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Effects of energy extensivity on the quantum phases of long-range interacting systems
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We investigate the ground state properties of one-dimensional hard-core bosons interacting via a variable
long-range potential using the density matrix renormalization group. We show that restoring energy extensivity
in the system, which is done by rescaling the interaction potential with a suitable size-dependent factor known
as Kac’s prescription, has a profound influence on the low-energy properties in the thermodynamic limit. While
an insulating phase is found in the absence of Kac’s rescaling, the latter leads to a new metallic phase that does
not fall into the conventional Luttinger liquid paradigm. We discuss a scheme for the observation of this new
phase using cavity-mediated long-range interactions with cold atoms. Our findings raise fundamental questions
on how to study the thermodynamics of long-range interacting quantum systems.
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I. INTRODUCTION

Long-range (LR) interacting systems are characterized by
highly nonlocal couplings typically decaying as a power law
for large distances. Famous examples of such systems in-
clude self-gravitating clusters [1], ferromagnetic materials
[2], non-neutral plasmas [3], cavity-QED systems [4], and
one-dimensional quantum wires [5]. Recent progress in the
realization of artificial lattices of cold gases with sizable LR
interactions has stimulated considerable interest [6–22]. In
parallel, theoretical studies of the ground state of LR spin
models have revealed anomalous critical exponents [23–25]
and decay of correlations [26–31], as well as the existence of
new quantum phases [32–37].

An archetypal LR quantum model consists of one-
dimensional (1D) fermions interacting via a 1/r (unscreened)
Coulomb potential, with r the distance separating two parti-
cles. Schulz showed using bosonization techniques that the
ground state of this model is a peculiar metal resembling a
classical Wigner crystal, with very slow decay of the charge
correlations associated with the plasmon mode [38,39]. This
result was confirmed numerically using density matrix renor-
malization group (DMRG) [40] and Monte Carlo methods
[41–43]. In the presence of a lattice at commensurate fillings,
it was shown that while the metallic behavior is surprisingly
enhanced as compared to short-range interactions for small
system size, the ground state ultimately enters an insulating
phase in the thermodynamic limit [44–47].
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The strong LR regime for a d-dimensional system with
volume V is achieved when the power-law exponent α enter-
ing the potential V (r) ∝ 1/rα is such that 0 � α � d . This
regime is typically associated with unusual thermodynamic
properties such as a nonextensive energy E ∼ V2− α

d leading
to an ill-defined thermodynamic limit [48]. Furthermore, the
total energy cannot be obtained by summing up the energies
of different subsystems as is usually the case for short-range
interactions [49,50]. This nonadditivity appears as a funda-
mental property of LR models and leads to exotic behaviors
including the breaking of ergodicity, the existence of slow
relaxation processes, and the inequivalence of statistical en-
sembles [51–55]. In contrast, extensivity can be restored by
rescaling the interaction potential with a volume-dependent
factor �, which is known as the Kac’s prescription [56]. The
latter is systematically used to study the thermodynamic prop-
erties of classical spin models with LR interactions [57–61],
where the dynamical properties with and without Kac’s pre-
scription are the same provided proper rescaling of timescales
[62,63]. However, the latter statement does not hold true with
quantum variables, thereby questioning the use of the Kac’s
prescription in quantum models. It is an interesting question to
investigate whether ground state phases can be also modified
by Kac’s rescaling, which would raise fundamental questions
on how to tackle the thermodynamics of long-range interact-
ing quantum models.

Here we study a 1D periodic chain of interacting hard-core
bosons in the strong LR regime at half-filling, using the Lut-
tinger liquid (LL) theory combined with DMRG calculations
[64] for large system sizes (�200 sites). We consider the gen-
eral model with 0 � α � 1, which interpolates between the
infinite-range case (α = 0) and Coulomb repulsion (α = 1)
studied in Ref. [45]. In the absence of Kac’s rescaling we find
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FIG. 1. Sketch of the physical system described by the Hamil-
tonian Eq. (1), which consists of a circular chain with periodic
boundary conditions.

that the ground state consists of an insulating gapped phase in
the thermodynamic limit, extending the results of Ref. [45] to
the whole range 0 < α � 1. In stark contrast we demonstrate
that Kac’s rescaling leads to a metallic phase for any finite
strength of the interaction, which is found to be incompatible
with a standard LL. This unconventional behavior can be
traced back to a mean-field term in the Hamiltonian, exact
for α = 0, which leads to qualitatively different behaviors
for the charge gap and the correlation functions. Restoring
extensivity is further shown to eliminate the plasmon modes
while preserving the LR character of the potential, and with
it some inherent properties of the strong LR regime such as
nonaddivity.

The remainder of the paper is organized as follows. In
Sec. II we introduce the model under consideration. In Sec. III
we discuss the different phases of the model (metallic vs
insulating) depending on whether Kac’s rescaling of the in-
teraction potential is used or not. These results are obtained
from numerical calculations of the charge gap (Sec. III A), the
Luttinger parameters (Sec. III C), and from the low-energy
properties of the model (Sec. III B). In Sec. IV we demon-
strate that the metallic phase found in the presence of Kac’s
rescaling is incompatible with a standard LL. We provide a
conclusion in Sec. V.

II. MODEL

We consider the following Hamiltonian:

H = −t
L∑

i=1

(a†
i ai+1 + H.c.) +

∑
i> j

V (α)
i− j nin j, (1)

where the operator ai (a†
i ) annihilates (creates) a hard-core

boson on site i = 1, . . . , L, and ni = a†
i ai is the local density.

