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Type-II fractons from coupled spin chains and layers
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We describe a construction of topological orders from coupled lower-dimensional symmetry-protected
topological orders, which is closely related to gauging a subsystem symmetry. Our construction yields both
conventional topological orders and exotic fracton topological orders of type-I and type-II. In particular, we find
a coupled spin-chain construction of Haah’s cubic code, and a coupled-layer construction of Yoshida’s fractal
spin liquids.
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Fracton topological order is an exotic type of quantum
order characterized by topological charges with restricted
mobility due to superselection rules. To date, a wide range
of 3D exactly solved models exhibiting fracton order have
been discovered [1–21]. The limited mobility of topological
charges in these models has lead to fracton topological codes
with unique advantages over conventional topological codes,
whose charges are fully mobile [22–24]. First and foremost
are type-II fracton codes, which support only immobile topo-
logical charges, as opposed to type-I fracton codes, which
support charges with less severe mobility restrictions. It has
been shown that the slow thermal dynamics of topological
charges in Haah’s cubic code, the canonical type-II model,
lead to a partially self-correcting quantum memory [23].

The implementation of quantum error correction is a vital
step that must be overcome to engineer scalable quantum
computers. The leading approaches to quantum error cor-
rection are dominated by conventional topological codes.
Looking forward, fracton topological codes provide a bevy
of options, some promising better scaling of encoded qubits,
code distance, and memory time with system size. However,
even the simplest class of fracton models, those described
by commuting Pauli stabilizer Hamiltonians [25], require
high-degree interactions. This poses a significant barrier to
any potential experimental realizations of fracton phases. To
address this issue, several constructions of fracton models
from coupled lower-dimensional layers [19,20,26–33] or spin
chains [34,35] have been found, some with much lower-
degree interactions.

In this paper we introduce a construction of fracton sta-
bilizer models from coupled cluster state [36] layers, and
spin chains, which are symmetry-protected topological (SPT)
orders [37]. In particular, we describe a construction of Haah’s
cubic code [38] from coupled spin chains, featuring at most
four-body interactions. To the best of our knowledge [39]
this is the first coupled spin-chain construction of a model
that has been rigorously shown to be type II. We go on to
explain how our coupled cluster state construction is related
to the known construction of fracton models from gauging
subsystem symmetries [8,40–42]. Our construction can be

implemented by entangling spin systems, arranged in chains
or layers, with auxiliary quantum degrees of freedom that are
then destructively measured.

We open Sec. I with several examples obtained via the
general method explained in Secs. II and III, then discuss an
implementation of the construction in a modular architecture
in Sec. IV. Further examples are presented in the Appendix.

I. EXAMPLES

Here we lead with examples, as they can be presented
before explaining the general construction. First we describe
a coupled cluster chain construction of the 2D toric code
[43] and Haah’s cubic code. We then describe a coupled
cluster layer construction of Yoshida’s type-II Z3 fractal spin
liquid (FSL), which generalizes to all FSL models [5] (see
the Appendix for this and further examples). In the sections
that follow we explain how these examples were found as
instances of our general construction.

The examples in this paper make use of a description of
Pauli stabilizer Hamiltonians in terms of a set of local gen-
erators {hi}i for the stabilizer group 〈{hi}〉. The commuting
projector Hamiltonian whose ground space is the stabilizer
codespace is given by the sum of generators

H = −
∑

i

hi . (1)

The 2D toric code Hamiltonian [43], governing qubits on
the edges of a square lattice, is described by translates of the
local stabilizer generators

(2)

where X and Z are Pauli matrices. This Hamiltonian can
be constructed by coupling 1D cluster states [36] along the
horizontal and vertical directions. The stabilizer generators for
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these cluster states are given by translates of

where each vertex hosts two qubits, and each edge hosts a
single qubit. We have utilized compact notation for operators
on the multi-qubit vertices, e.g., XZ denotes X ⊗ Z . The first
and third terms in the above equation act on vertex qubits and
a pair of adjacent edge qubits, while the second and fourth
terms act on an horizontal or vertical edge qubit and a pair of
adjacent vertex qubits. In the limit of a strong −ZZ field on all
vertices we recover the vertex-edge cluster state on the square
lattice. Similarly, in the limit of a strong −(XX + ZZ ) field on
all vertices we find the 2D toric code Hamiltonian in Eq. (2)
at leading order in perturbation theory.

