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Homotopical characterization of non-Hermitian band structures
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We proposed a framework for the topological characterization of non-Hermitian band structures. Different
from previous K-theoretical approaches, our approach is homotopical, which enables us to see more topological
invariants. Specifically, we considered the classification of non-Hermitian systems with separable band struc-
tures. We found that the whole classification set is decomposed into several sectors, based on the braiding of
energy levels. Each sector can be further classified based on the topology of eigenstates (wave functions). Due to
the interplay between energy levels braiding and eigenstates topology, we found some torsion invariants, which
only appear in the non-Hermitian world via homotopical approach. We further proved that these new topological
invariants are unstable, in the sense that adding more bands will trivialize these invariants.
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I. INTRODUCTION

While we are used to assuming the Hermiticity of Hamil-
tonians, as required by the axioms of quantum mechanics,
there has been growing interest in non-Hermitian Hamiltoni-
ans. Indeed, in the Hermitian quantum mechanics framework,
non-Hermitian Hamiltonian can emerge as an effective de-
scription of open systems with gain and loss [1–21] or
systems with finite-lifetime quasiparticles or non-Hermitian
self-energy [22–24], which can be experimentally realized in
atomic or optical systems [25–31]. Moreover, non-Hermitian
Hamiltonians with certain properties can serve as an extension
of conventional Hermitian quantum mechanics [32–34].

Classification of topological phases of matter has been one
of the central problems in condensed matter physics for the
last two decades. While a complete classification of topolog-
ical phases is still in progress, the classification for gapped
noninteracting fermions is well-established [35–38] based on
the geometry and topology of the band structures.

Inspired by the great success in topological phases for
Hermitian systems, there have been lots of works focusing
on the topological aspects of non-Hermitian systems [39–45].
On the one hand, many familiar constructions for topological
phases can be extended in the case of non-Hermiticity. For
example, people have constructed the non-Hermitian counter-
parts for the Su-Schrieffer-Heeger model [5,20,46–49], Chern
insulators [50–54], and quantum spin Hall effects [55]. On the
other hand, non-Hermitian systems also exhibit many unusual
phenomena with no counterpart in the Hermitian world. These
include exceptional points [56–58], anomalous bulk-edge cor-
respondence [20,59–62], non-Hermitian skin effect [50,63],
and sensitivity to boundary conditions [59,64]. For a recent
review, see Ref. [65] and references therein.

There have been some works [39–43] on the general classi-
fication of non-Hermitian systems, aiming at a generalization

of the Hermitian periodicity table [36,37]. In these works,
the authors first determined reasonable symmetry classes in
the non-Hermitian setting (a generalization of Ref. [35]), then
used a unitarization/Hermitianization map to reduce the prob-
lem into the Hermitian setting where one can apply K-theory.

In this article, we proposed a more conceptually straight-
forward homotopical [66–71] framework towards the topo-
logical classification of non-Hermitian band structures, which
enables us to see more topological invariants beyond K-
theoretical approaches. With rigorous algebraic-topological
calculation, we implemented our idea in detail for systems
with no symmetry.

We found that, due to the non-Hermiticity of the Hamil-
tonian, energy levels can be complex and therefore braid with
each other in the complex plane, which decomposes the whole
classification set into several braiding sectors. Each sector
can be further classified based on the topology of eigenstates
(wave functions), akin to the usual topological classification
for Hermitian systems, but with more subtleties coming from
the braiding of energy levels and the shape of the Brillouin
zone (torus vs sphere). We found some new torsion invariants
(for example, Z2), and a physical explanation of these new
invariants is given.

We also considered the stability of these new invariants,
in the sense that whether adding other bands will trivialize
these invariants, even if the band has no crossing with previous
bands. Similar to the Z invariants of Hopf insulators [68],
our torsion invariants are unstable. We managed to give a
combinatorial proof for instability in general. The physical
origin of the instability is also discussed.

This article is organized as follows. In Sec. II, we discuss
our classification principle: what kind of systems we are look-
ing at, and what we mean by two systems are in the same
class. In Sec. III, the classification principle is implemented
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mathematically, and some examples are discussed in Sec. IV.
Finally, we investigate the instability in Sec. V.

II. PRINCIPLE OF CLASSIFICATION

A classification problem, formally speaking, is to classify
elements of a set according to some equivalence relations. In
many problems of condensed matter physics, the set is usually
taken to be the set of Hamiltonians H with an “energy gap,”
while H1 and H2 are equivalent if and only if they can be
continuously connected while keeping the gap open.

For Hermitian systems, there is no subtlety regarding the
meaning of the gap, since all eigenvalues of a Hermitian
Hamiltonian are real and the meaning of a gap on the real line
is clear. For non-Hermitian systems (interacting or not), how-
ever, the eigenvalues can be complex. Therefore, the meaning
of a “gap” needs to be further clarified [40,53,72].

Consider a non-interacting non-Hermitian system with
translational invariance. Standard second quantization and
band theory give rise to momentum-dependent one-body
Hamiltonians H (k). In this article, we will call {H (k)} (k ∈
BZ, the Brillouin zone) a band structure, which contains
information of both their spectrum Ei(k) and associated eigen-
states |ψi(k)〉.

One has at least the following different notions of the gap:
(i) Line gap [40,73]. There exists a (maybe curved) line

l in the complex energy plane which separates the plane into
two disconnected pieces. We require Ei(k) /∈ l for all i and k,
and both connected components have some spectral points in
them.

(ii) Point gap [39–41,43]. Ei(k) �= 0 for all i and k. Here,
0 is a reference point which can be altered to any E0.

(iii) Separable band [51,53]. A specific band Ei(k) is
called separable if Ej (k) �= Ei(k) for all j �= i and k.