The interaction potential reads

V (α)
i− j = V

�α (L)rα
i− j

, V > 0,

where ri− j = (La/π ) sin (π |i − j|/L) for L � 1 as we as-
sume periodic boundary conditions (Fig. 1). The nearest-
neighbor hopping t and lattice spacing a are set to t ≡ a ≡ 1,

FIG. 2. Finite-size scaling of the single-particle gap � computed
with DMRG at half-filling 〈ni〉 = 0.5, for α = 1 and different in-
teraction strengths V (in units of the hopping energy t). While an
insulating phase (� �= 0) is found without Kac’s rescaling (a) and
(b), the latter leads to a metallic phase (� = 0) in the thermodynamic
limit (c) and (d). Extrapolation for L → ∞ is obtained by fitting the
numerical data with �(L) = b + c

L + d
L2 (dotted lines). The finite-

size scaling of the ground state energy per particle is shown in (b) and
(d). The error bars are too small to be visible (see Appendix B).

and we use DMRG to compute the different observables. The
detailed numerical methods are provided in Appendix B.

Kac’s rescaling of the interaction potential is included
via the function �α (L) = 1 for α > 1 (absence of Kac’s
rescaling), �α (L) = log(L) in the marginal case α = 1, and
�α (L) = L1−α in the strong LR regime α < 1. Note that the
XXZ Heisenberg model with LR coupling along the z direc-
tion and short-range coupling along x and y can be mapped
either onto hard-core bosons Eq. (1) or spinless fermions via
a Jordan-Wigner transformation. In Appendix A we discuss
a realization of this model in the infinite-range case α = 0
using cavity-mediated interactions between cold atoms. Due
to the normalization of the electromagnetic energy, this in-
teraction scales as ∼1/L and thus automatically includes a
Kac’s rescaling. The range 0 < α < 3 can in principle be
realized with trapped ions [11] where V , α, and L can be tuned
independently, thus allowing us to compare the situations with
and without Kac’s rescaling.

III. METALLIC VERSUS INSULATING PHASE

A. Charge gap

The main result of our work is summarized in Fig. 2, where
we compute the single-particle charge gap

� = E0(N + 1) + E0(N − 1) − 2E0(N )

for α = 1 and different interaction strengths V . Here E0(N )
denotes the energy of the ground state with N particles. The
situation without Kac’s rescaling [�1(L) = 1, Figs. 2(a) and
2(b)] has been already investigated in Ref. [45], and features a
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nonextensive energy. In this case we find that the gap �(L �
1) �= 0 for any V > 0, which indicates an insulating phase in
the thermodynamic limit consistently with the conclusion of
Ref. [45]. These results are drastically modified when using
the Kac’s prescription. By rescaling the interaction potential
[�1(L) = log(L), Fig. 2(c) and 2(d)], we find that while exten-
sivity is clearly restored, � ∼ 1/L for all V > 0. This result
indicates a metallic behavior in the thermodynamic limit ob-
served in the whole range 0 � α � 1 (not shown).

B. Low-energy properties

In order to understand the physical origin of the significant
difference between the extensive and nonextensive models,
we investigate the low-energy properties of Eq. (1) using the
LL theory. A convenient bosonic representation of H in terms
of the continuous variable x ≡ ja can be obtained by treating
the interaction potential as a perturbation [5]

H = 1

2π

∫
dx

(
uK (π�)2 + u

K
∇2φ − g

πa2
cos (4φ)

)
, (2)

where �(x) and φ(x) and are canonically conjugate bosonic
fields depending on the long wavelength fluctuations of the
fermion density. The so-called Luttinger parameters u and K
are related by [45] (see Appendix C)

uK = vF,

u

K
= vF + 1

π

L∑
r=1

V (α)
r [1 − cos (2kFr)], (3)

with vF and kF the Fermi velocity and Fermi wave vector,
respectively. The first two (quadratic) terms of Eq. (2) describe
how the properties of the noninteracting LL are renormalized
by the interactions. In particular, K determines the decay of
the single-particle correlation function

〈a†
i a j〉 ∼ r−1/(2K )

i− j .

The third term in Eq. (2) stems from scattering processes
across the Fermi surface where the particle momentum is con-
served up to a reciprocal lattice vector. It is usually denoted as
umklapp term and scales with the strength

g ≡
L∑

r=1

V (α)
r cos (2kFr). (4)

For a finite g it is possible to show using a renormalization-
group study [5] of the Hamiltonian Eq. (2) for α > 1 that
the system goes from an insulating to a metallic phase as
K is increased above a critical value Kc [65]. At half-filling
and neglecting multiple umklapp scattering [66], the critical
value is Kc = 0.5. Note that in the case of a nearest-neighbor
interaction α → ∞, such a metal-insulator transition occurs
at V = 2t [67].

We consider a half-filled band 〈ni〉 = 0.5, which provides
kF = π/2 and vF = 2. In the absence of Kac’s rescaling the
first sum

∑
r V (α)

r entering Eq. (3) diverges in the thermody-
namic limit ∼ log(L) for α = 1 and ∼L1−α/(1 − α) for 0 �
α < 1. The second sum

∑
r V (α)

r cos (2kFr) entering Eqs. (3)
and (4) is bounded due to the alternating sign. Therefore,
while the umklapp scattering strength g remains finite, the

FIG. 3. Luttinger parameter K computed numerically at half-
filling for α = 0.5 and different V , by fitting the correlation function
〈a†

i a j〉 [70]. The critical value Kc = 0.5 indicating the metal-insulator
transition with nearest-neighbor interaction is displayed as a black
dashed line. In the absence of Kac’s rescaling (a), K decreases when
increasing L, lying below the critical line for L → ∞ (insulating
phase). In contrast, K increases with L in the presence of Kac’s
rescaling (b), and remains finite even for very large V (metallic
phase). Extrapolation in the thermodynamic limit is obtained by
fitting the data with the same function as in Fig. 2 (dotted lines).
The error bars are too small to be visible (see Appendix B).

Luttinger parameter K → 0 for 0 < α � 1 and V > 0 in the
thermodynamic limit consistently with an insulating phase.

We find that rescaling the interaction potential with the
factor �α (L) = log(L) for α = 1 and �α (L) = L1−α for α <

1 strongly affects the competition between K and g. In
this case the long-wavelength divergence is removed since
limL→∞

∑
r V (α)

r = V for α = 1 and limL→∞
∑

r V (α)
r =

V/(1 − α) for α < 1. This suggests a metallic phase for 0 <

α � 1, since K remains finite and g → 0 for any finite V > 0
in the thermodynamic limit as seen from Eqs. (3) and (4).

