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Structural chirality of β-Mn
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A theoretical study of Bragg diffraction by an enantiomorphic pair of structures should apply to patterns gath-
ered on β-Mn using resonance-enhanced x-ray diffraction. The chiral polymorph of manganese, and structurally
related compounds, will be more convenient than trigonal crystals of low quartz, tellurium, and berlinite used
in previous structural studies of this type, because cubic symmetry removes some complications of correction
for absorption and macroscopic birefringence. Intensity of a Bragg spot engaged by circular polarization in the
primary beam of photons ϒ(h, k, l ) is proposed as a chiral signature of the illuminated material. The partial
intensity requires a knowledge of scattering amplitudes in all four channels of polarization, which are reported
as functions of an azimuthal angle (rotation of the crystal about the axis of the reflection vector). Unlike trigonal
chiral crystals, ϒ(0, 0, l ) = 0 for β-Mn and it is (h, k, 0), and symmetry-related Bragg spots, that epitomize
structural chirality. Specifically, reflection vectors (h, k, 0) with odd Miller indices and the chiral axis of β-Mn
mesh in terms of helicity, with the corresponding ϒ(h, k, 0) equal in magnitude and opposite in sign for partners
in the enantiomorphic pair. Dependence of ϒ(h, k, 0) on the azimuthal angle does not mirror the dyad or tetrad
axes of rotation symmetry in the cubic crystal structure.

DOI: 10.1103/PhysRevB.103.155136

I. INTRODUCTION

The general public was made aware of the significance of
handed forms of chemical compounds in the 1960s through
devastating effects on human life caused by the medically
approved consumption of racemic thalidomide by pregnant
women. One handed form of thalidomide is a useful sedative
while its opposite form is teratogenic [1]. A simple way to
distinguish left- from right-handed forms is by passing visible
light through them and measuring the plane of polarization
of the transmitted light. The polarization plane of light gets
rotated in a clockwise or counterclockwise direction, and is
used to distinguish the two forms. Optical activity is found in
natural organic substances such as sugars, camphor, or tartaric
acid, as well as in inorganic materials such as low quartz and
tellurium. Application of the technique in the wider domain
is illustrated in a detective novel where murder is estab-
lished after forensic scientists distinguish a synthetic poison
(racemic) from a natural one (muscarine, handed) in a species
of mushroom [2,3]. Optical activity is a very small effect. One
proposal to improve its efficacy in labeling handed forms of
compounds exploits superchiral beams of photons [4,5]. Many
optically active molecules or crystals have enantiomers, or
stereoisomers, whose atomic configurations are exact mirror
images of each other and are thus handed. This geometrical
property of crystals and molecules is called chirality. Chiral
substances possess a unique architecture such that, despite
sharing identical molecular formulas, ion to ion linkages, and
bonding distances, they cannot be superimposed. One chiral
form does not match its mirror image (enantiomer). The oc-
currence of homochirality in amino acids and sugars is an

essential enigma in biology, possibly related to the formation
of life. There is no consensus on the mechanism that gives the
homochirality of life at the present time [6].

Analysis of x-ray-diffraction patterns reveals the abso-
lute chirality of crystals in favorable cases [7]. However,
single-crystal x-ray-diffraction patterns remain essentially in-
distinguishable for enantiomorphs of chiral structures which
contain scattering ions of one type, even when anomalous dis-
persion effects are taken into account. Higher-order harmonic
generation and Kikuchi diffraction in electron scattering have
recently been added to the list of techniques for the deter-
mination of chiral structures [8,9]. Likewise, resonant x-ray
Bragg diffraction is a proven technique by which to label
chiral structures, and it is the central topic of the present study
[10–15]. The technique is more selective than optical activity,
which is allowed in 15 crystal classes, four of which are not
enantiomeric. Alas, x-ray-absorption measurements are not
forthcoming on structural chirality, for measurements involve
forward scattering and present some averaged electronic in-
formation. Specifically, we illustrate the ability of Templeton
and Templeton (T&T) scattering [16,17] to elucidate the struc-
tural chirality of crystalline β-Mn through calculations of all
scattering amplitudes [18,19].

Manganese is known to be the most complex metallic ele-
ment. The cubic β-Mn polymorph of interest does not order
magnetically. Recent studies of the electronic properties of
chiral structures [20–24] include β-Mn-type materials, e.g.,
Co-Zn-Mn alloys [25–28]. Yet, little attention has been given
to structural chirality of the cubic form that we address [9].
The range of challenging properties found in chiral structures
is wide, e.g., skyrmions [20,26], current induced magnetiza-
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tion [21], gyrotropic effects [22], and topological conduction
[24].

