hence off criticality in the related q2-state Potts model [59]).

Consider first a regime in which the (a) vertex is sup-
pressed at low energies. Setting � = 0 enforces na(σ ) = 0
identically. As mentioned earlier, this model is equivalent to
the q2-state Potts model, with anisotropic couplings if c �= d ,
but such that self-duality is maintained. For c = d , the model
is isotropic and for q > 2 is known to be at a first-order transi-
tion between the Potts ordered and disordered phases (and we
expect this to be true also for c �= d). In the NIS language, the

155143-12



ONE-DIMENSIONAL MODEL FOR DECONFINED … PHYSICAL REVIEW B 103, 155143 (2021)

ordered and disordered phases of the Potts model are known to
correspond to short-loop states running predominantly around
one or the other set of plaquettes [40,58,59,64]. This is a
“checkerboard” phase of the loop model which spontaneously
breaks the lattice symmetry, but is symmetric under Sq permu-
tation of the labels. Presumably the short-loop checkerboard
phase is stable under introducing some finite amount of �. (In
the language of the related q2-state Potts model with q2 > 4,
a small � perturbation moves along a first-order coexistence
line.) This is the VBS phase of our spin model.

Conversely, in a regime with high weight on the (a)
vertex, configurations at low energies include strings that
extend across the whole system. In the language of the orig-
inal vertex model degrees of freedom, such proliferation of
strings corresponds to spontaneous breaking of the Sq permu-
tation symmetry by choosing one of the q colors. Thus, the
phase will display long-range correlations of a magnetic-type
order parameter which measures whether distant links are
connected by an unbroken string, whereas in the short-loop
checkerboard phase correlations of this order parameter decay
exponentially. In our spin model, the proliferated-loop phase
is the zFM phase.

Now for an intermediate value of the parameter � there
will be a transition between the extended phase and the short-
loop checkerboard phase. Our finding that the VBS to zFM
transition in the q = 3 model appears to be exactly at the
integrable point corresponding to � = q − 2 suggests that
the completely packed loop model undergoes a transition
between checkerboard short loops and the proliferated loop
phase at exactly � = q − 2. A similar conjecture was made
in Ref. [65] in the context of special completely packed O(n)
loop models (which map precisely onto the above loop model
with q = n) and was supported by transfer matrix studies
for n � 10 and n < 2. As we discuss in the next subsection,
the � = q − 2 model actually has a finite correlation length,
which, however, can be enormous for q � 2, of which our
spin model with q = 3 is an example. Our DMRG study
reaching correlation lengths around 200 and locating the
zFM-VBS transition very close to the point � = q − 2 gives
very strong support to this conjecture also in the vicinity
of q = 3.

C. Walking description of phase transition

1. Summary of exact results for integrable models

There is a way to learn about the spectrum of the trans-
fer matrix of the integrable NIS models without the need
to construct eigenstates, through the so-called inversion trick
introduced by Stroganov [66] and later used to study the
six-vertex model by Baxter [67,68]. In its initial setting the
inversion relation was actually developed specifically to com-
pute the free energy per site of the two integrable q = 3 NIS
models, before more was known about their structure. An
extended inversion relation was used by Klümper [62,63] to
compute subleading eigenvalues of the transfer matrix, expos-
ing some details of the low-energy spectrum. In particular, he
found that the dependence on q of the thermodynamic-limit
energy gaps of both quantum Hamiltonians corresponding to
the integrable NIS models (under some overall normalization)

is governed by the function


 = g(x) = log x
∞∏

n=1

(
1 − x−n/2

1 + x−n/2

)2

, (84)

and the correlation length by ξ = f (x) [63,69],

f (x) = −1/ log k(x), k(x) = 4√
x

∞∏
n=1

(
1 + x−2n

1 + x−2n+1

)4

.

(85)
The two integrable models correspond to the following func-
tional forms of the argument x:

xsep(q) = q +
√

q2 − 4

q −
√

q2 − 4
, (86)

xns(q) = q − 1. (87)

One can draw some conclusions about these models from
the equivalence between the separable q-state NIS model and
the q2-state self-dual Potts model. Because the self-dual Potts
model transitions from critical to gapped at QPotts = 4, then

sep = 0 for q � 2 and 
sep > 0 for q > 2. Thus we can also
determine the value qc at which 
ns experiences a transition
from gapless to gapped. Because xsep(q = 2) = 1 ≡ qc − 1, in
fact the nonseparable NIS model also experiences a transition
from gapless to gapped at the value qc = 2. In particular,
using q = 3 and the normalization from Sec. III A, we exactly
determine the energy gap of the Hamiltonian H∗ to be 
 =
1.42 × 10−4 and the correlation length ξ = 190 878 lattice
spacings. From the point of view of the functions g(x) and
f (x), this is because the integrable nonseparable lattice model
has the gap and correlation length which correspond to the
self-dual Potts model with QPotts = [x−1

sep(xns(q = 3))]2 = 9
2 .

The QPotts = 5 model is known to already have a large cor-
relation length of 3553 lattice spacings, and QPotts = 9

2 is even
closer to the critical value Qc

Potts = 4.
To recapitulate the content of this section, the q-state

separable integrable NIS model maps to the self-dual Potts
model with QPotts = q2 states, and this mapping is actually an
equivalence of models in the bulk (that is, ignoring bound-
ary effects). On the other hand, in the q-state nonseparable
integrable NIS model, the expression for the gap and corre-
lation length are those which also apply to a Potts model at
QPotts = [x−1

sep(xns(q))]2 = q2/(q − 1), but we could not find
any arguments for a stronger equivalence between these mod-
els.

2. Implications for renormalization group flow

Supposing that the q = 3 nonseparable NIS model indeed
describes the phase boundary, one concludes that the transi-
tion is extremely weakly first-order. The emergence of such
a length scale enormously greater than the lattice spacing
presents a “hierarchy problem.” Fortunately we can again look
to the self-dual Potts model which provides a more familiar
example of this phenomenon. In the preceding section we
used exact results for the eigenvalues of the transfer matrix to
contextualize the very small gap and long correlation length of
H∗ in terms of the Potts pseudocriticality. A new understand-
ing of the Potts case is due to a recent thorough treatment as an
instance of “walking” of renormalization group flows [28,29].
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In brief, walking is the following proposal of an RG equa-
tion for a microscopic coupling λ:

dλ

d log L
= −ε + λ2 + · · · . (88)

For ε > 0 the flow has fixed points λ∗ = ±√
ε, one of which

is stable and the other unstable. (In the Potts case these are the
critical and tricritical points existing at QPotts < 4; the system
is assumed to be already tuned to the phase transition, e.g.,
by enforcing the self-duality, and λ is some remaining pa-
rameter in this manifold.) These fixed points merge on tuning
ε → 0, and “disappear” for ε < 0. However, in this regime
solutions λ∗ = ±i

√|ε| still exist, and represent a particular
type of nonunitary theory. Quantities like central charge, scal-
ing dimensions, and OPE coefficients at these complex fixed
points generally have nonzero imaginary components, and the
conformal data of the two fixed points are related by complex
conjugation.