Haah’s cubic code is described by translates of the follow-
ing local Hamiltonian terms, or stabilizer generators,

(3)

Surprisingly, we have found that this model can be obtained
by coupling cluster chains stacked along three different direc-
tions. The Hamiltonians for these cluster chains are given by
translates of the following local terms

where each vertex and cube center now hosts four qubits. The
dotted lines indicate the dual lattice, whose vertices lie on the
cube centers of the original lattice (solid lines), and vice versa.
Each pair of terms on a line in the equation above generates
a cluster chain that zigzags between sites of the lattice and
dual lattice along the ŷ or ẑ ± x̂ direction. In the limit of a
strong −(ZZII + IIZZ ) field on the vertices and −(ZZII +
IZZI + IIZZ + XXXX ) on the cube centers (dual vertices)
we recover the cubic code Hamiltonian in Eq. (3) at leading
order in perturbation theory.

The Hamiltonian for Yoshida’s type-II Z3 FSL model is a
sum of translates of the following local generators

(4)

where now X and Z are Z3 clock operators satisfying XZ =
e

2π i
3 ZX . We have found that this model can be obtained by

coupling together fractal cluster state layers [44–46] stacked
along the ẑ and ŷ directions, respectively. The Hamiltonians
for the fractal cluster state layers are given by translates of the
following local generators

where each vertex hosts two qubits and each xy or xz plaquette
hosts a single qubit. Here dotted lines indicate the dual square
lattices in xy and xz planes, respectively, rather than the dual
of the cubic lattice. Each pair of terms on a line in the equation
above generates a fractal cluster state on the sites of the square
lattice and dual lattice in an xy or xz plane, respectively. We
group pairs of spins on xy and xz plaquettes onto the adjacent
corner with minimal (x, y, z) coordinate, then in the limit of
a strong −(XX + ZZ†) field on these plaquette spins we find
the FSL Hamiltonian in Eq. (4) at leading order.

We have found that the above coupled cluster state layer
construction generalizes to all FSL models, see the Appendix
for further details. The general situation is depicted in Fig. 1,
where the xy fractal cluster layers in Fig. 1(a), and xz fractal
cluster layers in Fig. 1(b) are strongly coupled to produce
the FSL model in Fig. 1(c). In many cases (including the
example above) the cluster layers can be further decomposed
into coupled cluster chains.
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FIG. 1. (a) A stack of fractal cluster states in xy layers. (b) A
stack of fractal cluster states in xz layers. (c) An FSL model obtained
by coupling the xy and xz layers.

II. GAUGING AND CLUSTER STATES

In this section we describe how certain cluster state models
can be driven into topological phases by large on-site fields.
In particular, we describe how to construct such a cluster state
for any topological order that is obtained by gauging a sub-
system symmetry following a generalized gauging procedure
[8,40–42]. Figure 2 shows this process applied to the 2D Ising
model, resulting in the 2D toric code.

We define a locally specified symmetry to be a group whose
elements are products of Pauli X matrices that commute with
a set of local Pauli Z constraints and whose composition rule
is given by matrix multiplication. We utilize the stabilizer
formalism [47] to describe the group of Pauli matrices under
multiplication via linear algebra over Z2 (Zd for qudits). In
particular, a pair of basis vectors ŝX , ŝZ are assigned to every
spin s ∈ Q to keep track of the exponents of Xs and Zs. An
arbitrary Pauli operator (up to a ± sign) is then mapped to∏

s∈Q

X x(s)
s Zz(s)

s �→
∑
s∈Q

x(s)ŝX + z(s)ŝZ , (5)

where x(s) and z(s) are binary functions that store the power
of Pauli matrices Xs and Zs, acting on spin s, respectively.
The vector space describing all Pauli matrices P breaks up
into a direct sum of subspaces describing products of X or Z
matrices, P = PX ⊕ PZ , respectively. We point out that PX

∼=
PZ

∼= Z2[Q].
We describe a set of Pauli Z constraint terms, �c, indexed

by c ∈ C via a linear map σZ : Z2[C] → PZ defined such that

�c = σZ ĉ . (6)