The above arguments cannot be used in the infinite-range
case α = 0 since the series

∑
r V (α)

r cos (2kFr) does not have
a unique limit for L → ∞. Nevertheless, this particular case
can be solved exactly and corresponds to a metallic (free
fermions) phase with charge correlations 〈a†

i a j〉 ∼ r−1/2
i j , re-

gardless of the presence or absence of Kac’s rescaling [68]
(see Appendix D).

C. Luttinger parameters

In order to gain further insights we first compute the Lut-
tinger parameter K by fitting the correlation function 〈a†

i a j〉.
This parameter is shown in Fig. 3 for α = 0.5 and different V .
We observe two opposite trends depending on whether Kac’s
rescaling is present or not. In the latter case [Fig. 3(a)] K
decreases when increasing L and lies below the critical value
Kc = 0.5 for L → ∞, which indicates an insulating phase.
The case with Kac’s rescaling is shown in Fig. 3(b), where
a finite K is found for all V in the thermodynamic limit.
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FIG. 4. Charge stiffness D computed numerically from Eq. (5) at
half-filling, as a function of 1/L2 for α = 0.5 and different V . The
magnetic flux � is implemented via the twisted boundary condition
a1 = ei�aL+1 [66]. Two opposite trends are observed depending on
whether Kac’s rescaling is present (b) or not (a). While D → 0
for L → ∞ in the latter case (insulator), D remains finite in the
former case (metal). The error bars are too small to be visible (see
Appendix B).

We then compute the charge stiffness [5]

D = πL

∣∣∣∣∂2E0(�)

∂�2

∣∣∣∣
�=0

, (5)

which is proportional to the Drude weight [69] and therefore
provides valuable information on the metallic or insulating
properties of the system. Moreover, it also gives a direct mea-
sure of the umklapp scattering strength. A large D corresponds
to a good metal, while an insulating phase features D = 0.
The charge stiffness is computed numerically from the ground
state energy E0 by threading a flux � through the circular
chain, and shown in Fig. 4 as a function of 1/L2 for α = 0.5.
In the absence of Kac’s rescaling [Fig. 4(a)] D decreases when
increasing L for any finite V . The latter drives the system
towards an insulating phase (D → 0) in the thermodynamic
limit. In contrast, D increases with L in the presence of Kac’s
rescaling [Fig. 4(b)], which confirms the metallic behavior.
In the thermodynamic limit we find that D ≈ vF even for
very large V , in surprisingly good agreement with the LL
prediction D = uK and Eq. (3). Note that we have performed a
full numerical study showing that the conclusions drawn from
Figs. 3 and 4 can be unambiguously extended to the whole
range 0 � α � 1.

IV. BREAKDOWN OF LL THEORY

Now that we have demonstrated the metallic character of
the ground state, we check the validity of the LL theory in
Fig. 5 by computing the parameter K for L → ∞ and α = 0.5
in three different ways: From the single-particle correlation
function 〈a†

i a j〉 (see above); from the static structure factor

S(q) = 1

L

∑
i, j

eiq|i− j|(〈nin j〉 − 〈ni〉〈n j〉) (6)

FIG. 5. Luttinger parameter K extrapolated for L → ∞ versus
V at half-filling and for α = 0.5, without (a) and with (b) Kac’s
rescaling. K is computed in three different ways: From the single-
particle correlations (K1p), the structure factor (K2p), and from the gap
and the charge stiffness (K�/D). The formula obtained from Eq. (3)
is displayed as a dotted line. Inset: |K1p − K2p| and |K1p − K�/D|
versus α for V = 1.5. A discrepancy between K1p and K2p is observed
without Kac’s rescaling, which indicates the breakdown of the LL
theory (insulator). In contrast, the property K1p = K2p observed with
Kac’s rescaling even for large V suggests a metallic phase, which is
not captured by the conventional LL theory. The error bars are too
small to be visible (see Appendix B).

as K = LS(q = 2π
L ); and from the relations

π
u

K
= ∂�

∂ (1/L)

and uK = D stemming from the LL theory [5]. In the absence
of Kac’s rescaling [Fig. 5(a)] a discrepancy between the values
of K extracted from the two correlation functions (labeled
K1p and K2p in the figure) is observed, which indicates the
breakdown of the LL theory related to the opening of a gap
(insulating phase). The agreement obtained for small V is at-
tributed to the metal-like character at finite L consistently with
the data shown in Fig. 3. In the presence of Kac’s rescaling
[Fig. 5(b)] K1p and K2p match well up to very large V , while
they match neither the formula

K = 1√
1 + V/[πvF(1 − α)]

(dotted line) stemming from Eq. (3) nor K obtained from �

and D (labeled K�/D in the figure). We find that this discrep-
ancy holds in the entire range 0 � α � 1 (see inset), implying
a breakdown of LL theory in the strong LR regime. For α > 0
this breakdown is only partial since numerics indicate that
both K�/D and K1p,2p maintain the functional form

K = 1√
1 + γV/(πvF)

, (7)

with γ finite for all V [see Fig. 5(b)]. This is, however, not true
for the mean-field case α = 0 which can be solved exactly
(see Appendix D). In this case, the mean-field Hamiltonian
contains a term ∝ N2 in addition to a free-fermion part. Since
the Hamiltonian conserves the number of particles, the term
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∝ N2 is a simple offset and the free-fermion result K1p,2p = 1
is thus obtained from equal-time correlation functions for all
V . In contrast for K�/D we obtain Eq. (7) with γ = 1. This
is due to the fact that the charge gap is constructed from the
ground state energy in different charge sectors, and therefore
the term ∝ N2 leads to

� ∼ V + 2πt

L

for L → ∞. This term makes the excitation spectrum of the
Hamiltonian incompatible with that of a standard LL (see
Appendix D). In the short-range case α � 1 all methods pre-
dict the same K as expected from the LL theory (see inset).
The demonstration of this gapless, critical metallic phase that
is neither fully described by the LL theory nor the mean-field
approach for 0 < α � 1 is a central result of this work. While
here we focused on the case of half-filling, this phase appears
in fact for all densities.