(iv) Isolated band [53]. A specific band Ei(k) is called
isolated if Ej (k′) �= Ei(k) for all j �= i and k, k′.

Note that these notions are not mutually exclusive. For
example, an isolated band is always separable; systems with
isolated bands always have line gaps and hence always have
point gaps. Also note that the first two notions are applicable
to general non-Hermitian systems, while the last two notions
are specific to translational-invariant noninteracting cases by
definition.

In our article, we will consider the classification of sepa-
rable band structures, since other cases were solved [39–43]
by mapping back to the Hermitian case. However, there is one
more problem with the definition of separability that needs
to be discussed: the above-mentioned Ei(k) may not be a
well-defined function of k.

For example, consider a one-dimensional systems with two
bands, satisfying E1(k) �= E2(k) for all k. It is possible that
E1(2π ) = E2(0): if one follows the spectrum when k goes
around the Brillouin zone (a circle in this case) starting from
E1(0), one may go to E2(0) instead of going back to E1(0);
see Fig. 1. In this case, the notation “Ei(k)” (and therefore
its separability) for a specific i may not be well defined.
Instead, it is better to define separability in a global manner:
for any k, Ei(k) (i = 1, . . . , n) are all different. This definition
of separability automatically rules out exceptional points, i.e.,

k
0 2�

FIG. 1. Z2 braiding of energy levels. In this figure, the disk is the
complex energy plane, with two spectra points in it; k is the Bloch
momentum, k = 0 and k = 2π should be identified.

H (k) is not diagonalizable under similarity transformations,
since it requires (algebraically) degenerated spectra.

To summarize, we will consider the following problem:
classify the band structure {H (k)} where spectra of H (k) are
nondegenerated and {H0(k)} and {H1(k)} are equivalent if and
only if they can be continuously connected by {Ht (k)} for
t ∈ [0, 1] and the spectra of Ht (k) for any t and k are always
nondegenerated.

III. CLASSIFICATION

Let us consider the general problem of classifying band
structures with n bands on an m-dimensional lattice. Denote

Xn = the space of H (k). (1)

Namely, it is the space of n × n matrices with nondegenerated
spectrum. Here the Brillouin zone will be the m-dimensional
torus T m. Mathematically speaking, we want to find the homo-
topy equivalent classes of nonbased maps from the Brillouin
zone T m to Xn, denoted by [T m, Xn].

It will be important to distinguish T m and Sm, since they
will give different answers. It is also important to distinguish
based maps and nonbased maps: the former require a chosen
point in T m to be mapped to a chosen point in Xn while the
latter have no such requirement [74].

To calculate the classification, we are going to use some
standard methods in algebraic topology. For an introduction,
see Ref. [75].

A. The space Xn and its homotopy groups

An element H of Xn is an n × n matrix with
nondegenerated spectrum, which can be represented as
(λ1, . . . , λn, α1, . . . , αn). Here, (λ1, . . . , λn) are ordered
eigenvalues satisfying λi �= λ j , i.e.,

(λ1, . . . , λn) ∈ Confn(C), (2)

where Confn(C) is the configuration space of ordered n-tuples
in C. (α1, . . . , αn) are corresponding eigenvectors (up to com-
plex scalar multiplications), which are linearly independent.
Denote the space of linearly independent ordered n-vectors
(up to scalar) in Cn as Fn. We have

Fn
∼= GL(n)/C∗n, (3)
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since GL(n) acts transitively on Fn and the stabilizer group
is C∗n, where C∗ = C − {0}, the group of nonzero com-
plex numbers. Another way to understand this equation is to
consider the columns of a GL(n) matrix, which are ordered
n-vectors in Cn, while “up to scalar” is taken care of by n
independent scalar multiplications C∗n. The space Fn is actu-
ally homotopic to the full flag manifold (the space of subspace
sequences) of Cn.

This representation has some redundancies: one can per-
mute (λi, αi ) and get the same matrix H . Therefore,

Xn
∼= (Confn ×Fn)/Sn, (4)

where Sn is the permutation group acting on Confn ×Fn as
simultaneous permutations of (λi, αi ).

Consider π1(Confn), whose elements are (equivalence
classes of) paths in Confn, which correspond to some pure
braidings of n mutually different points in C. Here, “pure”
means each point goes back to itself after the braiding. This is
true since we are considering ordered n-tuples. Therefore,

π1(Confn) = PBn, (5)

where PBn is the pure braiding group (no permutation) of n
points [76,77].

It turns out [78] that Confn = K (PBn, 1), the classifying
space of the group PBn. Therefore,

πm(Confn) = 0, m � 2. (6)

The homotopy groups πm(Fn) can be obtained by the long
exact sequence of homotopy groups [75], based on the fibra-
tion equation (3). For m = 1, we have

π1(C∗n) → π1(GL(n)) → π1(Fn) → π0(C∗n) = 0. (7)

Here, π1(C∗n) = Zn, π1(GL(n)) = Z, which is essentially the
determinant. The map π1(C∗n) → π1(GL(n)) is exactly sum-
ming over n components in Zn, which is surjective. Therefore
π1(Fn) = 0. For m = 2, we have

0 = π2(GL(n)) → π2(Fn)
∂−→ π1(C∗n) → π1(GL(n)). (8)

Therefore, π2(Fn), as the kernel, is represented by n integers
with summation equal to 0:{

(t1, . . . , tn) ∈ Zn
∣∣∣∑ ti = 0

}
, (9)

which is isomorphic to Zn−1. This representation with n inte-
gers will be useful later. For m � 3, we have

0 = πm(C∗n) → πm(GL(n)) → πm(Fn) → πm−1(C∗n) = 0,

(10)
therefore πm(Fn) = πm(GL(n)) = πm(U (n)).