The β-Mn form contains 20 ions per unit cell in cubic enan-
tiomorphs P4132 and P4332. The attendant crystallographic
complexity sets it aside from low quartz, tellurium, and berlin-
ite (AlPO4) with enantiomorphs that belong to trigonal P3121
(right-handed screw) and P3221 (left-handed screw), and res-
onant ions occupy sites with multiplicity three [8,10–14].
Diffraction patterns and azimuthal angle scans (rotation of the
diffracting crystal about the axis of the reflection vector) were
measured with the energy of primary x rays tuned to K edges
(1s) of Si and Al, for example. Of 11 enantiomorphic pairs
of space groups four have fourfold screw axes, namely, three
tetragonal pairs P41 & P43, P41 2 2 & P43 2 2, P41 212 & P43

212, and the cited cubic structure for β-Mn. Inversion symme-
try is absent in all four pairs while only P41&P43 are polar
structures. Scattering amplitudes for the polar enantiomorphs
have one feature in common with the trigonal structures used
by low quartz, in that the chiral property is revealed when
the reflection vector is aligned with the screw axis, and, also,
measured azimuthal angle scans on trigonal (0, 0, l) Bragg
spots from low quartz are threefold periodic. We find this is
not the case for β-Mn, and azimuthal angle scans on reflection
vectors parallel to cell edges do not mesh with the fourfold
screw axis.

Valence states that accept the photoejected electron, a few
eV above the Fermi level, interact with neighboring ions. In
consequence, any corresponding electronic multipole is rota-
tionally anisotropic with a symmetry corresponding to the site
symmetry of the resonant ion. This anisotropy is most pro-
nounced in the direct vicinity of an absorption edge whereas
it is negligible far from the edges. Nonresonant ions can
be neglected in calculations of forbidden reflection structure
factors, to a good approximation. There are many reported
examples of Bragg diffraction enhanced by absorption at the
K edge of a 3d transition ion. Results on haematite (Fe3+

3d5) reported by Finkelstein et al. [29] are thoroughly dis-
cussed by Cara and Thole [30], while diffraction patterns
gathered at a later date reveal the material’s chirality [31].
The time between the publications saw reports of diffraction
patterns enhanced by nickel and vanadium K edges [32–35]. A
challenge posed by charge-orbital ordering in mixed-valence
perovskites was an early beneficiary of a strong resonance at
the Mn K edge [36,37]. Likewise, for some manganese oxides,
with Mn K-edge measurements free of multiplet effects that
complicate Mn L- or K-edge prepeak spectra [38].

II. MATERIAL PROPERTIES

β-Mn crystallizes in the enantiomorphic space-group pair
P4132 (No. 213) & P4332 (No. 212) [18]. These are non-
centrosymmetric structures that belong to the crystal class
432 (O), which is nonpolar and not compatible with ferro-
magnetism. Mn ions occupy sites 12(d) and 8(c) with site
symmetries 2yz and 3xyz, respectively. Wyckoff groups are
independent and the corresponding diffraction intensities add.
Notably, twofold and fourfold screw axes coincide. The crys-
tal structures of β-Mn are depicted in Fig. 1. In the case of
the β-Mn-type alloy Co10Zn10 cobalt ions use 8(c) while both
cobalt and zinc are in sites 12(d) [27]. The Bragg angle for β-

FIG. 1. Crystal structures of β-Mn enantiomorphs. See also
Fig. 1 in Ref. [19].

Mn is estimated from sin(θ ) ≈ 0.150 [h2 + k2 + l2]1/2 based
on a lattice constant a ≈ 6.29 Å [18] and a value 6.537 keV
for the energy of the Mn K edge. The Bragg condition is not
satisfied at L2 (≈0.649 keV) or L3 (≈0.638 keV) absorption
edges.

Different sites in L-edge x-ray absorption spectroscopy
(XAS) can be distinguished by energy only in favorable cases.
For instance, the three Fe sites in magnetite can be separated,
due to difference in valence state, point-group symmetry (Oh

and Td ), and in x-ray magnetic circular dichroism by opposite
signs of Oh and Td sites. It is an advantage that 3d electrons
are localized so that the linewidth is narrow. In the case of
β-Mn, likely the two sites are too similar in energy and line
shape to separate in the L-edge XAS. Also, the metallic line
shape of Mn should be relatively quite broad.