In the above equation we have promoted the constraint labels
c ∈ C to basis vectors ĉ of Z2[C]. We remark that σZ does
not denote a single Pauli-Z matrix, rather it is a linear map
that sends basis vectors labeled by constraints ĉ to Z2-linear
combinations in PZ that represent products of Pauli-Z matrices
within the stabilizer formalism. Here we focus on cases where
the �c are all local in two- or three-dimensional space. In the
example, Fig. 2, σZ maps a bond c to the Ising ZZ-interaction
term across that bond. The violation, or excitation, of lo-
cal constraints by Pauli X matrices is described by the map
εZ : PX → Z2[C], where

εZ = σ
†
Z �, (7)

with symplectic bilinear form � : ŝX ↔ ŝZ . This maps a
Pauli-X operator to the set of bond constraint terms it anti-
commutes with.

FIG. 2. The figure on the left depicts gauging the 2D Ising model
to obtain the 2D toric code. The key on the right shows the constraints
C, spins Q, local relations �, and stabilizer map σZ of the 2D Ising
model. After gauging (and taking the α → ∞ limit described in the
main text) C labels qubits, Q labels Z-type stabilizer generators,
� labels X -type stabilizer generators, with σ̃Z , σ̃X , the respective
gauged stabilizer maps for the 2D toric code.

The constraints σZ determine a group of locally specified
symmetries given by ker εZ . The locally specified symmetries
can be further broken up into local and global symmetries
by resolving as large a subspace of ker εZ as possible via the
image of a map σX : Z2[Gloc] → PX that defines some local
Pauli-X terms,

	g = σX ĝ , (8)

indexed by a set of generators g ∈ Gloc. The local symmetries
are then given by imσX ⊆ ker εZ and the global symmetries,
modulo local symmetries, are given by ker εZ/imσX .

Our starting point is a symmetric Hamiltonian in the para-
magnetic phase

H = −α
∑

s

Xs −
∑

c

�c , (9)

in the limit α  1. This model can be gauged following the
general procedure introduced in Ref. [40] for gauging locally
specified symmetries [48].

(1) The first step is to introduce a Z2 gauge spin c for each
local constraint �c. This extends the space of Pauli matrices
to P ⊕ P̃ where P̃ = P̃X ⊕ P̃Z is the space of Pauli matrices
on the gauge spins. We point out that P̃X

∼= P̃Z
∼= Z2[C].

(2) Next, we define gauge transformation operators XsAs,
where As = σ̃Z ŝ for σ̃Z := εZ considered as a map σ̃Z :
Z2[Q] → P̃Z via the isomorphisms Z2[Q] ∼= PX , P̃Z

∼= Z2[C],
see Fig. 2. The original global symmetries can be recovered
from products of the gauge transformation operators that act
as identity on the gauge spins.

(3) Gauge invariant states, i.e., those with eigenvalue +1
under all gauge transformations, satisfy a generalized Gauss’s
law. A projection onto this gauge-invariant subspace is then
introduced. Here we only enforce such a projection energet-
ically by adding terms to the Hamiltonian that introduce an
energy penalty � 
 for violation of Gauss’s law. In the limit
of 
 → ∞ the projection becomes strict.
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(4) Finally, the other Hamiltonian terms are modified to
include a minimal coupling to the gauge spins by projecting
them onto the gauge-invariant subspace. For our purposes this
simply amounts to the change �c �→ Xc�c.

The gauged paramagnetic Hamiltonian is

H = −α
∑
s∈Q

Xs −
∑
c∈C

Xc�c − 

∑
s∈Q

XsAs . (10)

This is a cluster Hamiltonian with a large X field applied to
the s sites. See the section below for a further discussion of
cluster states.

We consider the limit α → ∞ with 
 held constant. This
effectively fixes out all the original Q spins in the |+〉 state.
On the remaining C spins the Gauss’s law terms become
XsAs �→ As and only products of minimally coupled constraint
fields Xc�c that act trivially on the Q spins enter the effective
Hamiltonian. These terms are all contained within ker σZ ,
where we have made use of the isomorphism P̃X

∼= Z2[C] to
write σZ : P̃X → PZ . In fact, all local terms in ker σZ appear at
finite order in perturbation theory. Products of these terms are
described by the image of a map σ̃X : Z2[�] → P̃X , satisfying
imσ̃X ⊆ ker σZ , that resolves the maximal subspace of local
terms in ker σZ . In particular, only a set of local generators
given by a choice of basis elements

Bφ = σ̃X φ̂ , (11)

for φ ∈ �, need to be included in the Hamiltonian. Other
terms in imσ̃X are given by products of the generators Bφ , and
their inclusion only results in a shifting of the energy levels
without changing the quantum phase of matter. We remark
that the Bφ terms were introduced by hand in the equivalent
gauging construction of Ref. [40].