To summarize, the result is as follows:

πm(Fn) =
⎧⎨
⎩

0, m = 1,

Zn−1, m = 2,

πm(U (n)), m � 3.

(11)

Now consider the space Xn. According to Eq. (4) and the
fact that Sn is discrete, higher homotopy groups πm�2(Xn)
are the same as those of Confn ×Fn, therefore the same as
Eq. (11), due to Eq. (6).

For the fundamental group π1, one can take advantage of
the fact that π1(Fn) = 0 and show that

π1(Xn) = π1(Confn /Sn) = Bn. (12)

Here Sn acts on Confn by permutations, giving the configu-
ration space Confn /Sn of nonordered n-tuples in C, whose
fundamental group is Bn, the braiding group including “non-
pure” braidings.

This is because a loop in Xn corresponds to a path p(t ) =
(p1(t ), p2(t )) in Confn ×Fn such that p1(1) = gp1(0) and
p2(1) = gp2(0) for the same g ∈ Sn. Note that g is uniquely
determined by p1(1) [the initial point (p1(0), p2(0)) is a fixed
lifting] and Fn is simply connected, the path one-to-one (ho-
motopically) corresponds to a path in Confn with p1(1) =
gp1(0) and therefore a loop in Confn /Sn. A more algebraic
proof is to note that the actions of Sn on Confn ×Fn and Confn

are consistent, which gives the pullback

Confn ×Fn Confn

Xn Confn/Sn

, (13)

and then apply the homotopy exact sequence for this pullback
square.

The appearance of the braiding group Bn is easy to under-
stand. Consider a one-dimensional band structure and follow
the evolution of spectrum {Ei} along the Brillouin zone circle.
Similar to n = 2 case in Sec. II as shown in Fig. 1, in general
points in {Ei} will braid with each other during this evolution
and may become other points after one cycle. The evolution
of n disjoint points is topologically classified by the braiding
group Bn.

B. The set [T m, Xn]

The equivalent class [T m, Xn] is related but may not be
equal to the homotopy group πm, which is, by definition,
〈Sm, Xn〉. Here, 〈−,−〉 is used for based maps, while [−,−]
is used for nonbased maps. In general, [T, X ] is just a set with
no extra structures, even if T is a sphere, in which case 〈T, X 〉
is exactly a homotopy group. The relation between [T, X ] and
〈T, X 〉 for general spaces T and X is as follows [75]: There is a
right action of π1(X ) on 〈T, X 〉, and [T, X ] ∼= 〈T, X 〉 /π1(X ),
the orbit set of the action.

We will first calculate 〈T m, Xn〉 and then use the above
connection to obtain [T m, Xn].

In the case m = 1, π1(Xn) acts on 〈T 1, Xn〉 = π1(Xn) by
conjugate,

[ f ][γ ] = [γ −1 ◦ f ◦ γ ], (14)

therefore [T 1, Xn] is the set of conjugacy classes of group Bn.
Determining the conjugacy classes of braiding group Bn is a
difficult problem [79] except for n � 2. Geometrically they
one-to-one correspond to equivalence classes of closed braids
in the solid torus, which in turn can be regarded as (special)
links in the solid torus [80].
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In the case m = 2, the set 〈T 2, X 〉 is given by [81] (see also
Appendix 1)⋃

a, b ∈ π1(X )
ab = ba

π2(X )/〈t − t a, t − t b | t ∈ π2(X )〉, (15)

where t a is the result of a ∈ π1(X ) acting on t ∈ π2(X ). Note
that this is a noncanonical identification. In our problem, the
result is⋃

a, b ∈ Bn

ab = ba

Zn−1/ 〈t − t a, t − t b〉 def=
⋃

a, b ∈ Bn

ab = ba

Q(n, a, b). (16)

In other words, the classification of based maps is decom-
posed into several sectors, denoted by a pair of commuting
braidings [82] a, b ∈ Bn; classification within each sector
(a, b) is given by the quotient Q(n, a, b), a finite-generated
Abelian group, by identifying t with t a and t b.

Physically, the braidings a, b are given by following
two nontrivial circles la, lb in the Brillouin zone T 2. Since
lalbl−1

a l−1
b is the boundary of the 2-cell of T 2, the corre-

sponding braiding aba−1b−1 must be trivial, hence ab = ba.
Fixing a, b, the map on the 2-cell is determined by π2(Xn) =
π2(Fn) = Zn−1, which are essentially (n − 1) Chern numbers,
up to some ambiguities taken care of by the quotient.

The action t �→ t a here is determined as follows. Re-
call from Eq. (9) that π2(Xn) = Zn−1 can be represented by
{(t1, . . . , tn) ∈ Zn| ∑ ti = 0}. a ∈ Bn induced a permutation
ã ∈ Sn by forgetting the braiding. Then t a is represented by
a permutation of (t1, . . . , tn):

(t1, . . . , tn) �→ (ta(1), . . . , ta(n) ). (17)

The proof of this statement is a bit technical. However, since it
is the root of most novel classifications in this article, we give
a detailed proof in Appendix 2.

