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We define a class of tensor network states for spin systems where the individual tensors are functionals of
fields. The construction is based on the path-integral representation of correlators of operators in quantum field
theory. These tensor network states are infinite-dimensional versions of matrix product states and projected
entangled pair states. We find the field tensor that generates the Haldane-Shastry wave function and extend
it to two dimensions. We give evidence that the latter underlies the topological chiral state described by the

Kalmeyer-Laughlin wave function.
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I. INTRODUCTION

Tensor networks (TNs) are becoming a key tool to describe
many-body quantum systems [1]. On the one hand, they can
efficiently approximate quantum states of local Hamiltonians
in thermal equilibrium, which has led to powerful numer-
ical algorithms with applications in condensed matter and,
to some extent, in high-energy physics [2]. On the other
hand, they provide us with paradigmatic examples of strongly
correlated states and thus allow us to investigate intriguing
many-body quantum phenomena. For instance, they offer us
a guide to classify symmetry-protected topological phases
[3,4], or to understand a large variety of topologically ordered
behavior. In fact, states (or models) like the Affleck-Kennedy-
Lieb-Tasaki (AKLT) [5], string-net states [6], or resonating
valence-bond states have a very simple description in terms
of TNs. By simple we mean they have a small bond dimen-
sion, D, which limits the number of coefficients describing
the tensors generating the many-body states. The description
of such states in terms of TNs automatically opens up the
possibility of using powerful tools in order to describe their
physical properties by just inspecting a simple tensor. In one
dimension, one can easily describe symmetries and string
order parameters [7,8], or even gauge symmetries [9]. In two
dimensions, apart from obtaining the physical symmetries,
one can directly identify the topological properties or type of
anyon excitations of the parent Hamiltonian [10].
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There exist, however, some classes of states for which no
exact expressions in terms of tensor network states of finite
bond dimensions exist. Two prominent examples are critical
states [11], and chiral topological states of gapped Hamilto-
nians in one- (1D) and two-dimensional (2D) spin lattices,
respectively [12,13]. The reason behind the lack of description
as a TN for the first stems from the fact that critical states
violate the area law [14,15]. Specifically, the entanglement
entropy of a connected region containing L spins scales as
xIn(L) [16,17], whereas for a matrix product state (MPS),
the one-dimensional version of tensor network states, it is
bounded by 21In(D); therefore, in the thermodynamic limit
for any finite D, there always exists some L for which an
MPS cannot cope with the amount of entanglement and thus
it is impossible that it describes a critical state. The reason for
the second class is more subtle and yet not fully understood;
however, there are good reasons to believe that there exist ob-
structions due to the nonexistence of local Wannier states [18]
(see, however, [19]). In fact, for Gaussian fermionic states, it
is not possible to describe gapped chiral topological insulators
[20].! We emphasize that here we mean an exact description;
in fact, both classes of states may well be approximated effi-
ciently with an error that decreases as D increases [21-23].

The arguments above do not prevent the existence of exact
descriptions of critical or chiral topological states with TNs
of infinite bond dimensions. In [24], it was noted that the
conformal field theory (CFT) formulation [25] of the Haldane-
Shastry state has similarities with MPS, and in [21-23], the
CFT formulation was used to obtain MPS with a discrete,
infinite bond dimension describing chiral topological states

'Even though those do not possess topological order, but rather
belong to a symmetry-protected topological phase, they constitute a
strong evidence for the impossibility of describing chiral topological
phases corresponding to gapped local Hamiltonians.
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in two dimensions. From the tensor network perspective it
is, however, desirable to use projected entangled pair states
(PEPSs) to deal with 2D systems. Furthermore, although the
approach of [21-23] can, in principle, be used to describe crit-
ical states in one dimension with open boundary conditions, it
is more appropriate to use periodic boundary conditions for
translationally invariant systems.