In the example in Fig. 2, gauge spins c live on the edges
of the square lattice. The operators in imσ̃X are closed con-
tractible loops of X operators, and Bφ is chosen to be the
product of four gauge spins Xc around the plaquette φ. The
effective Hamiltonian in the large α limit is simply the 2D
toric code. Combining this observation with the cluster state
splitting procedure, introduced in the following section, leads
to the coupled cluster chain construction of the 2D toric code
that was presented below Eq. (2).

More generally, the effective Hamiltonian in the α → ∞
limit is given by

H = −

∑

s

As −
∑

φ

Bφ , (12)

which corresponds to the CSS [49,50] stabilizer map
σ̃ = σ̃X ⊕ σ̃Z : Z2[�] ⊕ Z2[Q] → P̃. The Hamiltonian in
Eq. (12) is the same as the gauged and “disentangled” Hamil-
tonian from Ref. [40]. Hence, we have demonstrated that
applying a large X field to the Q spins of the cluster Hamil-
tonian in Eq. (10) results in the model obtained by gauging
the paramagnetic phase under the locally specified symmetry
ker σZ .

As an alternative to applying a large X field to the Q spins
of the cluster Hamiltonian, we could instead measure them
in the X basis. This procedure prepares the gauged model in
some excited eigenstate. A correction operator can then be

found to restore the model to its ground state [23,24]. See
Sec. IV for further discussion of this option.

III. COUPLING CLUSTER STATE LAYERS AND CHAINS

In this section we describe a construction of certain cluster
states by coupling together a number of different, lower-
dimensional, cluster states. When combined with the results
from the previous section this leads to a coupled cluster state
layer construction for certain stabilizer topological orders.

A cluster Hamiltonian on an arbitrary graph �, with no
self-loops or duplicate edges, is given by a sum of commuting
Pauli terms

H� = −
∑

v

Xv

∏
v′∈Nv

Zv′ , (13)

where v are vertices of the graph and Nv is the set of nearest-
neighbor vertices connected by an edge to v. The cluster
Hamiltonian is in the trivial phase if no symmetries are en-
forced. This follows from the local unitary equivalence

UH�U † = −
∑

v

Xv, where U =
∏
〈vv′〉

CZvv′ , (14)

where 〈vv′〉 denotes an edge in � between vertices v, v′,
and CZ is a controlled Z gate. This also reveals a simple
construction of H�’s ground state |ψ0〉 = U |+〉⊗V , which is
known as a cluster state. On the other hand, each cluster state
respects a (potentially nontrivial) symmetry group determined
by the graph �, which is given by Pauli-X operators that are
products of the local terms in the Hamiltonian. The cluster
state may lie in a nontrivial (subsystem) symmetry-protected
topological phase [37,44,51] with respect to this symmetry.

The Hamiltonian in Eq. (10) above is a cluster Hamiltonian
on the interaction graph of the constraints σZ , under a large X
field on s sites. The interaction graph of a set of constraints is a
bipartite graph with a vertex for each spin and each constraint,
with an edge connecting each constraint to the spins it acts
nontrivially on.

To obtain a coupled-layer construction for a gauged Hamil-
tonian, as in Eq. (10), we make use of an elementary merging
and splitting property of cluster Hamiltonians. Two separate
cluster Hamiltonians, one containing a vertex v and the other
a v′, can be strongly coupled via a ZvZv′ field to produce a
single cluster Hamiltonian on a new graph where v and v′ have
been identified. More precisely, cluster Hamiltonians on the
graphs � and �′ can be coupled together to produce a model
equivalent to a cluster Hamiltonian on a new graph � ∪k �′
in the strong coupling limit. Here k denotes an injective map
from a subset λ of the vertices of � to the vertices of �′,
see Fig. 3(a). The graph � ∪k �′ is obtained by gluing � to
�′, i.e., identifying v with k(v) for all v ∈ λ, see Fig. 3(b).
In the gluing process, edges are added modulo 2, meaning
that any doubled edges are deleted, i.e., if 〈u, v〉 ∈ � and
〈k(u), k(v)〉 ∈ �′ then there is no 〈u, v〉 edge in � ∪k �′, for
any u, v ∈ λ.