While the complex fixed points are inaccessible to RG
flows in the unitary theory, they do control the physics at
intermediate length scales. This is because the running of the
coupling slows down considerably near λ = 0 [70], where it
passes close to these “complex CFTs.” The RG time required
for λ to flow from −1 to +1 is found by integrating Eq. (88):
the result is t ∼ π√|ε| , corresponding to a length scale [28]

ξ = ξ0 exp
π√
ε
. (89)

For small values |ε| � 1 this scale becomes very long; in this
case the approximate conformal symmetry inherited from the
complex CFTs looks nearly exact even for large finite systems.
However, because the flow is not approaching a conformally
symmetric fixed point, the conformal data measured in sys-
tems with a characteristic length will drift with the scale,
displaying the eventual limiting behavior at a size comparable
to ξ .

In the self-dual Potts model the form of Eq. (88) is well
motivated by a long history of study, with parameter εPotts =
1
π2 (4 − QPotts ) to leading order in the limit QPotts → 4 [28].
By matching the characteristic walking behavior at ε = 0 with
the divergent parts of the exact results in the previous section
we can write down ε also for the nonseparable model. The
function k defined in Eq. (85), an elliptic modulus, can equiv-
alently be written k(x) = [ϑ2(q̃)/ϑ3(q̃)]2, where ϑn(q̃) is the
Jacobi theta function ϑn(z = 0, q̃ = 1/x). We emphasize that
the usage of the letter q̃ = 1/x in this way is an unfortunate
coincidence arising from the conventions of elliptic functions.

To leading order as q̃ ↗ 1 (that is, from the weakly first-
order side), we expand

ϑ2(q̃)

ϑ3(q̃)
≈ 1 − 4

2 + exp
[

π2

1−q̃

] , (90)

so log f (x) ∼ π2

1−q̃ , and consequently

log f (xsep(q)) ∼ π2

2
√

q − 2
, (91)

log f (xns(q)) ∼ π2

q − 2
, (92)

to leading order in the limit q → 2. We therefore propose that
in the RG equation for the integrable NIS models ε has the
form

εsep = − 4

π2
(q − 2), (93)

εns = − 1

π2
(q − 2)2, q � 2. (94)

These statements are strictly applicable only as q → 2 [71].
In this limit, Eq. (93) reproduces the known result for the
self-dual Potts model with QPotts = q2 ≈ 4 + 4(q − 2); in par-
ticular, the complex fixed points separate as the square root
of the deviation from the critical value of q: λ∗

ns = 2
π

√
2 − q.

On the other hand, Eq. (94) indicates that the functional de-
pendence on q is different in the nonseparable case: the next
correction to log f (q − 1) is a constant, so dε

dq = 0 at q = 2

and λ∗ = ± i
π

(q − 2) grows linearly with q. By taking these
results seriously at q = 3—which is dubious based on the
expansion but works well for the Potts model nonetheless; see
Sec. 3.5 of Ref. [28]—from Eq. (89) one arrives at a value
ξ0 ≈ 9.9 for H∗, which can be compared with the UV length
scale ξ0,Potts ∼ 0.19 obtained for the weakly first-order Potts
transition.

In order to follow the standard story of walking εns should
change sign at q = 2; it may indeed be the case that, for
instance, an additional factor of sgn(q − 2) is required in
Eq. (94). However, we observe that close to the marginal
value q = 2 the two—separable and nonseparable—stories of
walking we have been telling independently actually merge. In
our spin model the former case lies inside the VBS phase with
fairly large correlation length ξ ≈ 21 for q = 3, diverging for
q → 2, while the latter resides on the VBS-zFM boundary and
has a much larger correlation length with stronger divergence
as q → 2. It is interesting that both of these points occur in
the same NIS model as � is varied, and it is intriguing to
speculate that the walking parameter λ posited separately for
each case may in fact be the same. If this is true, the complex
CFTs discussed for the two models occur in the same larger
parameter space which also contains the parameter �, and in
principle a richer flow structure involving these fixed points
is possible. It would be interesting to address this speculation
with more concrete calculations and also to examine possible
implications for crossovers in the physical spin problem.

VI. EXACT DIAGONALIZATION STUDY OF CFT DATA
OF THE INTEGRABLE MODEL

In the walking picture the physics of our model in the
approximately conformal regime is controlled by complex
CFTs; accordingly, numerics are well suited to illuminate
some of the properties of these theories. In order to do so we
will study the lattice model using exact diagonalization (ED),
where the details of the low-energy spectrum under periodic
boundary conditions provide a reliable way to identify CFT
operators up to finite-size corrections [72]. Specifically, the
energy E and lattice momentum P of an appropriate low-
energy eigenstate are related to the scaling dimension 
 and
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FIG. 8. We show the low-energy spectrum of the integrable
model (δ, K ) = (1, 2) that resides on the zFM-VBS phase boundary
with system size N = 20 in the N1 = N2 = 0 sector. Eigenvalues
are organized based on conformal spin S and gx quantum number,
with gx = 1 shown in blue and gx = ω,ω2 (which are related by C)
in orange. States are offset slightly from their quantized momenta
for visual clarity. Scaling dimensions 
 are determined by normal-
ization of the energy eigenvalue of the |T 〉 state associated with
the stress-energy tensor, as 
T = 2. Highest-weight states identified
using Fourier modes Hn are indicated by name. Quantum numbers
of these states under symmetries C and I (where applicable) are not
shown here but are listed in Table I.

conformal spin S of a CFT operator as

Eα = 2π

Na

(

α − c

12

)
+ O(N−x ), Pα = 2π

Na
Sα, (95)

under suitable normalization of the lattice Hamiltonian. The
lattice spacing is denoted a and the number of sites N . Here
x > 1 is a nonuniversal exponent controlling the finite-size
scaling. In this way we can also compare ED data with some
of the results of Sec. III by identifying the low-energy ex-
citations associated with primary operators in the CFT. The
application of this idea to lattice models was first worked out
by Koo and Saleur [73] for Bethe-ansatz integrable models
and later developed into a more general numerical technique
[72].

The fundamental idea is based on the observation that the
Fourier modes of the Hamiltonian density in a CFT on a circle
are linear combinations of the Virasoro generators:

HCFT
n = Na

2π

∫ Na

0
dx einx 2π

Na hCFT(x) = Ln + L−n, n �= 0. (96)

The action of a Virasoro (anti-)chiral operator Ln (Ln) is to de-
crease (increase) conformal spin by n and decrease conformal
dimension by n. That is, HCFT

n imparts conformal spin −n,
connecting lattice momentum sectors 2π

Na S and 2π
Na (S − n). In

a CFT, all states are grouped into conformal towers related by
the Virasoso generators. Each tower descends from a unique
highest-weight state, which is associated with a primary field
by the state-operator correspondence. Because the energy of
a state in the theory on a circle depends on the operator
scaling dimension, the highest-weight states can be identified

TABLE I. We identify and measure (the real parts of) several
primary fields in the putative CFT for the integrable point at (δ, K ) =
(1, 2). Just as chiral primaries with S �= 0, N/2 have an antichiral
counterpart obtained by reflection (only φ arises here), also primaries
that do not commute with gx have a counterpart with quantum
number −1 related by time-reversal symmetry �; these are σ̃ , σ̃ ′,
and ṽ. We also resolve charge conjugation C for states with gx = 0
(these symmetries do not commute), as well as spatial inversion I
in the 0- and π -momentum sectors. The operators above the line are
those which we compare with finite-entanglement scaling results for
correlations of lattice operators in the MPS study.