Electronic properties are here expressed in terms of spheri-
cal multipoles 〈OK

Q〉 of integer rank K with projections −K �
Q � K (Cartesian and spherical components of a dipole R =
(x, y, z) are related by x = (R−1 − R+1)/

√
2, y = i(R−1 +

R+1)/
√

2, z = R0). The complex conjugate is defined as
〈OK

Q〉∗ = (−1)Q〈OK −Q〉, with a phase convention 〈OK
Q〉 =

[〈OK
Q〉′ + i〈OK

Q〉′′] for real and imaginary parts labeled by
single and double primes, respectively. Multipoles are proper-
ties of the electronic ground state, and angular brackets 〈 …〉
denote the time average, or expectation value, of the enclosed
operator.

Implementation of sites symmetries is discussed in Ap-
pendix A. Quadrupoles [〈O2+1〉 + 〈O2−1〉] = 2i〈O2+1〉′′ =
2i〈O2−1〉′′ satisfy site symmetry 2yz, and they create diffrac-
tion at space-group forbidden reflections, e.g., (h, 0, 0) and (0,
k, 0) with odd Miller indices. Likewise, [〈O3+2〉−〈O3−2〉] =
2i〈O3+2〉′′ = −2i〈O3−2〉′′ obeys site symmetry 3xyz, and T&T
Bragg spots indexed by (h, 0, 0) are allowed for h = 2(2n +
1), for example. This class of Bragg spots, due to ions at sites
8(c), do not differentiate between enantiomorphs. However,
intensities of Bragg spots due to ions at sites 12(d) are differ-
ent for space groups No. 213 and No. 212.

III. CHIRAL SIGNATURE

The photon scattering length derived from quantum elec-
trodynamics is developed in the small quantity E/mc2, where
E is the primary energy (mc2 ≈ 0.511 MeV). At the second
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FIG. 2. X-ray diffraction coordinates. Primary (σ , π ) and sec-
ondary (σ ′, π ′) states of polarization. Corresponding wave vectors
q and q′ subtend an angle 2θ , and the Bragg condition is met when
κ = q − q′ coincides with a reciprocal lattice vector. Cell edges of
a crystal and depicted Cartesian coordinates (x, y, z) coincide in the
nominal setting of the crystal.

level of smallness in this quantity the length contains res-
onant processes that may dominate all other contributions
should E match an atomic resonance �. Assuming that vir-
tual intermediate states are spherically symmetric, to a good
approximation, the scattering length ≈ {Fμη/(E−� + i	/2)}
in the region of the resonance, where 	 is the total width of
the resonance. The numerator Fμη is an amplitude, or unit-cell
structure factor, for Bragg diffraction in the scattering channel
with primary (secondary) polarization η(μ). By convention,
σ denotes polarization normal to the plane of scattering, and
π denotes polarization within the plane of scattering. Figure
2 depicts polarization states, wave vectors, and the Bragg
condition.

Photon and electronic quantities in the scattering amplitude
are partitioned in a generalized scalar product Fμη{XK·〈OK〉},
with implied sums on rank K and projections Q [39]. Selection
rules on K and Q for the electronic multipole 〈OK 〉 imposed
by site symmetry, mentioned in the foregoing section, are
evidently transmitted to XK . The x-ray factor is specific to a
resonant event. One finds XK is independent of photon wave
vectors for an electric dipole–electric dipole event (E1-E1,
K = 0–2) but this is not so for an electric quadrupole–electric
quadrupole event (E2-E2, K = 0–4). All information on x-
ray factors needed here is found in Refs. [39,44]. Electronic
multipoles can be calculated using standard tools of atomic
physics given a suitable wave function. (Sum rules for partner
absorption edges exist, cf. Eq. (73) in Ref. [39]. Their content
is trivial in the present case, however, since multipoles are
evaluated for the Mn K edge.) Alternatively, multipoles can
be estimated from a tried and tested simulation program of
electronic structure [12].

Henceforth, we adopt a shorthand (μη) for the scattering
amplitude Fμη. Scattered intensity picked out by circular po-
larization in the primary photon beam = P2ϒ with [31]

ϒ = {(σ ′π )∗(σ ′σ ) + (π ′π )∗(π ′σ )}′′ (1)

and the Stokes parameter P2 (a purely real pseudoscalar) mea-
sures helicity in the primary x-ray beam. Since intensity is a
scalar quantity, ϒ and P2 must possess identical discrete sym-
metries, specifically, both scalars are time even and parity odd.
Partial intensity ϒ different from zero is a signature of a chiral
motif of electronic multipoles, of course. Intensity of a Bragg
spot in the rotated channel of polarization is proportional to
|(π ′σ )|2, and likewise for unrotated channels of polarization.