The coupled Hamiltonian is given by

H (α) = H� + H�′ − α
∑
v∈λ

ZvZk(v) . (15)

155140-4



TYPE-II FRACTONS FROM COUPLED SPIN CHAINS AND … PHYSICAL REVIEW B 103, 155140 (2021)

FIG. 3. (a) An example of graphs � (orange) and �′ (blue) and
a gluing map k (arrows) involving a subset of vertices. (b) The graph
� ∪k �′ obtained by gluing along k.

In the α → ∞ limit, the two qubit Hilbert space on vertices
v and k(v) is projected into the single qubit subspace with
effective Pauli operators XvXk(v) �→ X v and Zv ∼ Zk(v) �→ Zv ,
where ∼ indicates that these operators become identified
within the subspace. In this limit the Hamiltonian becomes

H (α) = −
∑

v∈�\λ
Xv

∏
u∈Nv

Zu −
∑

v′∈�′\k(λ)

Xv′
∏

u′∈Nv′

Zu′

−
∑
v∈λ

XvXk(v)

∏
u∈Nv

Zu

∏
u′∈Nk(v)

Zu′ − α
∑
v∈λ

ZvZk(v) ,

at leading order in perturbation theory as α → ∞ and hence
H (∞) �→ H�∪k�′ .

This implies that any cluster Hamiltonian H� can be recov-
ered by coupling together cluster Hamiltonians Hθi on a set
of N subgraphs θi that cover �, with Z2 edge addition, i.e.,
� = θ1 ∪ θ2 ∪ · · · ∪ θN . For appropriate graphs � this can
result in a coupled-layer or chain construction. For example,
the cluster state on the vertices and edges of a grid, Fig. 4(a),
is given by coupled cluster chains, Fig. 4(b). As discussed in
the section above, applying a large X field to all vertices of the
grid in Fig. 4(a) yields the coupled cluster chain construction
of the toric code introduced below Eq. (2).

More generally, combining the coupled cluster state con-
struction from this section with the gauged paramagnet limit
of a cluster Hamiltonian under a large X field in Eq. (10)
yields a coupled cluster state construction of any gauged para-
magnet Hamiltonian. The gauged Hamiltonian, Eq. (12), with
interaction graph � = ∪iθi is obtained in the α → ∞ limit
from ∑

i-layer

Hθi − α
∑
v∈�

∑
u �=u′∈�v

ZuZu′ − α
∑
s∈Q

∏
u∈�s

Xu , (16)

where s runs over the Q vertices of � that are being projected
out in Eq. (12) and �v denotes the set of vertices in different
subgraphs θi that become identified with v in �.

The largest degree of interaction in the coupled cluster state
Hamiltonian above is determined by the maximum degree of
the cluster terms, which is one greater than the maximum
degree of all the subgraphs θi, and the maximum degree of the∏

X fields, which is the largest number of different subgraphs
θi sharing a vertex that becomes identified with a Q vertex in
� which gets projected out. In particular, this leads to many
coupled chain and coupled-layer constructions of 2D and
3D topological stabilizer Hamiltonians with low-interaction
weight. This construction applies equally well to Hamiltoni-
ans with conventional topological order, type-I, and type-II

FIG. 4. (a) The cluster state corresponding to the gauged Ising
model in Fig. 2. (b) A construction of (a) from coupled 1D cluster
chains.

fracton topological order, as demonstrated by the examples
above and in the Appendix.

IV. MODULAR ARCHITECTURE IMPLEMENTATION

In this section we describe an implementation of our
coupled spin-chain, and layer, constructions in modular ar-
chitectures [52–58] that combine static qubits arranged into
1D or 2D subsystems, such as ion traps or superconducting
qubits, with auxiliary degrees of freedom that are not strictly
constrained by locality, for example, photonic qubits.