Primary field Re[
] S U(1)2 gx C I

I 0 0 0 0 + +
σ, σ̃ 0.225 0 0 ±1 +
π 0.275 N/2 0 0 + −
s1, s2 0.865 N/2 11, 12 +
j1, j2 1.000 N/2 − 1 0
ε 1.061 0 0 0 + +
σ ′, σ̃ ′ 1.622 0 0 ±1 +
φ, φ 1.973 ±1 0 0 −
u 5.025 0 0 0 + +
v, ṽ 5.025 0 0 ±1 +

with those whose overlap with lower-energy states on appli-
cation of Hn vanishes or goes to 0 with increasing size. The
numerical method is obtained by applying these statements
about continuum fields to the lattice operators, in particular
assuming that the relationship Eq. (96) also applies to Fourier
modes of the lattice Hamiltonian and lattice counterparts of
the Virasoro generators, up to finite-size corrections.

Based on the above, one does not need to construct lattice
equivalents of the Virasoro generators; simply acting repeat-
edly with Hn, n ∈ {−2,−1, 1, 2}, on an eigenstate generates
other states in the same conformal tower. By projecting the
lattice Fourier modes Hn into the space of low-energy eigen-
states, the structure of the conformal towers can be read off
from the matrix elements, and those having zero matrix ele-
ment for all Hn with all eigenstates of lower energy will be
the highest-weight states associated with primary fields in the
CFT. We find in our data that for some eigenstates this sum of
matrix elements on lower-energy states vanishes identically.
In other cases an eigenstate may have a small matrix element
which decreases with system size; if the spectrum does not
contain another state from which this state could reasonably
descend, we also label this state a primary and attribute the
nonzero values of Hn to finite-size corrections. However, we
are generally conservative and are not trying to exhaustively
label all highest-weight states in the spectrum, but rather iden-
tify those that correspond to measurements made in previous
sections, in addition to other obvious candidates.

By finite-size scaling of the energy eigenvalues of highest-
weight states we are straightforwardly able to estimate the
scaling dimensions of primary operators in the CFT. Correct
normalization of H is very important; to achieve this we
follow Milsted and Vidal [72] and utilize the state related
to the stress-energy tensor T , which is conserved and has
known scaling dimension 
T = 2. T is quasiprimary, related
to the vacuum I by

√ c
2 |T 〉 = L−2|I〉 and can thus be readily
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FIG. 9. In the upper panel we show scaling dimensions of pri-
mary fields in the putative conformal fixed point obtained using
finite-size scaling of the excitation energies of highest-weight states.
We determine the exponent y = 3/4 numerically, by observation of
finite-size corrections to the vanishing matrix elements of Hn with
the state |T 〉 used for normalization. We do not show the relatively
heavy operators u, v, but these behave similarly. Scaling dimensions

s1,2 of S+

1,2 operators are extracted from ED data in the appropriate
charged sectors different from that in Fig. 8 (not shown). For the
fits we use only system sizes N � 12, though also show data for
N = 8, 10. In the lower panel we repeat the plot containing data for
the critical exponents obtained from the FES method, also shown
in Fig. 4. Now the horizontal lines marked on the figure indicate
the scaling dimension of the most relevant primary field in each
associated symmetry sector as measured in ED.

identified in the S = 2 sector by calculating H−2|I〉. This strat-
egy allows us to avoid incorrectly identifying |T 〉 for small
sizes N , as described in Ref. [72]. So H is normalized by
setting 
I = 0 and 
T = 2. The low-energy spectrum of the
model for system size N = 20 is shown in Fig. 8 and the
finite-size scaling results are shown in Fig. 9, where they are
additionally compared with the finite-entanglement scaling
results obtained previously from MPS. The data are compiled
in Table I.

Due to the appearance of the central charge c in the matrix
element 〈T |H−2|I〉 = √ c

2 , we can also compare the finite-size
scaling ED results for the central charge with those obtained
from MPS. The finite-size scaling result c ≈ 1.4 is shown in
Fig. 10. While this number is not in agreement with the value

FIG. 10. Finite-size scaling for the central charge is based on the
matrix element 〈T |H−2|I〉, where |I〉 is the ground state and |T 〉 the
state with conformal spin S = 2 associated with the stress-energy
tensor in the field theory. This state has the lowest energy in its sector
for all system sizes studied. The scaling with N−2 is used for other
models [72], and visually appears to be appropriate. The fit excludes
the first two data points N = 8, 10.

obtained previously from scaling with MPS bond dimen-
sion, this is not unexpected, as the value of c will drift with
system size at a pseudocritical point, decreasing with increas-
ing system size and eventually reaching c = 0 at very large
sizes.

VII. DISCUSSION

Motivated by the description of a DQCP in a spin-1/2
chain with rotation symmetry broken to Z2 × Z2 [33,34], we
have probed the nature of a similar transition in a 1D model
of local three-level systems forming projective representations
of Z3 × Z3. On one side of the transition is a ferromagnet
phase with threefold ground-state degeneracy, and on the
other a twofold degenerate VBS phase which preserves onsite
symmetries but breaks translation invariance. This is similar
to the Z2 × Z2-symmetric situation; however, there an LSM
theorem was important in prohibiting an intervening fully
symmetric gapped phase; in the present case a featureless
phase is allowed.

The above notwithstanding, our studies using an adiabatic
protocol for optimized uniform MPS indicate that the phase
diagram of the concrete Hamiltonian in Eq. (3) does indeed
include a direct transition between zFM and VBS phases. Our
numerical results are furthermore consistent with a continuous
phase transition with symmetry group enhanced to at least
U(1) × U(1) �Z3. In addition, the scaling dimensions of the
two order parameters involved have nearly the same numerical
value, possibly indicating a larger emergent symmetry or self-
duality at the transition.

While we did not obtain a controlled low-energy theory of
the transition using either Z3 domain wall fields or bosoniza-
tion of the U(1)2-symmetric theory (which applies exactly
on the lattice along a particular cut through the phase di-
agram), our numerical results suggest another strategy, by
seemingly locating the special point H∗, Eq. (77), on the phase
boundary. This quantum Hamiltonian is the counterpart to a
two-dimensional solvable classical vertex model we term the
nonseparable integrable NIS model (see Sec. V), and through
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a trick known as transfer matrix inversion one can use the ana-
lyticity properties of the eigenvalues to compute exact results
about the spectrum. The surprising result of this method is
that H∗ is gapped, with very long but finite correlation length
ξ = 190 878 lattice spacings. Such a result is not incompati-
ble with the numerics, which would not distinguish between
such approximate conformal symmetry and a truly continuous
transition.