Now consider the action of π1(Xn) = Bn on 〈T 2, Xn〉. Pick
c ∈ Bn; then c act on (a, b) by conjugate:

(a, b) → (c−1ac, c−1bc). (18)

The action of c on t̄ ∈ Q(n, a, b) is induced by the action of
π1(Xn) on π2(Xn): under c, t goes to t c, t a goes to t ac, there-
fore t − t a goes to t c − (t c)c−1ac, therefore the action of c on
t̄ ∈ Q(n, a, b) is well defined as t̄ c = t c ∈ Q(n, c−1ac, c−1bc).
Note that Q(n, a, b) ∼= Q(n, c−1ac, c−1bc), due to fact that
Eqs. (16) and (17) only care about the permutation structure
of a, b, which is invariant under conjugation. We finally get

[T 2, Xn] =
⋃
(a, b)

ab = ba

Q(n, a, b), (19)

where (a, b) means a conjugacy class of commuting pairs
under Eq. (18), and Q(n, a, b) = Q(n, a, b)/π s

1 (Xn) is the or-
bit set (not quotient group) of Q(n, a, b) under the stabilizer
subgroup π s

1 (Xn) that keeps (a, b) invariant.
The reason for the appearance of this π s

1 (Xn) action can
be traced back to the difference between [T, X ] and 〈T, X 〉.
Physically, there is no natural way to label the bands (even if
no braiding happens, namely, a = b = id). In the Hermitian
case, bands are naturally ordered according to their energy,

which is not the case for complex energy levels. Therefore
there are some redundancies corresponding to change the
label of bands (see Sec. IV B for an example). Also note that,
while Q(n, a, b) is a finite generated Abelian group, Q(n, a, b)
is just a set.

IV. EXAMPLES

A. Non-Hermitian bands in one dimension

In the case of m = 1, we know from Sec. III B that band
structures are classified by the conjugacy classes of group Bn.

Determining the conjugacy classes of braiding group Bn

is only easy when the number of bands n = 2, where the
braiding group B2 is just Z: a ∈ Z is the number of elementary
braidings (half of a 2π rotation), with a even implying a pure
braid and a odd implying a permutation. In this case, each
conjugacy class only contains one element, since Z is Abelian.
Therefore, the classification is given by

[T 1, X2] = Z. (20)

The same classification was found in Ref. [53]; see Eq. (8)
therein. Note that authors there use 1

2Z instead of Z: their
spectral “vorticity” is exactly half of the above invariant.

B. Two-band Chern “insulators”

Consider the case with m = n = 2, namely, band structures
with two bands in two-dimensional (2D) space. This corre-
sponds to Chern insulators in the Hermitian case. However, it
may not be a true insulator in the non-Hermitian case if there
is no line gap (to place the chemical potential).

Let us calculate Q(2, a, b) and Q(2, a, b), where a, b ∈
B2 = Z. There are four cases, depending on the even/odd
values of a and b.

(i) a, b even. Then t a = t b = t , therefore Q(2, a, b) = Z.
The action of c ∈ π1(Xn) on Q(2, a, b) might be nontrivial:
it acts as taking opposite if c is odd (see below), therefore
Q(2, a, b) = N, the set of nonnegative integers.

(ii) a even, b odd. Then t a = t while t b = −t in
the sense that (s,−s)b = (−s, s). Therefore Q(2, a, b) =
〈(s,−s)〉 / 〈(2s,−2s)〉 ∼= Z2. The action of π1(Xn) at most
takes (s,−s) to (−s, s), which has no effects on Z2, therefore
Q(2, a, b) = Z2.

(iii) a odd, b even. Same as above.
(iv) a, b odd. Then t a = t b = −t , Q(2, a, b) =

Q(2, a, b) = Z2.
Therefore, band structures are classified by⋃

a,b∈Z
N or Z2. (21)

1. Understanding the N invariant

The N classification (instead of Z) comes from the fact that
we have no natural way to identify “upper band” and “lower
band” as in the Hermitian case, since there C is not naturally
ordered as R. This new feature of non-Hermitian classification
will disappear if, for example, we have a fixed line gap, where
the classification will go back to Z.
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( )a ( )b

a

a

'a

'a

FIG. 2. (a) Following one band, we get a map from a cylinder
to S2. To define the WZW term, one needs to close the cylinder
with two caps in a consistent way (not necessarily antipodal in
the non-Hermitian case). Here the arrow represents orientation, not
to be confused with the way one identifies two boundaries. (b) A
deformation retraction from F2/S2 to RP2. Each point in F2/S2 cor-
responds to a pair of different points in S2. We draw the great circle
corresponding to that pair, and then gradually push the pair to an
antipodal pair (corresponding to a point in RP2). If a pair is already
antipodal, nothing needs to be done. In this way, we have defined a
deformation retraction.

2. Understanding the Z2 invariant

The Z2 classification in some sectors is a more interesting
phenomenon. It comes from the interplay between spectrum
braiding and eigenvector topology (Chern band). Here, we
provide a formula as well as heuristic arguments for this
invariant.

We will concentrate on the case where (a, b) is (even, odd).
The (odd, even) case is similar; the (odd, odd) case can be
handled by a Dehn twist [83]. Also note that the Z2 invariant
essentially comes from the (odd, even) sector of [T 2, F2/S2]
(F2/S2 is the space of distinct pairs of states), as one can see
by following the same calculations as above.