Here, we define field tensor networks (FTNs) for spin
lattices in any dimension, where the bonds in the tensors are
functions, the corresponding contractions are accomplished
by a path integration, and the tensors themselves are func-
tionals. The virtual space is hence continuous. We show how
this approach can be used to describe translationally invari-
ant critical systems, as well as the analogs of PEPSs for
two-dimensional systems. Our construction is reminiscent of
recent proposals for constructing tensor networks for quantum
fields, where path integration is also employed [26,27]. In our
case, however, we deal with discrete spin lattices and the con-
struction is quite different. We give a procedure to compute
the FTN for states whose coefficients in the spin basis can be
written as vacuum correlators of a quantum field theory with a
local action. In particular, we give an explicit construction for
free boson CFTs and vertex operators. We also take advantage
of the fact that the Haldane-Shastry state [28,29], a prominent
critical state, can be expressed in that form [24,30] to compute
a FTN generating that state. The description allows both pe-
riodic and open boundary conditions. We also propose a FTN
in two dimensions and give strong evidence that it represents
a Kalmeyer-Laughlin state [12], a prototypical representative
of chiral topological order.

II. FTN IN ONE DIMENSION

We consider a spin chain of N spins of dimension d, and a
translationally invariant state
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D is the bond dimension, and for each value of s =1, ...,d,

A; , is a D x D matrix. In an analogous way we define (trans-
lationally invariant) field tensor network states (FTNSs) as
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Here, o, : R — R belong to the set of square-integrable func-
tions and also include a constant function, and for each value
ofs=1,...,d, .A;’ﬂ are functionals of «, 8. Note that W has
the same structure as a MPS, where the indices of the matrices
are replaced by the functions «,,, and the sum over repeated
indices is replaced by a path integral.
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FIG. 1. (a) The CFT is defined on a cylinder of radial (axial)
coordinate x (). The spins (represented as red points) are punctures
at positions (x,, 0). (b) The path integral defining the state is extended
over the cylinder. The functional A corresponds to the integra-
tion over a stripe, where the boundary conditions for ¢ are given
by «, and ¢, ;. Panels (c) and (d) illustrate the sewing and closing

conditions, respectively.

fulfilling
A = / DIBIA 5 Ay, (5a)

oy = / Dlal AL, (5b)

which we will call “sewing” and “closing” conditions.

Example. Particularly interesting examples of FTNSs are
those for which the coefficient can be written in terms of
correlators of a simple CFT in 1 4+ 1 dimensions and a local
action. Specifically, we here study a family of critical states in
one dimension with

Csppoysy X 52,1 51,0 1_[ Xsn 1_[ {sin[(x,, — xm)/N]}2qzs,,s,,,. 6)

n>m

Here, x, = n(n — %), q is a real number, ¥, is a phase factor
that may depend on s,, and s, = £1. The member of the
family with ¢ = 1/2 and x,, = €™ ~1/2 is the ground state
of the Haldane-Shastry model, which has been extensively
studied in the literature as a paradigm of criticality. The wave
function (6) has also been used as an ansatz for the ground
state of the Hamiltonian of the XXZ spin-1/2 chain in the
critical regime with anisotropy parameter A = — cos(4mg?)
[24].

The states (6) violate the area law, so that they cannot be
written as MPSs with finite bond dimension. Nevertheless, we
will show here how they can be expressed as FTNSs.

It is not difficult to show that [31]

x (XS] - Pl . Xsy NPy . )0’ 7

where ¢ is a real scalar field defined on a cylinder of cir-
cumference N, :: denotes normal ordering, the r, = (x,, 0)
are points in cylindrical coordinates (see Fig. 1), and the
expectation value is taken in the vacuum. In this case, using
the path-integral representation we have

Copymi X f Dlgle Seit v [ x,,. ®)
n
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where

1
S =

N e}
= dx / dt{[d:p(x, DI* + [B,0(x, DI*}  (9)
8 0 —00

is the Euclidean action of the boson field. Notice that Eq. (9)
vanishes if ¢ is a constant ¢y which upon integration generates
the constraint ) s, = 0 appearing in Eq. (6).

In order to find the FTNS representation of Eq. (7), we
rewrite

/D[w] = /D[a1]-~- D[Otzv]/ Dlgi]--- / Dlgn].