In Appendix C we show that the long-wavelength ex-
citations of this phase have a linear dispersion, similar to
a LL with purely short-range interactions (as normal He-
3 for instance). This can be readily shown by considering
the continuous Hamiltonian Eq. (2) with interaction poten-
tial V (α)(x) = V/(x2 + a2)α/2. The diagonalization of this
Hamiltonian in Fourier space provides the plasmon dispersion
relation

ω(q) = vFq

√
1 + V (α)(q)

πvF
.

Kac’s rescaling eliminates the long-wavelength divergence of
the Fourier component V (α)(q → 0) and therefore leads to
the dispersion relation of a metal with short-range interac-
tions ω(q) ∼ vFq. Note that since the algebraic character of
the interaction potential is preserved when using the Kac’s
prescription, the latter is thus “weaker” than Thomas-Fermi
screening which turns the LR interaction into a short-range
one.

V. CONCLUSION

In conclusion, we have shown that the low-energy prop-
erties of 1D hard-core bosons interacting via a LR potential
are fundamentally modified in the strong LR regime when
applying the Kac’s prescription, which restores energy ex-
tensivity and a well-defined thermodynamic limit [71]. We
find that the linear excitation spectrum of our unconventional,
extensive metallic phase is also present for d > 1 in the case
of Coulomb repulsion (α = 1). It would be therefore an inter-
esting perspective to investigate the properties of this phase
in higher dimensions using, e.g., Monte Carlo techniques
[34,72]. This is particularly relevant since two-dimensional
lattices with cavity-mediated long-range interactions can also
be realized with cold atoms [73]. It is another exciting
prospect to study the exotic statistical and thermodynami-
cal properties of our unconventional quantum liquid that are
expected to occur in analogy with classical [49–54] and semi-
classical [55] models.

FIG. 6. N two-level atoms (blue spheres) trapped in a 1D optical
lattice (black) with depth Vl and wavelength λl . The atoms strongly
interact with a cavity mode (red) of wavelength λc = λl/2 and de-
cay rate κ , and are coherently driven by a transverse pump with
frequency ωp and strength η.

ACKNOWLEDGMENTS

We are grateful to T. Donner, S. Ruffo, S. Schütz, and
D. Vodola for stimulating discussions. Work in Strasbourg
was supported by the French National Research Agency
(ANR) - ERA-NET QuantERA - Projet RouTe (ANR-18-
QUAN-0005-01), and LabEx NIE. G.P. acknowledges support
from the Institut Universitaire de France (IUF) and USIAS.
G.M. was supported by the ANR through the “Programme
d’Investissement d’Avenir” under Contract ANR-17-EURE-
0024. Computing time was provided by the HPC-UdS. N.D.
acknowledges financial support by Deutsche Forschungsge-
meinschaft (DFG) via Collaborative Research Centre SFB
1225 (ISOQUANT) and under German Excellence Strategy
EXC-2181/1-390900948 (Heidelberg STRUCTURES Excel-
lence Cluster).

APPENDIX A: EXTENSIVE CAVITY-MEDIATED
LONG-RANGE INTERACTIONS

In the following Appendixes we discuss a possible im-
plementation of our 1D hard-core boson Hamiltonian with
infinite-range interactions using cavity-mediated interactions
between cold atoms (Appendix A). We provide details
about the numerical methods including an error analysis
(Appendix B), and show that the plasmon mode of a d-
dimensional system of long-range (LR) interacting fermions
is suppressed when using the Kac prescription in the strong
long-range regime α � d (Appendix C). We solve the infinite-
range case α = 0 exactly, showing that the system is in a
metallic (free fermion) phase with a charge gap � ∼ (V +
2πt )/L → 0 for L → ∞, which is incompatible with the
Luttinger liquid theory (Appendix D).

We propose a possible implementation of our 1D hard-core
boson Hamiltonian Eq. (1) with infinite-range interactions
(α = 0) using an atomic quantum gas trapped in an optical lat-
tice and embedded in a cavity. The physical system is shown
in Fig. 6: N two-level bosonic atoms with mass m forming a
Bose-Einstein condensate are loaded into a 1D optical lattice
of depth Vl and period λl/2 along the x direction. The atoms
with transition frequency ωa strongly interact with a cavity
mode of frequency ωc and period λc = λl/2, and are coher-
ently driven (transversally) by a laser field with frequency
ωp and strength η. The lattice and cavity wave vectors are
kl = 2π/λl and kc = 2π/λc, respectively.
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In the frame rotating with the laser frequency, the Hamilto-
nian (in frequency units) for a single atom in the rotating-wave
approximation reads [73,74]

H = H0 − �cc†c − �a

2
σz + gcos(kcx)(σ+c + c†σ−)

+ η(σ− + σ+), (A1)

with �c = ωp − ωc, �a = ωp − ωa, and

H0 = − h̄

2m

∂2

∂x2
+ Vl cos2(klx)

the optical lattice Hamiltonian. The cavity mode annihilation
operator is denoted as c and the atom with ground state |g〉
and excited state |e〉 is described by the Pauli matrices σ− =
|g〉 〈e| (σ+ = σ

†
−) and σz = |e〉 〈e| − |g〉 〈g|. We are interested

in the dispersive regime where the atom-pump detuning �a

is much larger than the atom-cavity coupling strength g, i.e.,
g/�a � 1. In this case, spontaneous emission is negligible
and the atom excited state can be adiabatically eliminated
[74]. Replacing σz by 〈g| σz |g〉 = −1 in the equation of mo-
tion dσ−

dt = −i[σ−, H], the steady-state solution dσ−
dt = 0 is

σ− = 2η

�a
+ 2g

�a
cos (kcx)c.