By way of a relatively simple introductory example, we re-
produce chiral signatures for the enantiomorphic space-group
pair P3121 (No. 152) and P3221 (No. 154) appropriate for
crystals of Te, SiO2, and AlPO4 mentioned in Sec. I. Ab-
sorption profiles show strong resonances at L1 for Te (2s ↔
5p), and K edges (1s) of Si and Al. Diffraction patterns
were interpreted with an E1-E1 absorption event [10–14].
Sites 3(a) with symmetry 2x are used by resonant ions, and
the crystal class is 32 (D3). Axial (parity-even) electronic
multipoles are denoted 〈T K

Q〉 . Site symmetry is satisfied
when 2x〈T K

Q〉 = 〈T K
Q〉, meaning 〈T K

Q〉 = (−1)K〈T K −Q〉
[39]. Two quadrupoles are engaged in Bragg intensities,
namely, 〈T 2+2〉′ and 〈T 2+1〉′′, and the chiral signature is found
to be

ϒ (0, 0, l ) = ν〈T 2+2〉′{sin(θ )[1 + sin2(θ )]〈T 2+2〉′

− cos3(θ ) cos(3ψ )〈T 2+1〉′′}. (2)

The azimuthal angle ψ is rotation about a reflection vector (0,
0, l) parallel to the screw axis. A helicity index ν = +1 for
No. 152 with l = 1 and No. 154 with l = 2, while ν = −1 for
No. 152 with l = 2 and No. 154 with l = 1. These findings
are consistent with experiments, to a very good approxima-
tion, and they illustrate the direct correlation between crystal
chirality and the intensity of space-group forbidden Bragg
spots picked out by circular polarization in the primary beam
[12]. In addition, dependence of ϒ(0, 0, l) on the azimuthal
angle faithfully mirrors the threefold rotation symmetry. Be-
cause sites 3(a) are not centers of inversion symmetry polar
(parity-odd) multipoles 〈U K

Q〉 can be different from zero.
Natural circular dichroism (NCD) is allowed and the signal
is proportional to 〈U 2

0〉 [39].

IV. DIFFRACTION PATTERNS

An electronic structure factor for diffraction is �K
Q =

[exp(iκ·d)〈OK
Q〉d], where the Bragg wave vector κ is defined

by integer Miller indices (h, k, l), and the implied sum in
�K

Q is over all 20 Mn sites in a unit cell. Bulk signals like
NCD are proportional to �K

Q evaluated for κ = 0. Extinc-
tion rules, or space-group allowed reflections, possess �0

0

different from zero. Angular anisotropy in charge distribu-
tions make higher-order multipoles different from zero. In
the present case, space-group forbidden chargelike T&T scat-
tering is created in resonance-enhanced Bragg diffraction by
quadrupoles (K = 2) and, also, octupoles (K = 3).

Axial multipoles with rank K even can be observed using
enhancement by E1-E1 and E2-E2 resonant events, for exam-
ple, with the latter event relegated to Appendix B. On the other
hand, even- and odd-rank polar multipoles are observed with
enhancement by E1-E2 (K = 1–3) and E1-M1 (K = 0–2)
resonant events [39,44]. Convenient expressions for corre-
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sponding scattering amplitudes are written in terms of even
and odd combinations of �K

Q. For κ = (h, 0, 0) cell edges of
the crystal and Cartesian coordinates (x, y, z) in Fig. 2 coincide
and we use �K ±Q = {AK

Q ± BK
Q} [40,44]. Otherwise, the

reflection vector is aligned with −x, which introduces noth-
ing more than a simple phase difference between �K ±Q and
{AK

Q ± BK
Q} in the case of (h, k, 0). Space groups of interest

are generated by pure rotations. In consequence, we only need
calculate �K

Q for general 〈OK
Q〉 and then specialize for a

specific enhancement event.

A. Sites 8(c)

Multipoles at sites 8(c) are allowed for rank K odd and
K larger than 3. Thus, T&T scattering arises in diffraction
enhanced by the E1-E2 parity-odd event. In the present case,
diffraction is determined by A3

2 and B3
2 alone [40] and the

scattering amplitudes are

(σ ′σ )12 = − sin (θ ) sin (2ψ )B3
2, (π ′π )12 = sin2(θ )(σ ′σ )12,

(π ′σ )12 = (i/2) sin (2θ ) cos (ψ )A3
2 − sin2(θ ) cos (2ψ )B3

2.