The most natural conclusion would seem to be that this
DQCP is extremely weakly first order, an intriguing result
in light of the status of the SU(2)-symmetric DQCP in two
dimensions, as discussed in the introduction. As is true there,
the most generic mechanism for generating a hierarchy is
through RG walking, and exact results for H∗ allow us to
write an explicit form for the walking parameter, similar to
the case for the self-dual Potts model but with different func-
tional dependence on the continuous tunable parameter; see
Eqs. (93) and (94). Based on this understanding, we interpret
our numerical results as characterizing (the real parts of) the
conformal data of the complex CFTs in the walking picture,
and we use an ED method to identify some of the light primary
fields of these theories.

These developments suggest that the general picture of
walking of RG flows is the appropriate way to think about this
family of DQCP with Zq × Zq symmetry. In Refs. [28,29]
the algebraic equivalence of the Potts model to the six-vertex
model plays a crucial role, by allowing through the Coulomb
gas formalism many explicit calculations which are then an-
alytically continued into the weakly first-order regime. The
operator algebra of the presented Zq × Zq DQCP model is
a generalization of the Temperley-Lieb algebra which to our
knowledge has not yet demonstrated such equivalences. A
representation theory study of this generalized algebra would
be useful in determining whether there are other equivalent
models which can illuminate the physics, possibly including a
setting for analytic calculations in the ground state.

There is also the interesting possibility of qualitatively
different walking behaviors arising from the coincidence of
the separable and nonseparable integrable NIS models at the
marginal q = 2 point. If these multiple sets of complex CFT
fixed points indeed exist in the same parameter space, then
for small values of (q − 2) one can imagine a rich structure
for walking RG flows based on their interactions. Such a
scenario would manifest in crossovers observable in the as-
sociated spin chains, and despite the very long length scales
involved it is actually possible that quantum Monte Carlo
simulations of the explicitly sign-problem-free Hamiltonian
in Eq. (15) could probe this behavior, along the lines of
Refs. [74,75]. In addition, quantum Monte Carlo studies could
be used to test the conjecture about the precise location of
the DQCP for q > 3, and they could also be used to further
examine emergence of the U(1)2 symmetry at intermedi-
ate scales in the original model Eq. (3) with only Z3 × Z3

symmetry.
Finally, it is not clear what role duality plays in this story.

It seems likely that the successes of duality approaches in
developing descriptions of the DQCP transition in the Z2 ×
Z2-symmetric model [33] are special to that model. However,
there are some hints in the Z3 × Z3 model: chiefly, the close
numerical correspondence of the zFM and VBS order parame-

ters is not generally expected and may indicate that the DQCP
supports an emergent symmetry or self-dual description. In
addition, the lack of an intervening featureless phase without
the help of an anomalous realization of the symmetry on the
lattice could be attributable to an emergent anomaly resulting
from enhanced symmetry at the transition, which would pre-
sumably achieve a “unification” of the two order parameters.
It is our hope that further work on the type of 1D model we
have studied here will lead to a more complete story of the
behaviors of such fixed points in RG space, as well as to a
better understanding of how each of these various components
contributes to the DQCP phenomenology.
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APPENDIX A: REVIEW OF SU(3) AND
SU(3)-SYMMETRIC HAMILTONIANS

1. Basics of SU(3)

The Lie algebra su(3) has eight generators t a, a =
1, . . . , 8, which in the defining representation 3 are repre-
sented by the Gell-Mann matrices λa. We use the alternative
convention T a = λa/2, so the Lie algebra structure constants
fabc are determined by [T a, T b] = i fabcT c. The T a are trace-
less Hermitian matrices, normalized according to tr(T aT b) =
1
2δab. In the conjugate representation 3 the generators are
represented by T

a = −(T a)∗.
For SU(q), q � 2, one can write a quadratic Casimir

invariant,

C2 =
∑

a

tata. (A1)

By construction C2 commutes with all of the t a. Thus, by
Schur’s lemma, in an irreducible representation C2 is propor-
tional to the identity. This operator is familiar from SU(2),
where C2 = S2 and the eigenvalue in an irreducible represen-
tation of spin l is l (l + 1). More generally, in a q-dimensional
representation of SU(q), C2 = q2−1

2q .

2. SU(3)-invariant Hamiltonians

In the 1D DQCP with Z2 × Z2 symmetry studied pre-
viously [33,34], a spin Hamiltonian was considered which
connects to the solvable Majumdar-Ghosh model. This en-
sured the appearance of a phase with VBS order. That
construction generalizes straightforwardly to SU(q). The
Majumdar-Ghosh Hamiltonian is the q = 2 case of

HCas =
∑

j

[C2; j, j+1, j+2 − (C2; j + C2; j+1 + C2; j+2)], (A2)
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where C2; j, j+1, j+2 is C2 acting on the tensor product space of
three neighboring sites, and C2; j is simply a constant on each
site individually, as sites host irreducible representations of
SU(q). For q = 2, the fact that the ground states are translation
symmetry-breaking products of singlets is a consequence of
the irrep decomposition 2 ⊗ 2 = 1 ⊕ 3. The appearance of the
singlet 1 is particular to n = 2; in general, enforcing SU(q)
invariance requires as many single-particle orbitals as internal
states.

For q = 3, Eq. (A2) can be used by treating the sites on
one sublattice as hosting the conjugate representation 3. Then
one decomposes 3 ⊗ 3 = 1 ⊕ 8, so neighboring sites favor an
SU(3) singlet. (A similar statement is true for any q, and
in fact because 2 = 2 as irreps of SU(2), that case is also
included.) The analysis then follows in the same way as for
q = 2.

A local term of HCas is

h j, j+1, j+2 = T
a
jT

a
j+1 + T a

j+1T
a
j+2 + T a

j T a
j+2, (A3)

independently of the parity of j, as T
a
jT

a
j+1 = T a

j T
a
j+1. The

action of each of these terms can be understood through the
action of C2 on tensor products of representations. Consider

C2(3 ⊗ 3) =
∑

a

(
T a

j + T
a
j+1

)2 = 2T
a
jT

a
j+1 + 8

3
, (A4)

C2(3 ⊗ 3) =
∑

a

(
T a

j + T a
j+1

)2 = 2T a
j T a

j+1 + 8

3
. (A5)

In Eq. (A4) we see that T
a
jT

a
j+1 distinguishes the singlet and

the eight-dimensional adjoint representations on sites j, j + 1.
A rank-one projector onto the singlet subspace can thus be
written using this term. Explicitly,

T
a
jT

a
j+1 − 1

6 = − 3
2 (�s) j, j+1 = − 3

2 |ψs〉〈ψs| j, j+1, (A6)

where |ψs〉 j, j+1 = 1√
3
(|00〉 j, j+1 + |11〉 j, j+1 + |22〉 j, j+1).