Using this solution in Eq. (A1) leads to the Hamiltonian (up
to constant terms)

H = H0 − �cc†c + ηeff cos(kcx)(c + c†) + U0 cos2(kcx)c†c,
(A2)

where U0 = 4g2/�A, and where ηeff = 4gη/�a represents
an effective pump through atomic scattering into the cavity
mode. Now turning to the many-atom system, it is convenient
to expand the atom field operators �(x) in the basis of Wan-
nier functions φ(x − x j ) localized on the lattice sites x j ( j =
1, 2, . . . , L), which are obtained from the Bloch eigenstates of
H0. The second-quantized Hamiltonian takes the form

Hsq =
∫

dx �†(x)H�(x)

+ 1

2

4πash̄

m

∫
dx �†(x)�†(x)�(x)�(x), (A3)

where the second term is the contact interaction induced by
s-wave scattering with characteristic length as. Using �(x) =∑

j a jφ(x − x j ) with a j the annihilation operator of an atom
at site x j , the many-body Hamiltonian reads [74]

Hsq = −
∑
i, j

ti ja
†
i a j − �cc†c + ηeff

∑
i, j

Ji ja
†
i a j (c

† + c)

+ U0

∑
i, j

J̃i ja
†
i a jc

†c + U

2

∑
i

a†
i ai(a

†
i ai − 1). (A4)

The contact interaction strength reads U = 4πas h̄
m

∫
dx |φ(x)|4,

and the overlap integrals

ti j = −
∫

dx φ∗(x − xi )H0φ(x − x j ), (A5)

Ji j =
∫

dx φ∗(x − xi ) cos (kcx)φ(x − x j ), (A6)

J̃i j =
∫

dx φ∗(x − xi ) cos2 (kcx)φ(x − x j ). (A7)

When the overlap between the Wannier functions localized
on two different sites is sufficiently small, one can keep only
the nearest-neighbor contribution xi = x j ± λl/2 in Eq. (A5).
Note that the on-site contribution xi = x j simply provides an
energy offset and can thus be discarded. On the other hand,
the particular choice λc = λl/2 implies that cos(kcxi ) = −1
for all i, in contrast to Ref. [73] where the condition λc =
λl leads to an alternating sign between even and odd sites.
Keeping only the on-site contribution xi = x j in Eqs. (A6)
and (A7), and further assuming normalized Wannier functions∫

dx|φ(x)|2 = 1 the Hamiltonian Eq. (A4) takes the form

Hsq = − t
∑

i

(a†
i ai+1 + H.c.) − �cc†c − ηeff N̂ (c† + c)

+ U0N̂c†c + U

2

∑
i

ni(ni − 1), (A8)

where N̂ = ∑
i ni = ∑

i a†
i ai and

t = −
∫

dx φ∗(x)

[
− h̄

2m

∂2

∂x2
+ Vl cos2 (klx)

]
φ

(
x ± λ

2

)
.

We now proceed with the adiabatic elimination of the cavity
mode [74] under the assumption that |�c + iκ| � �a, g. We
use dc

dt = −i[c, Hsq] − κc, which can be easily derived from
the equation of motion dρ

dt = −i[Hsq, ρ] + Lρ of the density
operator ρ with the dissipative contribution

Lρ = κ (2cρc† − c†cρ − ρc†c).

The steady-state solution dc
dt = 0 reads

c = − ηeff N̂

(�c + iκ )
(
1 − U0

�c+iκ N̂
) , (A9)

which we expand up to first order in the small parameter
U0

�c+iκ . Using this expansion in Eq. (A8), we obtain the Hamil-
tonian

H = − t
L∑

i=1

(a†
i ai+1 + H.c.) + U

2

L∑
i=1

ni(ni − 1)

+ W
∑
i> j

nin j, (A10)

where

W = 2�cη
2
eff

�2
c + κ2

= 32�c

( g

�a

)2 η2

�2
c + κ2

.

Since the second term ∝ U � W in Eq. (A10) provides
the hard-core boson constraint, this Hamiltonian is iden-
tical to Eq. (1) with the identification V (0)

i− j = V
�0(L) ≡ W

(infinite-range interaction α = 0). Importantly energy exten-
sivity [�0(L) = L] is here ensured by the g2 factor in W since
the atom-cavity coupling strength g depends on the cavity
mode volume due to the normalization of the electromagnetic
energy [75], namely g ∼ 1/

√
L. The parameters t and W of

the Hamiltonian Eq. (A10) can be tuned by changing, e.g.,
the optical lattice depth Vl and the cavity-pump detuning �c,
respectively.
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FIG. 7. (a) Ground state energy E0 versus number of sweeps for
different BD. (b) Maximum truncation error ε during each sweep
for different BD. Parameters are 〈ni〉 = 0.5 (half-filling), α = 0.5,
L = 200, and V = 1.

APPENDIX B: NUMERICAL METHODS

DMRG is a variational method minimizing the energy
over quantum states described by matrix product states, i.e.,
products of matrices. The dimension of these matrices is an
indicator of the Hilbert space truncation and is referred to as
“bond dimension” (BD) in the following. Note that DMRG
provides exact results in the limit of an infinite BD. For a
finite BD, the precision of the results is determined by the
convergence with the BD and the number of optimization cy-
cles (called sweeps) over the lattice, as well as the truncation
error ε (sum of discarded squared singular values) during each
optimization process.

We first look at the convergence of the ground state energy
with the number of sweeps [Fig. 7(a)], and check that the trun-
cation error remains small for a large enough BD [Fig. 7(b)].
Note that the maximum truncation error max(ε) < 10−7 for
the BD considered in this work (BD = 500). In order to
extract the error on the energy we compute |E0(BD = ∞) −
E0(BD = 512)| ≈ 10−5. E0(BD → ∞) is obtained by extrap-
olating the ground state energy in the limit of infinite bond

dimension. Now that we have computed E0 the uncertainty on
the compressibility, the charge stiffness, and the Luttinger pa-
rameter K�/D can be obtained as follows. The single-particle
gap � is shown in Fig. 8(a) as a function of the inverse system
size 1/L (error bars ∼10−4 are not visible). The best fits of
the form �(L) = b + c

L are displayed by continuous lines.
Importantly we note that the (small) standard error on E0 (or
equivalently on �) are included in our fitting procedure. The
compressibility

y ≡ u

K
= δ�

πδ(1/L)

is directly extracted from the fit, and the uncertainty in the
fit parameters is obtained from the least-square method. The
uncertainty in the compressibility �y obtained by following
this procedure is shown in Fig. 8(b) as a function of V . This
error increases with V due to important size effects. Indeed in
the limit V → ∞ for a fixed L, the system evolves towards a
classical insulating state that DMRG fails to describe. How-
ever, we show in the following that the relative error on K�/D

plotted in Fig. 5 remains small enough for all V considered in
this work.