We claim the following formula for this invariant:

C = 1

2π

∫
BZ

εi jBi j (k)d2k + SW ZW (a, a′). (22)

In the first term, the Berry curvature Bi j (k) [53] is defined
by following one band, therefore it has a discontinuity at
the boundary; the integral is over the conventional 2π × 2π

Brillouin zone. The second term SW ZW (a, a′) is a boundary
Wess-Zumino-Witten (WZW) term [84], defined as follows.
By following one band, one gets a map from a cylinder to the
Bloch sphere S2, such that, for any point on the left boundary
a, the corresponding point on the right boundary a′ maps to
a different point on S2 (since they correspond to linear inde-
pendent vectors); see Fig. 2. We then close two boundaries
in a consistent way [67] such that the above condition is still
satisfied on two “caps.” This is always possible since [ã] = 0
in π1(F2/S2) due to the assumption that a is even, where ã
denotes the map from the nontrivial loop (boundary) to the
space of pairs F2/S2. Then SW ZW (a, a′) is defined as

1

4π
× oriented area of caps on S2. (23)

By adding the caps, we obtain a closed manifold, therefore
Eq. (22) is an integer. As always, there are some ambiguities
in the definition of SW ZW , corresponding to the ambiguities
in adding the caps. Importantly, the consistency for the caps
requires that Eq. (22) can only be shifted by 2 (instead of 1)

2�0 2�0
( )a

( )b

0 2�

0 2�

0 2�

0 2�

1C �1C �

-1C� -1C� -1C�

-1C� -1C� -1C�

1C �1C �

0 2�

0 2�

2C �C �

-2C� -C�C�

FIG. 3. Physical origin of the Z2 invariant. (a) Due to energy
level braiding, the Brillouin zone is better considered as a torus with
size 4π × 2π on which the energy E (k) and wave function ψ (k) are
well defined: if one follows one band on the conventional Brillouin
zone of size 2π × 2π , then after 2π one goes to the other band. The
dashed lines indicate this “gluing.” (b) Each solid line represents a
cylinder similar to those in (a), the dashed lines again indicate the
“gluing.” Starting with trivial bands, one adds ±1 “bumps” to the
upper band and ∓1 “bumps” to the lower band, then moves the right
pair (circled by the dashed line) to the right. After 2π , they will
switch, resulting in a C = 2 “bump” in the upper band and C = −2
“bump” in the lower band.

by the ambiguities [85]. To see this, note that we have a defor-
mation retraction from F2/S2 to RP2, as defined in Fig. 2(b).
After this deformation retraction, the consistency condition
simply requires that corresponding points in two boundaries
map to antipodal points. Therefore, two caps should always
be antipodal to each other, and

SW ZW (a, a′) = 2SW ZW (a). (24)

Therefore, C is only defined mod 2 and we obtain a Z2

invariant.
Another way to understand the Z2 invariant is as follows.

Using the above deformation retraction, we see that this Z2

can also be understood from [T 2, RP2]. For the (odd, even)
sector, we have the diagram

2T 2 S2

T 2 RP 2

, (25)

therefore the classification amounts to classifying covariant
maps from 2T 2 to S2. Here, 2T 2 is a double cover of Brillouin
zone T 2, by gluing two cylinders along the b direction; see
Fig. 3; “covariant” means corresponding points in the left and
right cylinder should map to antipodal points.

155129-5



ZHI LI AND ROGER S. K. MONG PHYSICAL REVIEW B 103, 155129 (2021)

Now, we can add a “bump” of Berry curvature with positive
1 integral and a “bump” with negative 1 integral by deforming
the eigenstates, both in the “upper band.” It is necessary to
add opposite bumps due to the covariant constraint. We can
then move a pair of bumps along the b direction for 2π . After
this procedure, we effectively add a C = 2 bump to the “upper
band” and a C = −2 bump to the “lower band.” Therefore, C
is again only well defined mod 2.

C. n-band Chern “insulators”

The conjugacy classes and commuting pairs are hard to
describe if n > 2. However, the quotients Q(n, a, b) for given
braiding sector (a, b) are not hard to calculate.

Recall from Eq. (17) that π2(Xn) = Zn−1 =
{(t1, . . . , tn)| ∑ ti = 0} and (t1, . . . , tn)a = (ta(1), . . . , ta(n) ),
where a(i) is the image of i under the permutation a.
Therefore, the subgroup to quotient out is (we only write
down the t a part)

〈t − t a〉 =
〈
(t1 − ta(1), . . . , tn − ta(n) )

∣∣∣∑ ti = 0
〉
. (26)

There are only (n − 1) independent ti: we can use tn =
−∑n−1

i=1 ti to get rid of the constraint. Then the subgroup (26)
is generated by 2(n − 1) (not necessarily independent) gener-
ators. For example, take t1 = 1, t2 = · · · = tn−1 = 0, tn = −1
and consider the action of a, we get a generator e1 − ea−1(1) −
en + ea−1(n), where e1 = (1, 0, . . . , 0,−1), e2 = (0, 1, 0, . . . ,

0,−1), en−1 = (0, . . . , 0, 1,−1), en = (0, . . . , 0). Therefore,
Q(n, a, b) is the quotient of 〈e1, . . . , en−1〉 with 2(n −
1) relations ei − ea−1(i) − en + ea−1(n) (i = 1, . . . , n − 1). Its
structure can be determined by standard procedure using the
Smith normal form (normal form for integer matrix under
elementary row/column operations).

As a simple example, consider the case where a : 1 →
2 → 3 → 4 → 1, b : 1 → 4 → 3 → 2 → 1. This is possi-
ble, say, by taking a to be a braiding with such permutation
structure, then taking b = a−1. The auxiliary “generators”
given by ti = 1, t1 = · · · = ti−1 = ti+1 = · · · = tn = 0 written
in terms of n-tuples are the ith columns of the following
matrix: ⎡

⎢⎣
1 −1

1 −1
1 −1

−1 1

⎤
⎥⎦. (27)

Since the true generators are given by taking ti = 1, tn =
−1, t j = 0( j = 1, . . . , i − 1, i + 1, . . . , n − 1), we need to
subtract the last column from all other columns and delete the
last row. The matrix of true generators for 〈t − t a〉 is⎡

⎣1 −1
1 −1

1 1 2

⎤
⎦, (28)

and similarly for b ⎡
⎣ 2 1 1

−1 1
−1 1

⎤
⎦. (29)

Juxtaposing those two matrices and calculating the Smith
normal form of the result, we get⎡

⎣1 0 0 0 0 0
0 1 0 0 0 0
0 0 4 0 0 0

⎤
⎦, (30)

which means Q(4, a, b) = Z4.
Another example is when b = id, i.e., no permutation. We

can decompose a into cycles: a = (· · · )(· · · ) · · · (· · · ). Denote
the length of each cycle to be l1, . . . , lk (

∑k
i=1 li = n), where k

is the number of cycles. In this case, we can follow the above
procedure and get an explicit formula for Q(n, a, b).