In the modular architecture the auxiliary qubits are those
in {�s}s∈Q from Eq. (16), while the remaining qubits in each
graph θi are stored in the static isolated subsystems with one
or two dimensional locality. An additional auxiliary qubit,
labeled by 〈u, u′〉, is introduced for each ZuZu′ operator in
Eq. (16) that is not contained within {�s}s∈Q, to facilitate
the measurement of this operator. The qubits in the static
subsystems persist and hold the state of the desired stabilizer
model, while the auxiliary qubits are entangled with the static
subsystem qubits and then destructively measured to imple-
ment the desired stabilizer measurements on the static qubits.

The ground state of the gauged Hamiltonian in Eq. (12)
is prepared by initializing all qubits in the |+〉 state and then
entangling them via CZ gates to create cluster states on the
graphs θi. Next, a pair of CZ gates is applied to entangle each
additional auxiliary qubit 〈u, u′〉, introduced above, with the
qubits u and u′. The ZuZu′ and

∏
Xu operators from Eq. (16)

are then measured on the auxiliary qubits, projecting them into
a unique state, decoupled from the static qubits. For the addi-
tional auxiliary qubits 〈u, u′〉, this will involve a measurement
in the X basis to implement the desired ZuZu′ measurements
on static qubits u and u′. If the stabilizer measurements all
return the +1 eigenvalue, the desired ground state has been
prepared. If any of the ZuZu′ stabilizer measurements return
−1 eigenvalues we can find a Pauli-X correction operator
supported on the static qubits to flip these eigenvalues back to
+1. If any of the

∏
u∈�s

Xu stabilizer measurements returns a
−1 eigenvalue, we have effectively projected the static qubits
into the −1 eigenvalue of the associated As operator. For
topological codes [59], including fracton codes [23,24], we
can decode these errors to find a Pauli-X correction operator.
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After applying the product of the correction operators, we
have prepared a state within the desired ground space.

We remark that the stabilizer generators for the decou-
pled cluster states together with the ZuZu′ and

∏
Xu operators

generate a subsystem stabilizer code [60,61] (which does not
encode a logical qubit). In this context, measurement of the
ZuZu′ and

∏
Xu operators, followed error-correction, corre-

sponds to gauge fixing [62] onto the desired topological code.
More generally, measurement of the As stabilizers on the

static qubits can be performed following the above method.
Measurement of the Bφ stabilizers can be accomplished sim-
ilarly, by introducing a dual set of auxiliary qubits. Provided
the rate of errors between measurement and correction steps
is below the threshold for the code [23,24,59], the measure-
ment and correction process will successfully preserve logical
information encoded into the ground space of the (fracton)
topological code on the static qubits with high probability
for sufficiently large system sizes. Hence, for topological
codes that admit a coupled-layer construction, the procedure
outlined in this section provides an implementation of topo-
logical error correction in a modular architecture, featuring
low-dimensional static subsystems coupled to long-range aux-
iliary systems.

V. DISCUSSION AND CONCLUSIONS

In this paper we have introduced coupled spin-chain,
and layer, constructions for topological stabilizer models,
including conventional, type-I fracton, and type-II fracton
topological orders. We based our construction on two key
properties of cluster states. First, projecting out an extensive
number of spins with a large X field produces a gauged model
on the remaining spins. Second, many cluster states naturally

split into coupled lower-dimensional cluster states. In par-
ticular, this provides a coupled cluster chain construction of
Haah’s cubic code and a coupled cluster layer construction of
Yoshida’s FSL models.

Our coupled-layer constructions involve relatively low-
degree Hamiltonian interactions, thus paving the way towards
experimental realization of exotic fracton topological orders.
They are particularly well suited to modular architectures
where qubits are organized into subsystems with inherent one-
or two-dimensional local interactions. These subsystems need
only interact with nonlocal auxiliary degrees of freedom that
can be jointly measured for our scheme to be realizable, as ex-
plained above. Similar schemes have recently appeared in the
context of photonic topological quantum computing [63,64], it
would be interesting to recast our constructions in this setting.