The charge stiffness is obtained from the formula

D = πL

∣∣∣∣∂2E0(�)

∂�2

∣∣∣∣
�=0

[see Eq. (5)] with a flux interval δ� = 2π × 0.02. In Fig. 8(c)
we show an example of the ground state energy as a func-
tion of � for V = 1 and L = 200. The red line is the best
fit of the form E0(�) = a + b� + c

2�2, with standard error
obtained from the least-square method. The charge stiffness
can be directly inferred from the parameter c as D = cπL,
and extrapolations of D in the thermodynamic limit L → ∞
for different V are shown in Fig. 8(d). Here the error bars
originating from the fit in Fig. 8(c) are smaller than the sym-
bols and thus not visible. The dotted lines are fits of the form
D(L) = b + c

L + d
L2 , with standard error in the fit parameters

FIG. 8. (a) Finite-size scaling of the single-particle gap � for different V . The compressibility y ≡ δ�

δ(1/L) is obtained by fitting the numerical
data with �(L) = b + c/L (dotted lines). (b) Standard error in the compressibility as a function of V obtained from the least-square (Levenberg-
Marquardt) method. (c) Ground state energy E0(�) as a function of the flux � for V = 1 and L = 200. The red line is the best fit of the form
E0(�) = a + b� + (c/2)�2, where the standard error on E0 reported in Fig. 7 is included in the final estimate of the fit parameters. The
charge stiffness D [∝ the second derivative of E0(�)] is extracted from the previous fit. (d) Finite-size scaling of the charge stiffness D for
different V . The errors bars originating from the fit in (c) are smaller than the symbols and thus not visible. The dotted lines are best fits of the
form D(L) = b + c/L + d/L2. The final standard errors are estimated from the least-square method. In all plots 〈ni〉 = 0.5 (half-filling) and
α = 0.5.
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FIG. 9. (a) Single-particle correlation function for different BD for V = 1 and L = 200. Note that the correlation function on (a) is
symmetric with respect to L/2. (b) Collapse of the single-particle correlations for different system sizes. We use the fit function (black dotted
lines) described in Ref. [76] for a circular chain. The standard error on K1p(L) is obtained from the least-square method. (c) Finite-size scaling
of K1p(L) for V = 1, 80. The final standard error is again obtained from the least-square method with a fit of the form K1p(L) = b + c/L + d/L2

(red dotted lines). In all plots 〈ni〉 = 0.5 and α = 0.5.

again obtained from the least-square method. In total, the
uncertainty �D in the charge stiffness for L → ∞ is ∼10−3.

The Luttinger parameter extracted from the compressibility
and the charge stiffness is obtained from the formula K�/D =√

D/y (see Sec. IV), and the associated uncertainty reads

�K�/D = 1

2

√
D�2

y

y3
+ �2

D

yD
.

The latter is shown in Fig. 10(a) as a function of V , and
remains <10−3 for all interaction strengths considered in this
work.

We now estimate the uncertainties in the single-particle
correlation function and the Luttinger parameter K1p plotted
in Fig. 5. The convergence of the correlation function with the
BD is displayed in Fig. 9(a). In order to extract the upper limit
error on the correlation we compute

|〈a†
1aL/2〉(BD = ∞) − 〈a†

1aL/2〉(BD = 512)| ≈ 10−4,

where the first term |〈a†
1aL/2〉(BD → ∞) is obtained by ex-

trapolating the ground state energy in the limit of infinite bond
dimension.

Fits of the correlation functions for different system sizes
(black dotted lines) are shown in Fig. 9(b) using the function

FIG. 10. Final standard errors �K�/D (a) and �K1p (b) in the Lut-
tinger parameter extracted from the compressibility and the charge
stiffness, and from the single-particle correlations, respectively, as a
function of V .

introduced in Ref. [76] for a circular chain (error bars ∼10−4

are not visible). The Luttinger parameter K1p is then extracted
from this fit with an error obtained from the least-square
method. The extrapolation of K1p in the thermodynamic limit
is obtained using a fit of the form K1p(L) = b + c

L + d
L2 and

shown in Fig. 9(c). The uncertainty �K1p in the Luttinger pa-
rameter K1p in the thermodynamic limit is shown in Fig. 10(b)
as a function of V and remains ∼10−3 for all V considered in
this work. The standard error on the Luttinger parameter K2p

extracted from the two-particle correlations can be obtained
with a similar approach and we find that the uncertainty �K2p

also remains ∼10−3.

APPENDIX C: EFFECT OF ENERGY EXTENSIVITY ON
PLASMON MODES

In this Appendix we consider a one-dimensional system
of length L containing N fermions interacting via the LR
continuous potential

V α (x) = V

(x2 + a2)α/2 , 0 < α � 1.