Similarly, 3 ⊗ 3 = 3 ⊕ 6, where 3 is the antisymmetric
subspace and 6 the symmetric subspace. Thus, Eq. (A5) tells
us that

T a
j T a

j+1 + 2
3 = (�∨2 ) j, j+1, (A7)

which is the rank-6 projector onto the symmetric subspace
of sites j, j + 1. (Similar statements apply for general q.)
As a result, HCas admits the same arguments that show the
ground-state manifold of the Majumdar-Ghosh Hamiltonian
is spanned by tensor products of SU(2) singlet dimers, with
instead twofold degenerate ground states spanned by products
of SU(q) singlet dimers.

Conveniently, there is a simpler Hamiltonian than Eq. (A2)
for q = 3 which exhibits VBS order. The following nearest-
neighbor Hamiltonian was known to Barber and Batchelor
[76] and Affleck [40]:

HbQ =
∑

j

T
a
jT

a
j+1. (A8)

This Hamiltonian still respects the full SU(3), and turns out
to map exactly to the pure biquadratic SU(2) spin-1 model.
It is also integrable. Through its Temperley–Lieb operator
algebra this Hamiltonian is related to the XXZ spin-1/2 chain
for a particular anisotropy 
 = −3/2 and to the nine-state

self-dual Potts model [76,77]. The latter equivalence can be
seen more directly via a two-step duality procedure which we
present in Appendix D. Eq. (A8) turns out to be gapped, with
twofold degenerate ground-state and finite dimerization order
parameter. Although the ground states are finitely correlated
and not a Majumdar-Ghosh-like separable product of dimers,
because the ground states respect the SU(3) symmetry we
surmise that this Hamiltonian lies in the same phase as HCas.
Thus, we consider the local term in HbQ to be one favoring
a lattice symmetry breaking but internally symmetric VBS
phase.

APPENDIX B: MPS FOR FULLY SYMMETRIC PHASE
AND PROXIMATE MAGNETIC PHASE

1. SPT phase with Zz
3 × Zx

3 symmetry

A gapped fully symmetric ground state is allowed for
Eq. (3), and one generically expects to encounter this phase as
well. In fact, this phase has SPT order, since the entanglement
spectrum and boundary states exhibit degeneracy due to the
projective representation. A simple picture of the phase can
be written using an MPS wave function of bond dimension
three:

|ψsymm〉 =
∑
{α}

Tr [ · · · A|α j 〉A|α j+1〉 · · · ] |{α}〉. (B1)

We choose local tensors to be translationally invariant, so
T1|ψsymm〉 = |ψsymm〉 automatically. We also require A|α〉 =
(A|α〉)�, so that the state is symmetric under inversion.

In order to write a state that is invariant under the action of
an onsite symmetry generator g, we require that local tensors
satisfy the following symmetry condition:

A|α j 〉 = Wg, jA
|α j〉
g W −1

g, j+1, (B2)

where A
|α j〉
g = g ◦ A|α j 〉 and Wg, j is an invertible matrix imple-

menting a gauge transformation acting on the left virtual leg of
the local tensor at site j. The set of {Wg, j}g form a projective
representation of the symmetry group generated by {g}. We
choose the virtual legs to index a three-dimensional Hilbert
space with basis {|0〉, |1〉, |2〉}. The gauge transformations are
represented by

Wg, j = g j for g = gz, gx, C ; W�, j = 1. (B3)

The virtual leg (2k − 1, 2k) hosts the projective representation
[1], while the virtual leg (2k, 2k + 1) carries [2]. Thus, for
each tensor one has [l] + [p] = [r] mod 3, where [l] ([r])
labels the projective representation on the left (right) virtual
leg, and [p] labels that of the physical leg.

The most general matrices consistent with invariance are

A|0〉 =
⎡⎣γ 0 0

0 0 δ

0 δ 0

⎤⎦, A|1〉 =
⎡⎣0 0 δ

0 γ 0
δ 0 0

⎤⎦,

A|2〉 =
⎡⎣0 δ 0

δ 0 0
0 0 γ

⎤⎦, (B4)

where γ , δ ∈ R. At the special point γ �= 0, δ = 0 the wave
function reduces to the ground state of the zFM phase. Sim-

155143-18



ONE-DIMENSIONAL MODEL FOR DECONFINED … PHYSICAL REVIEW B 103, 155143 (2021)

ilarly, at another special point γ = δ �= 0 the wave function
becomes the ground state of the xFM phase. For other param-
eter values this MPS represents an SPT state.

2. SPT phase with U(1) × U(1) symmetry

We now consider the case where Zz
3 is enlarged to

U(1) × U(1). A basis for the legs (physical or virtual) can
be labeled by particle numbers |n1, n2〉, which are defined in
Eqs. (16) and (17). For the D = 3 MPS we considered, the
physical leg at site j and virtual leg ( j − 1, j) share the same
basis, defined to be

{|0, 0〉 ≡ |0〉, |(−1) j, 0〉 ≡ |1〉, |0, (−1) j〉 ≡ |2〉}. (B5)

The generic form for a local tensor at site j can be represented
by a quantum state:

Â j =
∑

(Aj )
n1n2
l1l2;r1r2

|n1, n2〉 j ⊗ |l1, l2〉( j−1, j)

⊗ 〈r1, r2|( j, j+1). (B6)

Translation T1 acts as particle-hole symmetry on
U(1) × U(1), which relates tensors at even sites Âe and
those at odd sites Âo via

(Ao)n1n2
l1l2;r1r2

= (Ae)−n1,−n2
−l1,−l2;−r1,−r2

. (B7)

For a U(1) × U(1) symmetric MPS, Â j in Eq. (B6) should
satisfy the particle number conservation condition

na + la = qa + ra, where a = 1, 2. (B8)

Here qa is a site-dependent constant. On a periodic chain,
this state has definite total particle numbers Na ≡∑ j na, j =∑

j qa, j , a = 1, 2.
By construction, a generic MPS in Eq. (B4) breaks

U(1) × U(1) symmetry to Zz
3. However, U(1) × U(1) symme-

try can be restored by setting γ = 0. Indeed, in this case the
local tensors can be written

Âe = |0, 0〉 ⊗ (|1, 0〉〈0,−1| + |0, 1〉〈−1, 0|)+ |1, 0〉 ⊗ (|0, 1〉〈0, 0| + |0, 0〉〈0,−1|)+ |0, 1〉 ⊗ (|0, 0〉〈−1, 0| + |1, 0〉〈0, 0|),
(B9)

Âo = |0, 0〉 ⊗ (| − 1, 0〉〈0, 1| + |0,−1〉〈1, 0|) + | − 1, 0〉 ⊗ (|0,−1〉〈0, 0| + |0, 0〉〈0, 1|) + |0,−1〉
⊗ (|0, 0〉〈1, 0| + | − 1, 0〉〈0, 0|), (B10)

where we have dropped the overall amplitude δ. One can
check that these tensors indeed satisfy Eq. (B8) with qa = 1
(−1) for even (odd) sites. The other symmetries of the model,
I, �, gx, and C, are also preserved by this MPS.

However, for the purpose of obtaining an MPS beyond the
D = 3 case we can work out the symmetry constraints on
Aj . Constraints from T1 and U(1) × U(1) are already listed in
Eqs. (B7) and (B8). Time reversal � simply requires all tensor
entries to be real numbers.