Looking forward, it would be interesting to find a coupled-
layer construction of more general, possibly nonabelian,
fracton models. We remark that our construction provides a
hint in this direction, as the merging and splitting of cluster
states also applies to generalized cluster states where the Z
operators are replaced by other diagonal operators, such as√

Z , CZ or multiply controlled Z [65–67]. It would also be
very interesting to derive topological defect networks from
our coupled-layer constructions.
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APPENDIX: FURTHER COUPLED-LAYER EXAMPLES

In this section we apply our coupled-layer construction to a number of further examples including the 3D toric code [59], the
X-cube model [8], FSL models [5], and cubic code B [6]. These examples are presented in terms of local stabilizer generators
{hi}i that appear in the commuting projector Hamiltonian H = −∑

i hi whose ground space is the stabilizer codespace.
Specifically, we first present the stabilizer generators of the cluster chains or layers to be coupled. We then describe the on-site
couplings between the layers. Finally, the stabilizer generators of the coupled Hamiltonian, in the limit of infinite coupling field
strength, are given.

1. 3D toric code

In this subsection we describe constructions of 3D toric code from 1D or 2D cluster states.
First we describe a construction of the 3D toric code from coupled 1D cluster states. The cluster chains run along the x̂, ŷ, ẑ

axes of a cubic lattice, with one qubit per edge and three qubits per vertex. The stabilizer generators are given by

(A1)
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A strong −(XXX + ZZI + ZIZ + IZZ ) coupling on all vertices leads to the local stabilizer generators of the 3D toric code on
the cubic lattice with one qubit per edge

(A2)

A further generalization to d-dimensional toric code from coupled 1D cluster states along d different axial directions is
straightforward.

The above construction of the d-dimensional toric code with qubits on edges from coupled 1D cluster states can be extended
to a construction of toric code with qubits on k cells, for 1 < k < d , from coupled k-dimensional cluster states with qubits on
(k − 1) and k cells. For example, 3D toric code can be constructed from coupled 2D edge-face cluster states on the cubic lattice
with 1 qubit per face and two qubits per edge. The stabilizer generators are

(A3)

(A4)

(A5)

A strong −(XX + ZZ ) coupling on all edges leads to the local stabilizer generators of the 3D toric code on the dual cubic lattice,
with one qubit per face

(A6)
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(A7)

2. X-cube model

In this subsection we describe constructions of X cube from coupled 2D or 1D cluster states.
First we describe a construction from coupled 2D vertex-face cluster states on the cubic lattice with one qubit per face and

three qubits per vertex. The local stabilizer generators of the cluster states are

(A8)

(A9)

A strong −(XX + ZZ ) coupling on all edges leads to the local stabilizer generators of the X-cube model on the dual cubic
lattice, with one qubit per face, in the limit of infinite field strength. The Z-type local stabilizer generator that appear at leading
order are

(A10)
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The above term corresponds to the product
∏

p�v Zp of Zp on the twelve plaquettes that share a common vertex. Only three of
the Zp terms have been depicted explicitly for clarity of the diagram.

The X -type local stabilizer generators that appear at leading order in perturbation theory at infinite coupling field strength are

(A11)

Similar to the Z-type term above, these X -type terms depict
∏

p∈c,p�⊥î Xp with i = x, y, z, respectively. Only two of the Xp terms
are shown explicitly for clarity of the diagram.

Alternatively, we also find a construction of X-cube from coupled 1D cluster states along the axes of the cubic lattice,
with one qubit per edge and three qubits per vertex. Starting from the stabilizer generators in Eq. (A1) and adding a strong
−(ZZZ + XXI + XIX + IXX ) coupling to all vertices leads to the stabilizer generators of the X-cube model on the cubic
lattice with one qubit per edge in the infinite coupling strength limit

(A12)

3. Fractal spin liquids

In this subsection we describe coupled 2D (and 1D) cluster state constructions of FSL models. We provide several examples:
the Sierpinski type-I FSL, a type-II FSL, and cubic code written in FSL form. These are followed by a general construction for
all FSL models.

First we construct the Sierpinski FSL from coupled 2D fractal cluster states and 1D cluster states. The starting point is layers
of fractal cluster states on xy planes of the cubic lattice, and 1D cluster states stacked along the ẑ axis of the cubic lattice. This
involves one qubit per ẑ edge, and xy plaquette, and two qubits per vertex. The stabilizer generators are

(A13)

We group the ẑ edge spins and xy plaquette spins onto the corner of minimal x, y, z, coordinate and add a strong −(XX + ZZ )
coupling to these sites. In the limit of infinite coupling we find stabilizer generators

(A14)

We can, in fact, further decompose the 2D fractal cluster states into coupled 1D cluster states with stabilizer generators