Here a denotes a short-distance cutoff that can be identified
with, e.g., the lattice spacing. For the sake of convenience
we here use fermions instead of hard-core bosons. Indeed
the hard-core boson Hamitonian Eq. (1) can be mapped
onto an XXZ Heisenberg model (for spins) with long-range
z-z coupling, which can itself be mapped onto a fermionic
Hamiltonian using the Jordan-Wigner transformation. The
two models are thus equivalent, the only difference being the
single-particle correlation function

〈c†
i c j〉 ∼ r−[K+(1/K )]/2

i− j

for fermions, while

〈a†
i a j〉 ∼ r−1/(2K )

i− j

for hard-core bosons [76]. In the following we use c oper-
ators for fermions and a operators for hard-core bosons. In
the framework of the 1D Luttinger liquid theory the low-
energy Hamiltonian in the vicinity of the Fermi level can be
decomposed into the contributions of left (L) and right (R)
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movers as

H =
∑

k

∑
r=L,R

h̄vF(ηrk − kF)c†
r,kcr,k

+ 1

2

∫
dxdx′ρ(x)V α (x − x′)ρ(x′), (C1)

where vF is the Fermi velocity, kF is the Fermi wave
vector, ηR = +1, ηL = −1, and ρ(x) = ∑

r=L,R ρr (x) with
ρr (x) = 1

L

∑
k,q eiqxc†

r,k+qcr,k . Bosonization assumes that the
low-energy properties of the Hamiltonian Eq. (C1) are gov-
erned by the long-wavelength fluctuations of the density ρ(x).
Using the standard techniques described in Ref. [5], H can be
approximately written (for L → ∞) in the quadratic form

H = 1

2π

∑
q

(
u(q)K (q)π2�(q)�(−q)

+ u(q)

K (q)
q2φ(q)φ(−q)

)
,

where u(q) denotes the velocity of the excitations and K (q) is
the Luttinger parameter governing the decay of correlations at
long distances. The latter satisfy the relations

u(q)K (q) = vF,
u(q)

K (q)
= vF

[
1 + V (α)(q)

πvF

]
. (C2)

The Fourier transform of the interaction potential reads

V α (q) =
∫

dx V α (x)e−iqx

= V
2
√

π

�
(

α
2

)
2

α−1
2

( |q|
a

) α−1
2

K α−1
2

(a|q|), (C3)

with Kν the modified Bessel function of order ν and �

the gamma function. The two fields �(q) = ∫
dx �(x)e−iqx

and φ(q) = ∫
dx φ(x)e−iqx are the Fourier transforms of the

canonically conjugate fields �(x) = 1
π
∇θ (x) and φ(x), with

φ(x) = − (NR + NL)
πx

L

− iπ

L

∑
q �=0

1

q
e−β|q|/2−iqx[ρR(q) + ρL(q)],

θ (x) = (NR − NL)
πx

L

+ iπ

L

∑
q �=0

1

q
e−β|q|/2−iqx[ρR(q) − ρL(q)].

Here β is a (small) cutoff regularizing the theory, Nr =∑
k c†

r,kcr,k − 〈c†
r,kcr,k〉, and ρr (q) = ∑

k c†
r,k+qcr,k . The plas-

mon dispersion relation follows from Eq. (C2) and reads

ω(q) = u(q)|q| = vF|q|
√

1 + V (α)(q)

πvF
. (C4)

The potential Eq. (C3) exhibits a long-wavelength divergence
(q → 0), namely V α (q) ∼ |q|α−1 for 0 < α < 1 and V α (q) ∼
log |q| for α = 1. In the latter case, Eq. (C4) provides the
1D plasmon dispersion ω(q) ∼ |q|√log |q| stemming from
Coulomb interactions [38]. When rescaling the interaction

FIG. 11. Upper bound of the excitation spectrum �(q) (in units
of t) in the Feynman approximation (colored lines) computed at
half-filling for V = 0.5 in the strong LR regime α = 0.5 (a), and
in the short-range case α = 3 (b). The dispersion relation Eq. (C4)
after Kac’s rescaling, namely ω(q) = vFq

√
1 + V/π for α = 0.5 and

ω(q) = vFq
√

1 + V/[
√

π�(3/2)vF] for α = 3 is represented as a
black dotted line in the long-wavelength regime q → 0. The proxim-
ity of the Mott transition (V = 2 for α → ∞) in the short-range case
is responsible for the more pronounced minimum at q = π (charge
density wave).

potential by the Kac’s factor �α (L) = L1−α for 0 � α < 1
and �α (L) = log(L) for α = 1, it is easy to check that the
long-wavelength divergence of the potential is removed by
considering the limit q = 2π

L → 0. As a consequence, one
recovers the sound wave dispersion relation ω(q) ∼ |q| of a
metal with short-range interactions. This result is confirmed
by looking at the upper bound of the excitation spectrum
�(q) = E (q)/S(q) in the Feynman approximation [77] rep-
resented in Fig. 11, where

E (q) = t

L
[1 − cos(q)]

〈∑
i

a†
i ai+1 + H.c.

〉
and S(q) is the structure factor defined in Eq. (6).

This result can be easily generalized to higher dimensions
d = 2, 3 by looking at the zeros of the dielectric function in
the framework of the random phase approximation (RPA):

ε(q, ω) = 1 − χ (q, ω)V α (q) = 0, (C5)

where

χ (q, ω) = 1

V
∑

k

nk − nk+q

h̄ω + Ek − Ek+q + iη

denotes the one-spin density-density response function (Lind-
hard function), V is the volume, and nk is the occupation
number of a state with wave vector k and energy Ek = h̄2|k|2

2m
(m is the particle mass). For α = 1 the Fourier transform of
the Coulomb potential is

V 1(q) ∼ log |q|, d = 1,

V 1(q) ∼ 1

|q| , d = 2,

V 1(q) ∼ 1

|q|2 , d = 3. (C6)

In the dynamical limit ω � |q|vF the Lindhard function can
be approximated by χ (q, ω) = ρ0|q|2

mω2 , with ρ0 the average
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fermion density. Using this expression together with Eq. (C6)
into Eq. (C5), one finds the plasmon energies

ω ∼ |q|
√

log |q|, d = 1,

ω ∼
√

|q|, d = 2,

ω ∼ cst, d = 3. (C7)

When using the Kac’s prescription, namely dividing the po-
tential by the factor Ld−1, the long-wavelength divergence
(q = 2π

L → 0) is removed and one recovers the sound wave
dispersion relation ω ∼ |q| for d = 1, 2, 3, as for a liquid with
purely short-range interactions (e.g., normal He-3).