(10)

Here, o, (¢) is a function of ¢ only, and ¢, (x, t) is defined in the
interval (x,t) € [x, — 8, x, + 8] x R with § = 7 /2, and the ’
indicates that it fulfills the boundary condition (see Fig. 1)

(11a)
(11b)

(X — 8, 1) = a(1),
(pn(xn + 8» t) - 05n-4—1(t)-
Thus, we simply identify

i L
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where the ’ indicates that ¢ has @« = «; and o’ = a7, as
boundary conditions, and S is defined as in Eq. (9) but with
the integral in x restricted to the interval [x; — &, x; + 4].
Note that Eq. (3) trivially follows. The sewing and closing
conditions (5) are represented for this case in Figs. 1(c) and
1(d).

In the Supplemental Material [32], using Green’s function
techniques, we explicitly compute

L
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and ¢ is the zero mode of the boson field that has been
subtracted from the functions «, o’ to guarantee their nor-
malizability. Here & = (o, '), and U is a 2 x 2 matrix with
elements

vnest = &y - () ] ()
L,110r22 - L2 sinh2 (2[_L) t [ ’

2
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and
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where P/(%) = —%(m + ﬁ) is the derivative of the
principal value distribution P(%).

Chiral version. We aim at also being able to describe chiral
states, and as a test case, we next consider a chiral formu-
lation of the critical states (6). In this formulation the states
are defined in terms of a chiral free boson field ¢(z), which
depends on z, but not on its conjugate z. The states are again
given by Eq. (7), except that the vertex operators now take
the form : ¢'4¢@) : where ¢ € R and z, =t + ix, [the wave
function obtained with these chiral vertex operators coincides
with Eq. (6) except that v/2¢ is replaced by ¢]. This correlator
can be written as in Eq. (8) with a chiral action [33] employed
to study the edge excitations in the quantum Hall effect [34].
However, the slicing of the path integral into the intervals
(x,1) € [x, — 8, x, + 8] x R introduces boundaries that mix
the left- and right-moving modes of the bosonic field, which
in turn complicates the approach.

We notice, however, that in Eq. (16) there are two parts
related by complex conjugation. Moreover, Eq. (14) comes
from a Green’s function with four terms where only one of
them is analytic in the location of the vertex operators. It is
therefore natural to expect that one obtains the chiral state
by selecting only one of those parts. We use this property to
define the new tensors

L
N i oo _1yp 2 80 (1), &)
A = i DSOS T, (19)

o
n=1

where
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L
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The factor L~ 244" guarantees that Eq. (19) satisfies the sewing
condition (5).

The wave function that one obtains using Eq. (19) coin-
cides with Eq. (6) (although with ¢ replaced by +/2¢, so that
the Haldane-Shastry state now corresponds to g = 1/+/2).
This is not evident when comparing Eqgs. (19)—(21) with
Egs. (13)—(16) as they look very different, and it is not obvious
that they are related by a gauge transformation [1]. However,
one can prove this statement by showing that Eq. (19) fulfills
the sewing condition (5) and that by closing Eq. (5b) one
indeed obtains the Haldane-Shastry wave function. We show
that in the Supplemental Material [32], where we use the
translational invariance of the action restricted to the strip
along the ¢ coordinate, which allows us to diagonalize in k
space. Thus, the procedure leading to Eq. (19) provides a field
theory version of the chiral vertex operator in CFT.

III. FTN IN TWO DIMENSIONS

The constructions presented above can be straightfor-
wardly extended to represent states in two dimensions,
corresponding to, e.g., a square spin lattice. We construct it
on a cylinder, although one can similarly use a torus. The
strip [x, — &, x, + 8] X R considered above is replaced by
the rectangle [x, — 8, x, + 8] X [ty — &', t,, + 8']. We define
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FIG. 2. FTNS in two dimensions: (a) functions on which
depends upon, and (b) arrangement on a cylinder.

5
An,mB,m Yo On,m

the functional A; B Yoo which depends on the func-

tions Onms IBn,m [tm 8 Im + 3 ] — Rand (Sn,mv VYnm - [xn -
8, x, + 8] = R [see Fig. 2(a)]. By arranging the functionals
along the cylinder [Fig. 2(b)], identifying functions like in
Fig. 2(a), and integrating over them, one can construct states
very much in the same way as one builds PEPSs in two
dimensions.