To be consistent with U(1) × U(1) symmetry in Eq. (B8),
inversion I acts with an additional particle-hole symmetry on
the virtual legs, imposing the following constraint:

(Aj )
n1n2
l1l2;r1r2

= (Aj )
n1n2
−r1,−r2;−l1,−l2

. (B11)

C interchanges particles between the two species, thus

(Aj )
n1n2
l1l2;r1r2

= (Aj )
n2n1
l2l1;r2r1

. (B12)

On the physical leg at site j, gx maps |n1, n2〉 j to
|(−1) j − n1 − n2, n1〉 j . On the left virtual leg ( j − 1, j), the
action of gx is the same:

gx : |l1, l2〉( j−1, j) → |(−1) j − l1 − l2, l1〉( j−1, j), (B13)

while on the right legs the fact that these are contracted with
the left legs on the next tensor fixes the transformation to be

gx : 〈r1, r2|( j, j+1) → 〈(−1) j+1 − r1 − r2, r1|( j, j+1).

Thus, gx imposes the constraint

(Aj )
n1n2
l1l2;r1,r2

= (Aj )
(−1) j−n1−n2,n1

(−1) j−l1−l2,l1;(−1) j+1−r1−r2,r1
(B14)

In summary, to construct a fully symmetric MPS with site
tensor Â j defined in Eq. (B6), tensor entries (Aj )

n1n2
l1l2;r1r2

should be real numbers satisfying the symmetry conditions in
Eqs. ((B7), (B8), (B11), (B12), (B14)).

3. Bond-centered magnetic order phase

In this part, we present an MPS construction for the bond-
centered magnetic order phase, which is the intermediate
phase smoothly connecting the zFM and SPT phases in the
classical phase diagram, as shown in Fig. 5 in Sec. IV B 2.
Although it is a spontaneously symmetry-breaking phase with
sixfold ground-state degeneracy, its ground states cannot be
represented by direct product states.

We start from the MPS representation of the SPT phase
with U(1) × U(1) symmetry. This MPS is constructed from a
site tensor A in Eq. (B4) with γ = 0. We can represent A as a
quantum state as

Â =
2∑

a=0

|a〉 ⊗ (|a − 1〉〈a + 1| + |a + 1〉〈a − 1|). (B15)

Let us insert additional bond tensors Bj, j+1 sitting between
sites j and j + 1. For the SPT phase, Bj, j+1 is the identity
matrix, whose quantum state representation is

B̂ j, j+1 =
2∑

a=0

|a〉〈a|. (B16)

We now break some symmetry by introducing a parameter
κ into the bond tensors:

B̂2k−1,2k = (1 − κ )|0〉〈0| + (1 − κ )|1〉〈1| + (1 + κ )|2〉〈2|,
B̂2k,2k+1 = (1 − κ )|0〉〈0| + (1 + κ )|1〉〈1| + (1 − κ )|2〉〈2|,

(B17)
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where 0 � κ � 1. We leave the site tensors unchanged. When
κ = 0, we recover the SPT state. When κ = 1, B̂2k−1,2k =
2|2〉〈2| and B̂2k,2k+1 = 2|1〉〈1|, and by contracting all virtual
legs, we get a zFM state

⊗
j |0〉 j (up to a constant). Thus, the

above state can indeed interpolate between the SPT and zFM
phases.

We now analyze symmetry properties for the state with
0 < κ < 1, based on the symmetry actions discussed in
Appendix B 2. It is straightforward to see that this state pre-
serves U(1) × U(1) symmetry and breaks gx, C, T1, and I
symmetries. In fact, T1, I, and C act in the same way on this
MPS, producing a state with even and odd bond tensors in
Eq. (B17) interchanged:

B̂2k−1,2k = (1 − κ )|0〉〈0| + (1 + κ )|1〉〈1| + (1 − κ )|2〉〈2|,
B̂2k,2k+1 = (1 − κ )|0〉〈0| + (1 − κ )|1〉〈1| + (1 + κ )|2〉〈2|,

(B18)

We note that this pair of MPS share the same symmetry prop-
erties as states labeled by (π/6 ± υ, π/6 ∓ υ ) in Eq. (76).
The MPS representation of the other two pairs of states in
Eq. (76) can be generated by the action of gx. Note that site
tensors are invariant under gx symmetry, and are given by
Eq. (B15). Bond tensors for the MPS states corresponding to
(π/6 ∓ υ,−π/3) are

B̂2k−1,2k = (1 ± κ )|0〉〈0| + (1 − κ )|1〉〈1| + (1 ∓ κ )|2〉〈2|,
B̂2k,2k+1 = (1 ∓ κ )|0〉〈0| + (1 − κ )|1〉〈1| + (1 ± κ )|2〉〈2|,

(B19)

and the bond tensors for states corresponding to
(−π/3, π/6 ± υ ) are

B̂2k−1,2k = (1 ∓ κ )|0〉〈0| + (1 ± κ )|1〉〈1| + (1 − κ )|2〉〈2|,
B̂2k,2k+1 = (1 ± κ )|0〉〈0| + (1 ∓ κ )|1〉〈1| + (1 − κ )|2〉〈2|.

(B20)

APPENDIX C: DOMAIN WALL DUALITY MAPPING WITH
Z3 GAUGE FIELD

In this section we present the more precisely defined ver-
sion of the duality mapping to domain walls on a periodic
chain, which appear as matter fields on the dual lattice coupled
to a Z3 gauge field. The purpose of the gauge field is essen-
tially for bookkeeping, as it does not have its own dynamics.
Instead, it will account for the differing global properties of
the phases, the most important example in our case being
ground-state degeneracy [33].

In addition to the domain wall variables X̃ j+1/2, Z̃ j+1/2

which live on the sites of the dual lattice, we place gauge
degrees of freedom ρx

j , ρz
j which form a [1] projective

representation of Z3 × Z3 on the links of the dual lattice
(equivalently, on the sites of the primal lattice). The duality
mapping is then given by

X̃ j+1/2 = Z†
j Z j+1, (C1)

Z̃†
j−1/2 ρ

z†
j Z̃ j+1/2 = Xj, (C2)

ρx
j = Zj . (C3)

The physical Hilbert space satisfies the gauge constraint

X̃ j+1/2 = ρ
x†
j ρx

j+1. (C4)

The proof of the exact equivalence is similar to the Ising case
in Ref. [33].

The Hamiltonian Eq. (3) translates to

H̃ = −
∑

j

[
(JxZ̃†

j−1/2ρ
z†
j ρ

z†
j+1Z̃ j+3/2 + JzX̃ j+1/2 + H.c.)

+ K (1 + Z̃†
j−1/2ρ

z†
j ρ

z†
j+1Z̃ j+3/2 + H.c.)