(3)

The fourth amplitude (σ ′π )12 is obtained from (π ′σ )12 by
a change in sign of B3

2. Inserting results for the scattering

amplitudes in Eq. (1) yields ϒ12(h, k, l ) = 0, because re-
quired products of amplitudes create a purely real quantity.
Suffixes on scattering amplitudes and the chiral signature
specify the nature of the resonant event. Later, the labeling
scheme is extended to other events and their correspond-
ing quantities. Recall that |(π ′σ )12|2 is our prediction for
intensity of a Bragg spot in the rotated channel of po-
larization, say. Absence of projections other than Q = ±2
in E1-E2 amplitudes is a direct consequence of opera-
tions needed to construct the unit cell. For sites 8(c) the
operations are very simple rotations, accompanied by trans-
lations, that do not alter the magnitude of Q. They include
4z〈OK

Q〉 = exp(iπQ/2)〈OK
Q〉, 2y〈OK

Q〉 = (−1)K+Q〈OK −Q〉
and 2xy〈OK

Q〉 = (−1)K exp(iπQ/2)〈OK −Q〉. The latter iden-
tity follows most easily from 2xy = 2y4z.

Site symmetry 3xyz imposes 〈U 3+2〉′′ = −〈U 3−2〉′′ and thus
�3+2 = −�3−2. Let us consider the Bragg diffraction pattern
indexed by (h, k, 0). In this case, A3

2 = isin(2δ)�3+2 and
B3

2 = cos(2δ)�3+2, where δ is the angle of rotation in the
plane of scattering that aligns (h, k, 0) with the axis −x
in Fig. 2, e.g., cos(2δ) = (h2 − k2)/(h2 + k2). The crystal c
axis is normal to the plane of scattering at ψ = 0. Scattering
amplitudes vanish for h = k and conditions h, k = 4n that de-
fine space-group allowed reflections. The mentioned findings
follow immediately from the general result

�3+2(213) = 2i
〈
U 3+2

〉′′{[exp (iϕh) + (−1)k exp (−iϕh)][exp (iϕk) + (−1)h+k exp (−iϕk)]

− exp[iπ (−h + k)/2][exp (iϕh) + (−1)h+k exp (−iϕh)][exp (iϕk) + (−1)h exp (−iϕk)]}. (4)

Here, ϕ = 2πxo where xo ≈ 0.064 is the general coordinate
[18]. Equation (4) is valid for space group No. 213. It is
found that multiplication of the minus sign in Eq. (4) by
(−1)h+k yields the corresponding result for No. 212. We
then find �3+2(213) = �3+2(212) = 0 for h = k = 0. Ev-
idently �3+2(h, k, 0) = −exp[iπ (−h + k)/2]�3+2(k, h, 0),
and �3+2(h, 0, 0) is different from zero for h = 2(2n + 1).

B. Sites 12(d)

To begin with, from Sec. II and Appendix A site symmetry
2yz is consistent with a quadrupole (K = 2) and projections
Q = ±1. Scattering amplitudes for E2-E2 are the subject of
Appendix B, and we continue with a discussion of E1-E1
amplitudes.

The electronic structure factor �2
Q admits projections Q =

±1 and ±2, since four operations among the 12(d) ions in
the unit cell induce Q = ±2. One operation in question is
2xz〈O2+2〉 = [〈O2+1〉 + 〈O2−1〉]/2. The three remaining op-
erations obey symbolic relations 2−xz = 4y = −4y

−1 = −2xz.
Application of these findings to an E1-E1 event yields scatter-
ing amplitudes,

(σ ′σ )11 = −isin(2ψ )A2
1 − sin2(ψ )A2

2,

(π ′π )11 = −isin2(θ )sin(2ψ )A2
1 + [1 − sin2(θ )sin2(ψ )]A2

2,

(π ′σ )11 = −sin(θ )
[
icos(2ψ )A2

1 + (1/2)sin(2ψ )A2
2
]

+ cos(θ )
[− cos (ψ )B2

1 + isin(ψ )B2
2
]
, (5)

and (σ ′π )11 is obtained from (π ′σ )11 through a change in
sign of A2

Q. The amplitudes admit even and odd harmonics
of ψ . Indeed, only (σ ′σ )11, being proportional to sin(ψ), has
a dominant ψ dependence. From Eq. (5) we establish a chiral
signature,

ϒ11 = − sin (θ )[1 − cos2(θ )sin2(ψ )]
(
A2

1A2∗
2

)′

+ cos(θ ) cos (ψ )[1 + cos2(θ )sin2(ψ )]
(
A2

2B2∗
1

)′′

− cos3(θ ) sin (ψ ) sin (2ψ )
(
A2

1B2∗
2

)′′
. (6)

Note the absence in ϒ11 of contributions using products of
A2

1 and B2
1 or A2

2 and B2
2. Axial quadrupoles 〈T 2

Q〉 in A2
Q

and B2
Q apply to the resonance event of interest. A radial

integral 〈1s|R|4p〉2 is a prefactor in calculated amplitudes, to
be replaced by 〈1s|R2|3d〉2 in the E2-E2 event discussed in
Appendix B. Foregoing expressions for scattering amplitudes
and the chiral signature are valid for all Miller indices. Next,
we use l = 0, and some values of ϒ11(h, k, 0) calculated from
Eq. (6) are displayed in Fig. 3.