Example. Again, an illustrative example is provided by
states that are expressed in terms of a simple CFT with a local
action. For instance, we can define a spin state as (see Fig. 2)

/
Ao Yom o = f D[gle SWlglawtoni) —(22)
|

witha = (a, B,y,8),§ =& =1, and &

Here, ¢ : [x, — 8, x, + 8] x [t,, — &8, t,, + 8] = R is a real,
scalar field in 1 + 1 dimensions, and with the boundary con-
ditions

Pxn = 8,1) = oty (1), (23a)
©x, +68,1) = Bum(@), (23b)
P, ty — 8') = Yum(x), (23¢)
QX ty +8') = 8,.m(%). (23d)

We then carry out the path integral in Eq. (22). The main
technical tool to do this is to apply a conformal map that
transforms the rectangle [x, — &, x, + 8] X [ty — &', t,y + 8]
into the complex upper-half plane in terms of Jacobi elliptic
functions. In the case (n, m) = (1, 0) one finds (see the Sup-
plemental Material [32])
s (1) 5@
A g s=e T, (24)

where
0= / ds dE' @)U E £HaE),  (25)

s = 4— / dg a()@(E)" — &), (26)
7 Jz

= &, = x. The integration domain 7 is adapted to the type of variables involved. U is

a 4 x 4 matrix, some of whose elements are (the complete matrix is given in the Supplemental Material [32])
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Ui, t') = 8(
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Uia(t, 1) = Uy (t,1") = 8k a

Usa(t,t') = Ugs(t,1') = 8

— kZsn(t)sn(t))? ’
A cn(t)sn(t)en(t)sn(t")

Un(t, 1) = Uy (t, 1),

Here, sn(t), cn(t), and dn(t) are Jacobi elliptic functions
of modulus k and sn(t), cn(t), and dn(t) of modulus k' =
~/1 — k2, where k is determined from the aspect ratio §/8’
of the considered rectangle [32]. In the limit kK — 1, the
rectangle degenerates into a strip and we recover the matrix
elements (17).

As in the previous example we can truncate this functional
to a chiral one,

AY s = Xe€ S(1>+§<2>7 (28)
where the phase factor y; can be chosen at will and
A s
=L / dE @(E)3(E)" (29)
4 T
We here consider the system on a cylinder, and to remove

the virtual degrees of freedom on the boundaries, we take the
rectangular regions for the boundary spins to go all the way

(dn(t) + dn(t ))?
Un(t,t') = Uss(t, 1). 27)

(

to infinity. These boundary tensors can be obtained following
the same approach as for the tensors in the bulk. We conjecture
that sewing these amplitudes we get the wave function

Csp,osy X Szn $n,0 1_[ Xsu H(Zn - Zm)qzx,,xm (30)

n n>m

with z, = t, + ix,. When g = 1/«/5, Eq. (30) is a 2D topo-
logical state in the same universality class as the bosonic
Laughlin state at filling fraction 1/2, and the Kalmeyer-
Laughlin wave function is obtained for N — oo [35].

IV. CONCLUSIONS

We introduced a class of TN constructed using functionals
of fields that are contracted by means of the path integral of the
functions defined on the links of the network. These tensors
satisfy sewing and closing conditions that are similar to those
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employed in the construction of the scattering amplitudes in
string theory [36,37].

We illustrate our approach using a massless boson in two
dimensions that allows us to derive the Haldane-Shastry wave
function that describes a critical state in the universality class
given by the WZW model SU(2);. We also conjecture the
field tensor that generates the Kalmeyer-Laughlin state, which
suggests that the chiral PEPSs underlying topological chiral
states in two dimensions require infinite bond dimension.
The latter suggestion could be further studied by truncating
the field variables to a finite number of modes in which case
the field tensor provides a PEPS with finite bond dimension.
We have here focused on lattice states, but, utilizing the tech-
niques in [38] to approach the continuum limit of the states,
one could similarly describe continuum states. The definition
of field tensor network states applies equally well to other
types of lattices than those considered here. Our approach also

allows a way to study topological chiral states based on the
symmetry properties of the field tensors.
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