Denote an l × l matrix of form Eq. (27) to be Jl ; then the
counterpart of Eq. (27) (where columns are auxiliary “gener-
ators”) is ⎡

⎢⎢⎣
Jl1

Jl2
. . .

Jlk

⎤
⎥⎥⎦, (31)

and the counterpart of Eq. (28) by subtraction and deleting is⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jl1

Jl2

. . .

1 1 1 1 1 1 J̄lk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

where J̄lk is an (lk − 1) × (lk − 1) matrix of form Eq. (28). To
clarify, the last row of the above big matrix is (1, 1, . . . , 1, 2).
It is easy to perform row transformation on the above matrix
and get ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kl1

Kl2

. . .

0 l1 0 l2 · · ·· Klk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (33)

where Kl = diag{1, . . . , 1, 0} (size l), Kl = diag{1, . . . , 1, l}
(size l − 1). To clarify, the last row of the above big matrix
is (0, . . . , 0, l1, 0, . . . , 0, l2, . . . , 0, . . . , 0, lk ). Therefore, the
structure of Q(n, a, b) is

Q(n, a, b) = Zk−1 ⊕ Zgcd (l1,...,lk ), (34)

where Zgcd (l1,...,lk ) is the greatest common divisor and Z1

means trivial group {0} if gcd = 1.
The Zk−1 comes from the fact that we have k groups of

bands (bands that transfer to each other under braidings are
in the same group). Each band has an integer Chern number,
with summation equal to 0. This is the same as the Hermitian
case. However, there is an extra Zgcd. We also see that the
extra torsion part is determined by all band groups as a whole,
not from any specific band group. It shows some complicated
interplay between energy braiding and eigenstates topology.
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With other permutations a, b (a, b �= id), it is possible to
get more than one torsion. An example is a : 1 ↔ 2, 3 ↔ 4
with b : 1 ↔ 3, 2 ↔ 4. The algorithm will give us Z2 ⊕ Z2.

V. INSTABILITY

Examples in Sec. IV show that our homotopical approach
reveals more topological invariants than the traditional K-
theory approach. For example, a two-band Chern “insulator”
in 2D may reveal some Z2 classification due to the nontrivial
topology of the spectrum.

Similar phenomena also happen in the Hermitian world.
For example, in three dimensions (3D), insulators in class A
are always trivial according to the periodicity table. However,
one can still have a Z classification if the number of bands
is fixed to be 2, due to π3(CP1) = Z. This is called the
Hopf insulator [68], which is unstable against adding more
bands. Indeed, as long as one adds one more band above or
below the Fermi surface, the classification will be trivial due
to π3(GrC (3, 1)) = 0 (and similarly for more bands), where
GrC (3, 1) is the complex Grassmannian.

A natural question arises: Are our new topological invari-
ants stable against adding bands?

As an example, let us consider two-band systems in 2D as
in Sec. IV B, and add one more band. Since the classification
is decomposed into braiding sectors and each sector has its
own classification set, it only makes sense to add a band with
no permutation with previous bands (therefore it does not alter
the braiding sectors). For each sector (a, b), adding a band
without permutation is to add a length-1 cycle after previous
a, b, denoted by a′, b′.

(i) a, b even. Then a′ and b′ are trivial permutations, there-
fore Q(3, a, b) = Z2, which are just two Chern numbers.

(ii) a even, b odd. Then a′ is trivial while b′ decomposes
as (12)(3). Equation (34) shows that Q(3, a′, b′) = Z.

(iii) a odd, b even. Same as above.
(iv) a, b odd. Then both a′ and b′ are of the form (12)(3).

A Smith normal form calculation shows Q(3, a′, b′) = Z.
In all cases, we see that the extra band contributes a Chern

number Z, as well as kills the old Z2 invariants if there are
any, even if the Z2 comes from other bands that never intersect
with the added band. This is possible since the Z2 comes not
just from those two bands, but from all three bands as a whole,
as noted at the end of Sec. IV C.

The instability of Z2 can be understood as follows. Assum-
ing a odd and b even, consider the procedure shown in Fig. 4:
we start with three bands with Chern numbers 1,−1, 0, where
the first two bands switch to each other after 2π as in Fig. 3(a).
Add a negative bump and a positive bump in band 1, as well as
a positive bump and a negative bump in band 3; then move the
rightmost bump pair in band 1 and 3, so that the positive bump
cancels the negative bump in band 2; the remaining bumps
in band 1 and 3 can be easily canceled, leaving three trivial
bands. During the procedure, the local neutral condition is
always satisfied. Note that the third band is essential for this
argument to work.

Similarly, as long as b = id, Eq. (34) shows that Q(n +
1, a′, b′) has no torsion part.