× (1 + X̃ j+1/2 + H.c.)
]
. (C5)

Using the dictionary above, and requiring equality to hold
only in the physical sector, we can also rewrite the symmetry
generators as

gx =
∏

j

ρ
z†
j , gz =

∏
k

X̃2k+1/2 =
∏

k

ρ
x†
2k ρ

x
2k+1, (C6)

which are exact on a periodic system. One obtains the duality
mapping presented in Sec. IV A by fixing the gauge ρz

j = 1.
The action of the symmetries on the gauge variables is

gx : (ρx
j , ρ

z
j ) �→ (

ω−1ρx
j , ρ

z
j

)
, (C7)

gz :
(
ρx

j , ρ
z
j

) �→ (
ρx

j , ω
1−2p j ρz

j

)
, (C8)

� :
(
ρx

j , ρ
z
j

) �→ (
ρ

x†
j , ρz

j

)
, (C9)

C :
(
ρx

j , ρ
z
j

) �→ (
ρ

x†
j , ρ

z†
j

)
, (C10)

T1 :
(
ρx

j , ρ
z
j

) �→ (
ρx

j+1, ρ
z
j+1

)
, (C11)

I :
(
ρx

j , ρ
z
j

) �→ (
ρx

− j, ρ
z
− j

)
. (C12)

Importantly, gx acts nontrivially in this formulation. As in the
main text, we designate the “even” and “odd” sublattices of
the dual lattice as locations 2k + 1/2 and 2k + 3/2, k ∈ Z,
respectively.

We refer to this theory as having a Zρ
3 gauge symme-

try. Briefly, the pure gauge theory with physical constraint
ρ

x†
j ρx

j+1 = 1 comprises three sectors, specified by ρx
j = ωr for

r = 0, 1, 2. These sectors are related by the symmetry gener-
ator

∏
j ρ

z†
j = gx, which is a symmetry of the Hamiltonian.

Thus the appropriate sectors of the gauge symmetry are the
linear combinations respecting gx, namely with definite flux∏

j ρ
z
j taking values 1, ω, or ω2. The instanton operator adding

Zρ
3 flux is ρx

j , which indeed transforms nontrivially under gx.

1. Symmetry-breaking phases from the dual perspective

We can now revisit the phases described in Sec. IV A.
Consider first the case in which domain walls are gapped, so
the low-energy properties are determined only by the gauge
sector. In this case we have schematically 〈Z̃ j+1/2〉 = 0; this
pattern is energetically favored in our model for Jz dominant.
Because the instanton operator is not allowed in the Hamilto-
nian the three gauge flux sectors do not mix. From a formal
perspective where we integrate out the gapped matter field Z̃ ,
the three states with different flux

∏
j ρ

z
j can obtain slightly

different energies but the energy splitting is exponentially
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small in the chain length. This corresponds to spontaneously
breaking gx and accounts for the threefold degeneracy of the
ground state in the zFM phase.

The domain wall condensate having schematically
〈Z̃odd〉 �= 0, 〈Z̃even〉 �= 0 leads to a Higgs phase of the gauge
field. Minimizing the energy of the Jx terms, it must be that∏

j ρ
z
j = 1; i.e., a unique gauge flux is selected and hence

the gx symmetry is respected. Solving for classical ground
states, there are three gauge-inequivalent solutions with this
flux, with representative states ρz

j = 1, Z̃odd = 1, Z̃even = ωp

everywhere on the chain, with p = 0,±1. These solutions are
distinguished by gauge-invariant observables Z̃†

j−1/2ρ
z†
j Z̃ j+1/2,

which are the same as the original Xj variables, and the
resulting three different patterns in these correspond to the
three xFM ground states in Eq. (13). We can thus see from
the matter fields that gz is broken but spatial symmetries
are respected. All of these cases, which are favored at large
values of Jx, make up the xFM phase with threefold de-
generacy. That is to say, in the absence of the gauge field
we would have separate Z3 symmetries associated with the
“even” and “odd” sublattices of the dual lattice. Simultane-
ous condensation 〈Z̃odd〉 �= 0, 〈Z̃even〉 �= 0 would then produce
nine ground states. However, the dual gauge field reduces the
true number of ground states down to three via the Higgs
mechanism.

We can also consider a condensate 〈Z̃odd〉 �= 0 and
〈Z̃even〉 = 0, or vice versa. As was the case in the xFM phase,
the Higgs mechanism here restores the gx symmetry by se-
lecting a unique flux sector

∏
j ρ

z
j = 1, but in contrast to the

previous case, gz and other internal symmetries are respected
as well. (Schematically, the naive three-fold degeneracy from
condensing Z̃ on one sublattice is reduced down to one by
the Higgs mechanism.) The state does break a Z2 translation
symmetry, however, and therefore is identified as the VBS
phase. It is not evident from this analysis that this phase
is energetically favored at large K in our model, but ample
evidence of this fact is obtained from other sources.

2. SPT phase from the dual perspective

To obtain a fully symmetric phase, we condense a bound
state of a domain wall on the odd sublattice and a domain wall
on the even sublattice: schematically, 〈Z̃oddZ̃even〉 �= 0 while
〈Z̃odd〉 = 〈Z̃even〉 = 0. The gx symmetry is restored because
this bound state carries unit dual gauge charge: Indeed, keep-
ing track of only the dual gauge charge, we have schematically
Z̃2 ∼ Z̃−1 (note that it is crucial that we have ZN gauge
field with odd N). Hence, the Z̃oddZ̃even condensate completely
Higgses out the dual gauge field ρ, which corresponds to the
presence of the gx symmetry. Since translation interchanges
Z̃odd and Z̃even, this condensate clearly preserves this sym-
metry. Under gz action, Z̃oddZ̃even obtains a phase factor ω2;
however, this is related to the fact that this schematic object
is not gauge invariant and the phase factor can be removed
by a gauge transformation. Any gauge-invariant local operator
with nonzero expectation value will respect the gz symmetry.
Thus, we obtain a fully symmetric phase.

Another perspective on this condensate is that we condense
bound states of a domain wall field in the gx-symmetry-
breaking order (i.e., Z̃ field) and a gz charge field (i.e., X

field). Indeed, Z̃ j−1/2Z̃ j+1/2 = Z̃2
j−1/2ρ

z
jXj ∼ Z̃†

j−1/2Xj (fixing
the gauge ρz

j = 1). We expect that condensation of bound
states of domain walls and charges leads to a nontrivial SPT
phase.

APPENDIX D: DUALITY OF q-STATE SEPARABLE
MODEL AND q2-STATE POTTS MODEL AND

GENERALIZATION TO NONSEPARABLE MODEL

In this Appendix, we perform a two-step duality that con-
nects the q-state separable integrable model and QPotts =
q2-state Potts model. We will also follow the nonseparable
integrable model under the same mapping. The treatment here
is in the Hamiltonian language and can be carried out for any
integer q.

We begin with a q-state generalization of the U(1)2-
symmetric q = 3 model from the main text. Consider the
Hamiltonian

H = −
∑

j

[
Jz

q−1∑
�=0

(Z†
j Z j+1)�

+ K
q−1∑
�=0

(XjXj+1)�
q−1∑
�=0

(Z†
j Z j+1)�

]
. (D1)

For q = 3 this reduces to the model in the main text, up to an
additive constant. For general q the terms in the Hamiltonian
have a simple form in bra-ket notation [see also Eq. (15)]:

q−1∑
�=0

(Z†
j Z j+1)� = q

∑
α

|α, α〉〈α, α| j, j+1,

q−1∑
�=0

(XjXj+1)�
q−1∑
�=0

(Z†
j Z j+1)� = q

∑
α,β

|β, β〉〈α, α| j, j+1,

from which it is easy to see that the model has continuous
U(1)q−1 symmetry as well as Sq permutation symmetry. It has
a trivial solvable point Jz > 0, K = 0 inside the zFM phase as
well as two nontrivial integrable points: Jz = 0, K > 0 which
is inside the VBS phase, and Jz = K (q − 2) > 0 which we
propose is at the transition between the zFM and VBS phases.