Values of A2
Q and B2

Q are derived from �2±1 = α ± iβ
and �2±2 = ±γ using the definition A2

Q + B2
Q = exp(iQδ)

�2
Q, whereupon A2

1 = (αcosδ−βsinδ), B2
1 = i(αsinδ +

βcosδ), A2
2 = iγ sin(2δ), B2

2 = γ cos(2δ). For space
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group No. 213,

α(213) = Z[exp (iπh/4) − (−1)k exp (−iπh/4)][exp (iχk) + (−1)h+k exp (−iχk)],

β(213) = −2iZ exp(iπh/2){[1 − (−1)h+k] sin (χh) cos (πk/4) + [1 + (−1)h+k] cos (χh) sin (πk/4)},
γ (213) = −2iZ sin (χh + πk/2)[exp (iχk) − (−1)h exp (−iχk)], (7)

where Z = 2i〈T 2+1〉′′ and χ = 2πyo with yo ≈ 0.202 [18].
Our results for ϒ11 and ϒ22 exploit the identity (A2

1B2∗
1 )′ =

(αβ∗)′′ = 0 for all h, k.
We now use a generic notation ϒ(h, k, l) for the

chiral signature as results and discussions apply to both
E1-E1 and E2-E2 events. There are no bulk signals, be-
cause all three quantities in Eq. (7) vanish for h = k = 0,
a result in line with sites 8(c) with ϒ(h, k, l ) = 0. In the
case of sites 12(d), ϒ(h, k, 0), is zero for γ = 0, because
the chiral signature is provided by interference between
multipoles with different projections. Other general prop-
erties of note are ϒ(h, k, 0) = 0 when h, k = 4n, meaning
α = β = 0, ϒ(h, 0, 0) = ϒ(0, k, 0) = 0, while ϒ(h, k, 0) =
−ϒ(−h,−k, 0). The latter identity follows from the corre-
sponding phases acquired by α → (−1)h+1α, β → (−1)h+1β

and γ → (−1)hγ under simultaneous changes in sign to h,
k. With indices h, k odd, α and β are purely real and γ is
purely imaginary. The reverse over real and imaginary is true
for h = 4n and k odd, and the corresponding ϒ(h, k, 0) is
also nonzero. Setting h = k reveals α = β for space-group
forbidden h = (2m + 1) and h = 2(2n + 1). In consequence,
A2

1 = 0 for Bragg spots (h, h, 0), while B2
2 = 0 because

δ = 45◦.
After repeating for space group No. 212 the lengthy algebra

behind Eq. (7), one finds all-important relations,

α(212) = α(213), β(212) = (−1)h+kβ(213),

and γ (212) = (−1)hγ (213). (8)

Consider the particular class of space-group forbidden re-
flections for which Miller indices are odd. In this case, the
first two results in Eq. (8) tell us that linear combinations of
α and β, which make up A2

1 and B2
1, are identical in the

two enantiomorphs, while A2
2 and B2

2 derived from γ alone
simply have opposite signs in the two enantiomorphs. From
these findings and Eqs. (6) and (B2) it follows that, for h, k
odd, chiral signatures ϒ(h, k, 0) possess equal magnitudes
and opposite signs for the two enantiomorphs. A feature of
these reflections is that ϒ(h, h, 0)�cos(ψ), and ϒ11(3, 3, 0)
and ϒ22(3, 3, 0) are included in Fig. 3. For the same condi-
tions, the scattering amplitudes (π ′σ )11 and (π ′σ )22 are also
proportional to cos(ψ) and vanish for ψ = 90◦ while (σ ′σ )
and (π ′π ) are different from zero. With h = 2(2n + 1) the
chiral signature ϒ(h, h, 0) = 0 for ψ = 90◦, although diffrac-
tion patterns for the two enantiomorphs are identical when h
is even.

We close the discussion of diffraction enhanced by E1-
E1 and E2-E2 events by considering Bragg spots (0, 0, l).
Electronic structure factors �2±1(�2±2) are different from
zero for l odd (even), and l even are space-group forbidden.