We can prove a general result regarding the instability, even
if b �= id. For a system with n bands, consider the braiding

FIG. 4. Physical origin of instability. Similar to Fig. 3, solid lines
represent the Brillouin; dashed lines indicate the “gluing.” We start
with three bands with Chern numbers 1, −1, 0, where the first two
bands switch to each other after 2π . If we forget band 3, it will
be nontrivial, indicated by a Z2 invariant. However, adding band 3
and follow the procedure shown in the figure, we can make the band
structure totally trivial.

sector labeled by the commuting pair (a, b). Let us add an
extra no-permutation band; then the matrix of auxiliary “gen-
erators” is ⎡

⎣ 0
A B

0
0 0 0 0 0

⎤
⎦, (35)

where A and B are of form Eq. (31) up to some congruent
transformation by permutation matrices. The matrix of gener-
ators [counterpart of Eq. (28)] is therefore just

[A | B]. (36)

We claim that the invariant factors in its Smith normal form
must be 1. Indeed, we claim a more general statement:

Claim. Assume a matrix has the following property: there
are either 2 or 0 nonzero elements in each column; in the
former case, there is exactly one 1 and one −1. Then the
invariant factors of this matrix must be 1 (if there are any).

Proof. We prove by induction on the total number of
nonzero elements N . From the assumption, N must be even.
If N = 0, then the statement is trivially true.

Now assume the state is true for N and less, let us consider
N + 2. Denote the matrix to be A. Without lose of generality,
assume A1,1 = 1, A2,1 = −1, Ai,1 = 0 for i � 3. Add row 1 to
row 2, denote the new matrix as A′, then A′

i,1 = 0 for i � 2.
Moreover, from the assumption on matrix A, there are only
seven possible results from [A1,2

A2,2
] (we only write four of them,

the other three are obtained by adding negative signs):[
0
0

]
→

[
0
0

]
,

[
1

−1

]
→

[
1
0

]
,

[
1
0

]
→

[
1
1

]
,

[
0
1

]
→

[
0
1

]
.

(37)

Therefore, the column (A′
2,2, . . . , A′

n,2)T satisfies the same
assumption as columns of A. The number of nonzero ele-
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ments in this shorter column is less than or equal to that in
(A1,2, . . . , An,2)T . Other columns are similar.

Then we use column transformations to make A′
1,i = 0 for

i � 2, while keeping other elements. A′ is of the form

A′ =
[

1 0 0
0

A′′
0

]
. (38)

We can then apply the induction assumption on A′′ and finish
the proof. �

Therefore, Q(n + 1, a′, b′) is always of the form Zk . This
means all torsion invariants Zi(i � 2) are unstable against
adding a no-permutation band.

VI. CONCLUSION AND OUTLOOK

In this article, we considered the homotopical classifica-
tion of non-Hermitian band structures from first principles.
We found that the whole classification set is decomposed
into several sectors, based on the braiding of energy levels.
Fix a braiding pattern, we consider the classification coming
from nontrivial eigenstates topology. Since different bands
will transfer to each other under braidings, the classification
of band topology is not just a direct summation of Chern
numbers. Instead, the interplay between energy level braiding
and eigenstates topology gives some new torsion invariants.

The torsion invariants come from all bands as a whole,
instead of some specific band group. Namely, even if we add a
band with no crossing with previous bands, the torsion invari-
ants can in principle be changed. We found that the torsion
invariants are unstable, in the sense that just adding a trivial
band can trivialize them. This statement is proved based on an
interesting combinatorial argument.

Many future works can be done in this framework. First of
all, due to the complexity of the braiding group, it is compli-
cated to describe its conjugacy classes and commuting pairs,
let alone the conjugacy classes of commuting pairs. It will be
useful to develop more explicit descriptions of the braiding
sectors. On the more physical side, it is very interesting to
consider the physical consequence of these novel invariants,
in terms of physical observables. On the other hand, in this
article we only consider the case with no symmetry as an first
step. It is necessary to consider other symmetry classes using
our framework in order to find a complete classification.

Note added. Recently, Ref. [86] appeared and was brought
to our attention; it has partial overlap with our work. We thank
the authors therein for some helpful discussions.
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FIG. 5. (a) The definition of h ∈ π2(X ). It is defined by the
surface of the cube, made of f |T 2 , F (a), F (b), and the pre-chosen
F (a, b). (b) h̄ is well defined. The “cap” attached to the right surface
(the other one on the left is denoted with a dashed line) is the
other homotopy F ′(b). Here, F (b), F ′(b), and the homotopy between
f2 and f ′

2 define an element s ∈ π2(X ). Pictorially it is the right
“cap”+right surface. The one on the left corresponds to sa, since we
have to fixed a base point when defining π2(X ), say the one denoted
by •.

APPENDIX: SOME ALGEBRAIC TOPOLOGY DETAILS

1. Homotopy class 〈T 2, X〉: Proof of Eq. (15)

In this section, we prove Eq. (15) in detail:

〈T 2, X 〉 =
⋃

a, b ∈ π1(X )
ab = ba

π2(X )/〈t − t a, t − t b | t ∈ π2(X )〉,

(A1)

Namely, a homotopy class [ f ] ∈ 〈T 2, X 〉 one-to-one corre-
sponds to an element in the set described by the right-hand
side of Eq. (A1).

For each pair (a, b) ∈ π1(X )2 such that ab = ba, we
choose and fix two loops [87] a0, b0, and also choose and fix
a homotopy from a0b0a−1

0 b−1
0 to 0, denoted by F (a, b). Note

that a0, b0, F (a, b) are arbitrarily chosen. But once they are
chosen, they are fixed for all.

Given [ f ] ∈ 〈T 2, X 〉, we choose a map f : T 2 → X in this
class. There are two nontrivial loops (fixed) in T 2, denoted
by l1, l2, with the same base point. The restriction of f on
l1 defines a map (loop) f1 : S1 → X and therefore an ele-
ment a ∈ π1(X ). Similarly we have b ∈ π1(X ). Since the loop
l1l2l−1

1 l−1
2 is homotopic to 0 in T 2, we know ab = ba in π1(X ).