We first perform a formal duality transformation which is
a straightforward q-state generalization of the one in the main
text:

Xj = Z̃†
j−1/2Z̃ j+1/2, (D2)

Z†
j Z j+1 = X̃ j+1/2. (D3)

(For simplicity here and below, we do not exhibit dual gauge
fields which would be necessary to account for global aspects
in a periodic chain.) The dual Hamiltonian reads

H̃ = −
∑

j

[
Jz

q−1∑
�=0

(X̃ j+1/2)�

+ K
q−1∑
�=0

(Z̃†
j−1/2Z̃ j+3/2)�

q−1∑
�=0

(X̃ j+1/2)�
]
. (D4)

Similarly to the main text, this can be viewed as two individ-
ually Potts-symmetric q-state systems residing on the “even”
and “odd” sublattices of the dual lattice (locations 2k + 1/2
and 2k + 3/2, k ∈ Z, respectively). The two systems have
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energy-energy coupling between them. In these variables, the
zFM phase occurs when both Z̃2k+1/2 and Z̃2k+3/2 are gapped.
On the other hand, the VBS phase occurs when only one

species orders but not the other, which breaks the translation
symmetry.

Let us now maintain the even sublattice variables (Z̃2k+1/2, X̃2k+1/2) and perform the above duality transformation on the odd
sublattice variables (Z̃2k+3/2, X̃2k+3/2), treating this system as a 1D chain:

X̃2k+3/2 = Z̃
†
2k+1/2Z̃2k+5/2, (D5)

Z̃†
2k−1/2Z̃2k+3/2 = X̃ 2k+1/2. (D6)

Note that the variables dual to (Z̃2k+3/2, X̃2k+3/2) reside at the same locations as the even sublattice variables (Z̃2k+1/2, X̃2k+1/2),
as indicated by the location indices of (Z̃2k+1/2, X̃ 2k+1/2). After this transformation, the Hamiltonian reads:

H̃ = −
∑
k∈Z

[
Jz

q−1∑
�=0

(X̃2k+1/2)� + Jz

q−1∑
�=0

(Z̃
†
2k+1/2Z̃2k+5/2)�

+ K
q−1∑
�=0

(X̃ 2k+1/2)�
q−1∑
�=0

(X̃2k+1/2)� + K
q−1∑
�=0

(Z̃†
2k+1/2Z̃2k+5/2)�

q−1∑
�=0

(Z̃
†
2k+1/2Z̃2k+5/2)�

]
. (D7)

In these variables, the zFM phase corresponds to gapped Z̃2k+1/2 variables and condensed Z̃2k+1/2 variables. On the other hand,
the VBS phase corresponds to either both Z̃2k+1/2 and Z̃2k+1/2 being gapped or both condensed.

We can combine the tilded and double-tilded variables on each site 2k + 1/2 to form a q2-state variable, |A〉2k+1/2 ≡
|̃α〉2k+1/2 ⊗ |̃α〉2k+1/2, α̃, α̃ = 1, . . . , q. The K terms become precisely the on-site and intersite quantum Potts terms for these
QPotts = q2-state variables:

q−1∑
�=0

(X̃2k+1/2)�
q−1∑
�=0

(X̃ 2k+1/2)� =
∑
α̃,̃β

|̃β〉〈̃α|2k+1/2 ⊗
∑
α̃,̃β

|̃β〉〈̃α|2k+1/2 =
∑
A,B

|B〉〈A|2k+1/2 ≡
q2−1∑
�=0

(X2k+1/2)�, (D8)

q−1∑
�=0

(Z̃†
2k+1/2Z̃2k+5/2)�

q−1∑
�=0

(Z̃
†
2k+1/2Z̃2k+5/2)� = q

∑
α̃

|̃α, α̃〉〈̃α, α̃|2k+1/2,2k+5/2 ⊗ q
∑

α̃

|̃α, α̃〉〈̃α, α̃|2k+1/2,2k+5/2

= q2
∑

A

|A, A〉〈A, A|2k+1/2,2k+5/2 ≡
q2−1∑
�=0

(Z†
2k+1/2Z2k+5/2)�, (D9)

where we have introduced standard operators Z2k+1/2,X2k+1/2

in the QPotts = q2-state Hilbert space on each site 2k + 1/2.
Thus, in the absence of the Jz term we indeed obtain the
self-dual q2-state Potts model on the “even” sublattice of the
dual lattice. This type of equivalence of the integrable model
H[Jx = 0, Jz = 0, K] to the self-dual q2-state Potts model
has been well known at least since Refs. [40,76] where it
was argued by comparing the Temperley–Lieb operator alge-
bras in the two models. This is the quantum version of the
equivalence between the classical separable integrable NIS
and classical q2-state Potts models mentioned in Sec. V. By
examining the origins of the two K terms in Eq. (D7), it is
also easy to see that staggering bond couplings in the original
model corresponds to moving off self-duality in the Potts
model.

The derivation here is of some interest in that it clearly
demonstrates a nonlocal relation between the two models and
also allows one to formulate the precise relation on periodic
chains by carefully including the gauge fields appearing in the
dualities to keep track of the global aspects, which for the sake
of simplicity we did not include. Of particular interest to us
is that we can also write the Jz terms, which from Eq. (D7)

are
q−1∑
�=0

(X̃2k+1/2)� =
q−1∑
�=0

(X2k+1/2)�·q, (D10)

q−1∑
�=0

(Z̃
†
2k+1/2Z̃2k+5/2)� =

q−1∑
�=0

(Z†
2k+1/2Z2k+5/2)�·q. (D11)

Note that the powers of operators summed on the right hand
side are � · q, which appear in the convention of the following
ordering of the q2 states |A〉 = |̃α〉 ⊗ |̃α〉:

A = (̃α − 1)q + α̃, (D12)

α̃, α̃ = 1, . . . , q; A = 1, . . . , q2. We can now see that the q2-
state model remains self-dual also in the presence of the Jz

term, which, however, breaks the formal symmetry in these
variables from Sq2 down to Sq × Sq. Unfortunately, this for-
mulation does not appear to inform us why Jz = K (q − 2)
places the model precisely at the transition between the zFM
and VBS phases. In the q2-state Potts variables Z2k+1/2, the
VBS phase corresponds to the first-order coexistence of the
standard disordered and ordered Potts phases, while the zFM
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phase corresponds to a specific partial order. In this language,
Jz = K (q − 2) appears to correspond to a special multicritical

point, and we are hopeful that this information may be useful
for future elucidation of this transition.
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