Specifically, for space group No. 213,

�2±1 = 4Zsin(χ l )[±1 − (−1m)], l = (2m+1),

�2±2 = ±4iZ (−1)n+1, l = 2(2n+1).
(9)

Scattering amplitudes are obtained using B2
1 = 4Zsin(χ l )

and B2
2 = (−1)mB2

1, and A2
1 = 4iZ (−1)n, with all other
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FIG. 3. The chiral signature ϒ(h, k, 0) = ϒ(−h, −k, 0) of β-Mn
for Miller indices h and k odd as a function of azimuthal angle ψ in
the range 0◦–180◦. (a) E2-E2 event Eq. (B2) and (b) E1-E1 event
Eq. (6) hold for P4132 (No. 213). Results for P4332 (No. 212) differ
in sign alone from those displayed. Scans are symmetrical about ψ =
180◦. Gray curve ϒ(1, 3, 0), Bragg angle θ = 28.3◦; orange curve
ϒ(3, 5, 0), θ = 61.0◦; blue curve ϒ(3, 3, 0), θ = 39.5◦. ϒ(h, k, 0)
and ϒ(k, h, 0) are related by a sign change and shift of 180◦, with
ϒ(h, h, 0) zero at ψ = 90◦. Also, ϒ(h, k, 0) and ϒ(−h, k, 0) are
related by a shift of 180◦ in the azimuthal angle.
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A2
Q and B2

Q zero. At the origin of the azimuthal angle scan
the a axis is normal to the plane of scattering. Evidently,
ϒ(0, 0, l ) = 0 for l even (A2

2 and all B2
Q zero) and l odd (all

A2
Q zero).
To establish a difference between the two enantiomorphs

revealed in (0, 0, l) Bragg spots, we examine the difference
in structure factors �K

Q = [�K
Q(213) − �K

Q(212)] that is
particularly simple for 12(d), because contributions from sites
generated by 4y and 2xz = −4y cancel. One finds �2+1 =
�2−1 = −8Zsin(χ l )(−1)m and �2±2 = 0 for l = (2m + 1).
In consequence, E1-E1 and E2-E2 unit-cell scattering ampli-
tudes only differ in one factor, namely, B2

2 = −�2+1.

V. DISCUSSION

The cubic polymorph β-Mn is of particular interest be-
cause the chemical structure is chiral and it is used by
materials with intriguing, and potentially useful, electronic
properties [25–28,41]. Even with the current interest, the
structure type has not been investigated with an x-ray tech-
nique known to be well suited for investigations of crystalline
chirality. We refer to Bragg diffraction of x rays with the
benefit of intensity enhancement from an atomic resonance
[10–15]. A comprehensive knowledge of β-Mn structural chi-
rality would seem highly desirable in building a reliable model
of the electronic properties.

Using the pair of enantiomorphic space groups P4132 (No.
213) and P4332 (No. 212) previously established for β-Mn
from Bragg diffraction patterns generated by conventional
Thomson scattering, we calculated all scattering amplitudes
for resonant diffraction to be confronted with experimental
results at a future date [18]. Some properties of the calculated
amplitudes are not found in previous diffraction studies of
materials with chemical structures described by the trigonal
enantiomorphic pair P3121 (No. 152) and P3221 (No. 154),
namely berlinite, tellurium, and low quartz. The favorable Mn
K-edge energy and β-Mn cell size give access to several Bragg
spots. Many Bragg diffraction patterns exploiting 3d atomic
resonances, including the Mn K edge, have been reported in
the past three decades.

While individual, polarization-dependent β-Mn scattering
amplitudes, Eqs. (3) and (5), merit testing as functions of az-
imuthal angle and Bragg angle, we encourage measurements
of a partial intensity linked to circular polarization in the
primary x-ray beam. Such intensity arises when helicity in
the x-ray beam meshes with a chiral axis, and it is promoted
as a signature of structural chirality. The partial intensity in
question is denoted ϒ(h, k, l), with h, k, l integer Miller in-
dices. For trigonal crystals and space-group forbidden Bragg
spots, ϒ(No. 152) and ϒ(No. 154) are equal in magnitude and
opposite in sign for a reflection vector parallel to the screw
axis, i.e., the sign of ϒ(0, 0, l) with l �= 3n is attached to an
enantiomorph. Calculated for β-Mn, we find ϒ(0, 0, l ) = 0,
likewise the remaining symmetry related signatures. Whereas,
ϒ(h, k, 0) with odd Miller indices is shown to label β-Mn
enantiomorphs.