APPENDIX D: THE INFINITE-RANGE CASE

In the infinite-range case α = 0 the Hamiltonian Eq. (1)
takes the form of a mean-field Hamiltonian

H = −t
L−1∑
i=0

(c†
i ci+1 + H.c.) + V

2L

∑
i �= j

nin j, (D1)

where ci (c†
i ) annihilates (creates) a fermion on site i =

1, . . . , L, and ni = c†
i ci is the local density. Note that we here

again use fermions instead of hard-core bosons for conve-
nience, since the two models are equivalent. Considering N ≡∑

i〈ni〉 = L/2 (with, e.g., N even) fermions in the ground
state (half-filling) with antiperiodic boundary conditions, the
energy of the ground state is

E0(N ) = N (N − 1)V

2L
− 2t

L/4−1∑
k=−L/4

cos

[
2πk

L
+

(
π

L

)]

= N (N − 1)V

2L
− 2t csc

(π

L

)
.

One then has to consider periodic boundary conditions for
N ± 1 fermions, which leads to

E0(N + 1) = (N + 1)NV

2L
− 2t

L/4∑
k=−L/4

cos

(
2πk

L

)

= (N + 1)NV

2L
− 2t cot

(π

L

)
,

E0(N − 1) = (N − 1)(N − 2)V

2L
− 2t

L/4−1∑
k=−L/4+1

cos

(
2πk

L

)

= (N − 1)(N − 2)V

2L
− 2t cot

(π

L

)
.

The charge gap thus reads � ≡ E0(N + 1) + E0(N − 1) −
2E0(N ) = (V/L) + 4t tan ( π

2L ). For L → ∞ one has � ∼
(V + 2πt )/L → 0. The Luttinger parameters u/K and uK can
be related to the first derivative of the single-particle charge
gap as ∂�

∂ (1/L) = π u
K , and to the charge stiffness [5] as

D = πL

∣∣∣∣∂2E0(N,�)

∂�2

∣∣∣∣
�=0

= uK.

Here � = 2πφ/φ0 denotes a flux threading the (circular)
chain in units of the flux quantum φ0 = h/e. This flux can

be taken into account by multiplying the hopping energy by
an Aharonov-Bohm phase phase e±i�/L, which leads to

H (�) = −t
L−1∑
i=0

(ei�/Lc†
i ci+1 + H.c.) + V

2L

∑
i �= j

nin j .

The energy of the ground state is then derived as

E0(N,�) = N (N − 1)V

2L
− 2t csc

(π

L

)
cos

(
�

L

)
,

which provides D = 2t = vF for L → ∞. The Luttinger pa-
rameters extracted from the charge gap and from the charge
stiffness thus read

uK = vF,
u

K
= vF

[
1 + V

πvF

]
, (D2)

and coincide exactly with the analytic prediction Eq. (3). On
the other hand, it is straightforward to calculate the Luttinger
parameter K from the single-particle correlation function

〈c†
i c j〉 = 1

L

∑
k

eik(i− j)nk = 1

2iπ

eikF (i− j)

i − j
∼ (i − j)−1, (D3)

and from the long-wavelength limit of the static structure
factor

S(q) ≡ 1

L

∑
i, j

eiq(i− j)(〈nin j〉 − 〈ni〉〈n j〉)

= 1

L

∑
k,k′

(〈c†
kck−qc†

k′ck′+q〉 − 〈c†
kck−q〉〈c†

k′ck′+q〉)

→q→0
1

L
. (D4)

Comparing Eqs. (D3) and (D4) to the predictions 〈c†
i c j〉 ∼

(i − j)−
K+(1/K )

2 (for fermions) and K = LS(q → 0) of the
Luttinger liquid theory, we thus find K = 1 for all V in dis-
agreement with the result

K = 1√
1 + V/(πvF)

obtained from Eq. (D2). This breakdown of the Luttinger
liquid theory for α = 0 originates from the fact that the mean-
field Hamiltonian Eq. (D1) corresponds to free fermions only
in a given charge sector due to the presence of the term ∝ N2.
While the correlation functions do not involve different charge
sectors and therefore simply provide the free fermion result
K = 1, the charge gap is constructed from the ground state
energy in different charge sectors (N and N ± 1), which leads
to an additional term ∝V in Eq. (D2).

Alternatively one may also directly compare the spectrum
of the Hamiltonian Eq. (D1) to that predicted by the LL theory.
Considering a chemical potential μ = −V

2 + V
2L in order to

cancel the linear term ∝N , the Hamiltonian Eq. (D1) becomes

H = −t
L∑

i=1

(c†
i ci+1 + H.c.) + μ

∑
i

ni + V

2L

∑
i �= j

nin j

= −t
L∑

i=1

(c†
i ci+1 + H.c.) + V

2L
�N2 + cte. (D5)
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where �N = ∑L
i=1(ni − 〈ni〉) is the excess particle number

with respect to the ground state (half-filling). Linearizing
the dispersion relation of the Hamiltonian Eq. (D5) (in
Fourier space) around k � ±π

2 , we find that the energy
�E ≡ E (�N, M, n) − E0(N ) of an excitation with excess
particle number �N , umklapp number M, and momentum
q = 2πn

L is

�E = 2πvF

L

[(
1 + V

πvF

)
�N2

4
+ M2 + n

]
. (D6)

Remarkably, because of the interaction term ∝V , the low-
energy spectrum of H cannot be matched with that of a

Luttinger liquid. Indeed in a Luttinger liquid the excitation
spectrum is entirely fixed in terms of the Luttinger parameter
K and the velocity vF as [78]

�E = 2πvF

L

(
�N2

4K
+ KM2 + n

)
. (D7)

Instead, our model behaves as if it was not described by a
single parameter K , but by two independent parameters K1 =
[1 + V/(πvF)]−1 and K2 = 1 for charge and umklapp exci-
tations, respectively. This is impossible in standard Luttinger
liquid theory, where a central result is that the two parameters
must be the same.
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