Obviously a and b are well-defined functions of [ f ].
Since loop f1 is homotopic to a0, there exists (not unique)

a homotopy F (a) from f1 to a0; the same for b and we have a
F (b). Now define an element h in π2(X ) as in Fig. 5(a). In this
way we get an element h̄ ∈ π2(X )/〈t − t a, t − t b | t ∈ π2〉.

We need to prove that h̄ does not depend on the choice of
f , F (a), F (b). To do this, assume we choose a different f ′ and
therefore different loops l ′

1, l ′
2 in X , different homotopy F ′(a)

and F ′(b), and different element h′ ∈ π2(X ). To compare h
and h′ we need to fix a base point. Define t to be the element in
π2(X ) determined by F (a), F ′(a) and the homotopy between
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f , f ′; see Fig. 5(b). Also from this figure, we know that

h′ = h + t − t b + s − sa, (A2)

therefore h̄ = h̄′.
The inverse map is easy to define. Therefore we have

proved Eq. (A1).

2. The action of π1(Xn) on π2(Xn): Proof of Eq. (17)

In this section, we prove that the action t �→ t a is deter-
mined by Eq. (17), which we rewrite here for convenience:

(t1, . . . , tn) �→ (ta(1), . . . , ta(n) ). (A3)

To see this, consider the projection

Xn = (Confn ×Fn)/Sn
j−→ Fn/Sn, (A4)

which induces an isomorphism on π2 and a surjection Bn →
Sn on π1. Therefore, the action of π1(Xn) on π2(Xn) factorizes
through the action of π1(Fn/Sn) = Sn on π2(Fn/Sn):

π2(Xn) π2(Xn)

π2(Fn/Sn) π2(Fn/Sn)

Bn

∼= ∼=
Sn

. (A5)

Geometrically, the action of [γ ] ∈ π1(Xn) on π2(Xn) is given
by any homotopy ft : S2 → Xn such that ft (s0) = γ (t ) (here
s0 is a base point on S2); under projection j, j ◦ ft gives a
homotopy S2 → Fn/Sn and therefore an action of p([γ ]) ∈ Sn

on π2(Fn/Sn).
We now show that the action of π1(Fn/Sn) = Sn on

π2(Fn/Sn) is given by Eq. (A3). Indeed, assuming the loop γ

in Fn/Sn is lifted to γ̃ in Fn, γ̃ (1) = gγ̃ (0) where g ∈ Sn. Then
a homotopy S2 → Fn/Sn corresponding to the [γ ] action will
be lifted to a homotopy that deforms the map f̃0 : S2 → Fn to
f̃1 : S2 → Fn such that f̃1(s0) = γ̃ (1), f̃0(s0) = γ̃ (0). In order
to identify the corresponding element of f̃1 in π2(Fn/Sn), one
just needs to consider g−1 ◦ f̃1 since they (g−1 ◦ f̃1 and f̃1) are
the same map after projection to Fn/Sn and g−1 f̃1(s0) = f̃0(s0)
is the correct base point; see Fig. 6 for illustration of the above
argument.

Now we identify g−1 ◦ f̃1 in π2(Fn) = Zn−1 according to

the injection π2(Fn)
∂−→ π1(C∗n) in Eq. (). Recall that the

boundary map ∂ is defined by a homotopy lifting. For exam-
ple, to identify ∂ ( f̃1), one regards f̃0 : S2 → Fn as a map I2 →
Fn, where f̃0(∂I2) = {b0}, then as a homotopy Ht : I1 → Fn.
Then lift H0 along into GL(n). This is just the trivial map to a
point, say e0. Then use the relative homotopy lifting property
to lift Ht for t ∈ I . H1(I ), which is the lift of f̃0 on I × {1}, is
now a loop based on e0, which induces an element in π1(C∗n).

In our case, g−1 ◦ f̃1 is just given by Fig. 7(a). We can
construct the lifting explicitly. First note that Sn has an action
on GL(n) by column transformation, which is the lift of its
action on Fn. We lift the path g−1(γ̃ ) in Fn to a path β in
GL(n) starting at e0. We can make it end at e−1 = g−1e0 by
gradually changing the phases of each column vector along
the path. Now the homotopy lifting is defined as follows [see
Fig. 7(b)]. For t ∈ [0, 1], scan the square in Fig. 7(a) from

FIG. 6. An illustration for the proof of Eq. (17). Assuming [γ ]
action takes an element in π2(Fn/Sn) (represented by A) to B, then the
lift f̃t will be a homotopy from Ã to B̃. To identify the corresponding
element of B̃ in π2(Fn/Sn), just consider g−1(B̃) since it is the same
as B̃ under projection.

bottom to up. For small t (before touching the inner square),
just lift the homotopy along β. Then one lifts the homotopy
inside the inner square by g−1◦ the homotopy lifting of f̃0.
After one passes the inner square, one can just move e−1 to
e0 by shrinking the line β. The homotopy class (n integers) of
the loops on fibers is invariant (For example, since we are only
looking at the bundle over an open path γ̃ , we can regard it as
a trivial bundle). The final lifting is a loop on the fiber over b0

with base point e0. It is easy to see this loop corresponds to
(17).

FIG. 7. (a) The definition of g−1 ◦ f̃1 [corresponds to g−1(B̃) in
Fig. 6]. Regard S2 as I2 with boundary points identified, then draw
a smaller square inside it. Define the map on the inner square as
g−1 ◦ f̃0 [would be g−1(Ã) in the notation of Fig. 6], so that the inner
boundary maps to g−1(b0). Then one connects the inner and outer
boundaries by the paths g−1(γ̃ ). One gets a well-defined map from
I2 to Fn, with the outer boundary mapping to b0. (b) Illustration of
the homotopy lifting process.
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