(A15)

which return the 2D fractal cluster states upon adding a strong −IZZ coupling to the vertices and −ZZ to the faces.
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Next we consider a type-II Z2 FSL. We begin with fractal cluster states stacked in the xy and xz planes of a cubic lattice, with
one qubit per xy and xz plaquette, and two qubits per vertex. The stabilizer generators are

(A16)

(A17)

Grouping spins on xz and xy plaquettes to their minimal corner and adding a strong −(XX + ZZ ) coupling to these sites, we
find the following stabilizer generators in the limit of infinite coupling

(A18)

The 2D fractal cluster states can be further broken up into coupled 1D cluster states with stabilizer generators

(A19)

(A20)

(A21)

(A22)

In the limit of a strong −ZZ coupling on the faces, and −(IIZZ + ZZII ) on the vertices we recover the original cluster states.
Next we consider the cubic code written in FSL form [5]. It is constructed from coupled fractal cluster states stacked along the

xy and xz planes of the cubic lattice, with one qubit per xy and xz plaquette, and two qubits per vertex. The stabilizer generators
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are

(A23)

(A24)

Grouping spins on xz and xy plaquettes to their minimal corner and adding a strong −(XX + ZZ ) coupling to these sites, in the
limit of infinite coupling strength we find the stabilizer generators of cubic code in FSL form

(A25)

a. General fractal spin liquids

Finally, we describe a general coupled cluster layer construction for any FSL. This was depicted schematically in Fig. 1,
where xy fractal cluster layers and xz fractal cluster layers are strongly coupled to produce the FSL model. The Hamiltonian, or
stabilizer map, for any FSL can be written using the polynomial stabilizer formalism [5,69,70]

⎛
⎜⎝

0 G(x̄, z̄)
0 F (x̄, ȳ)

F (x, y) 0
G(x, z) 0

⎞
⎟⎠, (A26)

where F (x, y) = 1 + f (x)y, G(x, z) = 1 + g(x)z for a first order FSL. For more general higher order FSL models we have

F (x, y) = 1 +
∑
i�1

fi(x)yi , G(x, y) = 1 +
∑
i�1

gi(x)zi . (A27)

We consider a stack of fractal cluster states along the ŷ and ẑ axes⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 F (x̄, ȳ) 0 0

F (x, y) 0 0 0
0 0 0 G(x̄, z̄)
0 0 G(x, z) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A28)
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We point out that the first and second qubits on every site are decoupled from the third and fourth and the Hamiltonian terms
acting on each pair of qubits involve only two variables. Hence the above Hamiltonian corresponds to a stack of decoupled
layers.

Next we introduce strong on-site field couplings described by⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 0
1 0
0 0
0 1
0 0
0 1
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A29)

To find the leading order Hamiltonian terms in perturbation theory we construct a minimal set of stabilizer generators that
commute with the strong fields via linear combinations of columns from Eq. (A28)⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 G(x̄, z̄)
1 0
0 F (x̄, ȳ)
0 F (x̄, ȳ)G(x̄, z̄)

F (x, y) 0
0 F (x̄, ȳ)G(x̄, z̄)

G(x, z) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A30)

Removing the first and third qubits from every site that are fixed out by the strong fields corresponds to dropping the odd
numbered rows from the above matrix. This recovers the general FSL model in Eq. (A26).

The layered construction described here generalizes straightforwardly to FSL models involving more than two qubits per
site. In fact it generalizes to any other model where the qubits can be partitioned into two disjoint subsets such that the Z-type
stabilizer terms act on the first subset via functions of only (x, y) and on the second subset via functions of only (x, z). For an
example of this generalization see cubic code B below.

4. Cubic code B

In this subsection we describe a construction of cubic code B from coupled 2D fractal cluster states stacked in xy and xz
planes of the cubic lattice. The decoupled system consists of two qubits per xy and xz plaquette of the cubic lattice, and four
qubits per vertex. The stabilizer generators are

(A31)

(A32)

(A33)

Grouping the spins on xz and xy faces onto the corner of minimal x, y, z, coordinate and adding a strong −(XIXI + IX IX +
ZIZI + IZIZ ) coupling to these sites we find the stabilizer generators for cubic code B (with a spatial rotation compared to
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Ref. [6])

(A34)

Similar to the above examples, the 2D fractal cluster states can be further decomposed into coupled 1D cluster states.
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