The self-enantiomeric cubic space group P213 (No. 198)
is usually assigned to sodium bromate crystals. Templeton
and Templeton confirmed the assignment, and measured weak
Bragg reflections forbidden by the systematic-absence rules

for the 21 screw axis using signal enhancement from the
bromine K edge [16]. A 21 screw axis imposes the selection
rule (l + Q) even on bromine multipoles 〈OK

Q〉, while site
symmetry 3xyz in P213 demands projections Q even in an oc-
tupole, cf. Appendix B. The crystal class 23 (T) allows optical
activity, as in the cases of the trigonal and cubic structures
belonging to crystal classes 32 (D3) and 432 (O), respectively.
The natural circular dichroic signal is proportional to the polar
quadrupole 〈U 2

0〉 forbidden by site symmetry 3xyz. Likewise,
symmetries of environments at sites 8(c) and 12(d) in P3121
and P3221 for β-Mn forbid 〈U 2

0〉.
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APPENDIX A: ROTATION MATRICES

The rotation 3xyz = C3[111] equates to a cyclic change
of Cartesian coordinates represented by (x, y, z) → (z, x, y)
and it is a symmetry of sites 8(c), together with C3[11−1] =
(y,−z,−x), C3

2[11−1] = (−z, x,−y), etc., required by the
cubic symmetry. For a multipole,

〈
OK

Q
〉
zxy = exp (iqβ )dK

Qq(β )
〈
OK

q
〉
xyz, (A1)

with an implied sum on projections labeled q, dK
Qq(β )

is a standard Wigner rotation matrix [42], and the angle
β = π/2. From (A1) it follows that [〈O3+2〉−〈O3−2〉]zxy =
[〈O3+2〉−〈O3−2〉]xyz. Symmetry 2yz of sites 12(d) leads to

〈
OK

Q
〉
−xzy

= exp [i(Q + q)β]dK
Qq(β )

〈
OK

q
〉
xyz

. (A2)

Identity (A2) is satisfied by [〈O2+1〉 + 〈O2−1〉] = 2i〈O2+1〉′′,
where the equality follows from our definition 〈OK

Q〉∗ =
(−1)Q〈OK −Q〉. Of two nontrivial rotations required to con-
struct the 12(d) electronic structure factor, 2xz(x, y, z) →
(z,−y, x), with

2xz
〈
OK

Q
〉 = (−1)qdK

Qq(β )
〈
OK

q
〉
, (A3)

while the second rotation 4y(x, y, z) → (z, y,−x), with

4y
〈
OK

Q
〉 = dK

Qq(β )
〈
OK

q
〉
. (A4)

Evaluation of a sum on projections q in foregoing re-
sults is facilitated by use of an identity dK

Q−q(β ) =
(−1)K+QdK

Qq(β ) [42]. For example, the result 4y〈O2
Q〉 =

Zd2
Q1(β )[1 + (−1)Q] with Z = 2i〈O2+1〉′′ uses (A4) and site

symmetry 2yz.

APPENDIX B: E2-E2

Reduced radial matrix elements for Mn (3d5) calculated
from Cowan’s program [43] are 〈1s|R|4p〉/ao = −0.003 54
and 〈1s|R2|3d〉/ao

2 = 0.000 95, where ao is the Bohr radius.
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The dipole matrix element is small compared to its value for L2,3 edges 〈2p|R|3d〉/ao = −0.2062, as expected. The four
scattering amplitudes are

(σ ′σ )22 = (π ′π )11, (π ′π )22 = cos (4θ )(σ ′σ )11

(π ′σ )22 = sin(3θ )
[
icos(2ψ )A2

1 + (1/2)sin(2ψ )A2
2
] + cos(3θ )

[
cos (ψ )B2

1−isin(ψ )B2
2
]
, (B1)

and (σ ′π )22 is obtained from (π ′σ )22 through a change in sign to A2
Q. Notably, (π ′σ )22 can be derived from (π ′σ )11 by making

replacements sin(θ ) → −sin(3θ ) and cos(θ ) → −cos(3θ ) in the latter. We go onto find a chiral signature,

ϒ22 = sin (3θ )
(
A2

1A2∗
2

)′{cos (2ψ ) + [sin2(θ ) + cos (4θ )]sin2(ψ )} + cos (3θ ) cos (ψ )
{
[1 − sin2(θ )sin2(ψ )]

(
A2

2B2∗
1

)′′

+ 2sin2(θ )sin2(ψ )
(
A2

1B2∗
2

)′′} + cos (3θ ) cos (4θ ) cos (ψ )sin2(ψ )
{(

A2
2B2∗

1

)′′ − 2
(
A2

1B2∗
1

)′′}
. (B2)

Some results for ϒ22(h, k, 0) are displayed in Fig. 3.
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