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Electron-phonon hydrodynamics
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We developed the theory of hydrodynamics of an isotropic Fermi liquid of electrons coupled to isotropic
acoustic phonons, assuming that umklapp processes may be neglected. At low temperatures, the fluid is approxi-
mately Galilean invariant; at high temperatures, the fluid is nearly relativistic; at intermediate temperatures, there
are seven additional temperature regimes with unconventional thermodynamic properties and hydrodynamic
transport coefficients in a three-dimensional system. We predict qualitative signatures of electron-phonon fluids
in incoherent transport coefficients, shear and Hall viscosity, and plasmon dispersion relations. Our theory may
be relevant for numerous quantum materials where strong electron-phonon scattering has been proposed to
underlie a hydrodynamic regime, including WTe2, WP2, and PtSn4.
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I. INTRODUCTION

The hydrodynamics of correlated electron liquids, theo-
rized many decades ago [1], has recently become increasingly
observable in experiments in a broad range of materials,
including graphene [2–10] and GaAs [11,12]; see [13] for a re-
cent review, and [14–21] for recent theoretical developments.
More speculatively, proposed evidence for hydrodynamics has
been put forth in WTe2 [22], WP2 [23–26], PtSn4 [27], and
PdCoO2 [28,29]. In these more complicated material systems,
the electron’s Fermi surface is highly anisotropic (and may be
multiple sheeted). Moreover, in many of these materials, it is
believed that electron-phonon scattering cannot be neglected,
and might even be largely responsible for the experimental
signatures of hydrodynamics. Can exotic hydrodynamics arise
in these material systems, with phenomenology beyond the
canonical (Galilean-invariant) hydrodynamics?

To begin to address this question, we revisit the hydrody-
namics of a coupled fluid of electrons and acoustic phonons,
in more than one spatial dimension d > 1. This problem
has arisen in the older solid-state literature [30,31], with a
recent work [32] revisiting this theory in light of the more
recent experimental developments cited above. The focus of
this earlier literature is largely on low temperature dynamics,
with a notable exception of [33,34] studying high temperature
phonon-dominated hydrodynamics. The purpose of this paper
is to show that there are at least seven distinct temperature
regimes of coupled electron-phonon fluids, exhibiting qualita-
tively distinct behaviors, that can arise at temperatures below
the Fermi temperature in d = 2, and at least nine different
temperature regimes in d > 2. These distinct temperature
regimes arise even with the simplest electron-phonon scatter-
ing integrals, and ignoring a multitude of possible microscopic
effects such as optical phonon scattering, anisotropy, or mul-
tisheeted Fermi surfaces. These distinct temperature regimes
are distinguishable when the ratio of the phonon velocity and
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the Fermi velocity is parametrically small. In practice, this
ratio might typically be around 0.01 to 0.1, which is small
enough to distinguish at least a few of the different fluids we
will describe (though distinguishing all nine regimes cleanly
would be difficult in principle and in practice). The previ-
ous literature [30–32,34] which focuses on electron-phonon
coupled fluids (as far as we could tell) studies only one of
these temperature regimes, which arises at the very lowest
temperatures.

However, we will argue, based on our theory and ex-
perimental data from the relevant materials, that this is not
the range of temperatures most relevant for understanding
signatures of hydrodynamics in experiments in many of the
material systems listed above. The main results of this pa-
per are the unique signatures of the hybrid electron-phonon
fluid as a function of temperature and/or magnetic field de-
pendence of numerous coefficients, including shear and Hall
viscosity, incoherent conductivity, and plasmon dispersion.
As we will discuss, these phenomena can be probed ex-
perimentally in the near future via numerous experimental
techniques, including conductance measurements in narrow
channels or constrictions [5,14], imaging methods [8–10], or
the properties of collective modes such as plasmons [35,36].
Our predictions are not unique to one class of material such
as WP2; instead, they follow only from the assumption that
electron-phonon (rather than electron-electron) scattering is
responsible for electron hydrodynamics.

II. SUMMARY OF RESULTS

We now broadly summarize our results. We first introduce
the model of interest. We consider an isotropic and weakly
interacting electron Fermi liquid, with an isotropic dispersion
relation. We suppose that the Fermi temperature is TF, the
Fermi momentum is pF, and the Fermi velocity is vF. We
assume the electronic density of states at the Fermi energy
is given by

ν = ∂n

∂μ
= �d−1

(2π )d
d pd−1

F

∂ pF

∂μ
= d

n

vF pF
= dn

mv2
F

∼ pd−1
F

vF
,

(2.1)
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where �d−1 is the area of the unit sphere in d − 1 dimensions
and m is an effective quasiparticle mass. Working in units
where kB = 1, the single-particle fermion dispersion relation
near the Fermi surface is

ε(p) = TF + vF(|p| − pF) + ∂pvF

2
(|p| − pF)2 + · · · . (2.2)

Similarly, we consider isotropic acoustic phonons whose fre-
quency is given by

ω(p) = vph|p|. (2.3)

We restrict our calculations to temperatures T � TF, and will
generally suppress all subleading corrections in the small
parameter T/TF except where stated. In usual metals (TF ∼
10 000 K) the criterion is impossible to violate, but for low
density systems it is possible, e.g., in graphene [3,6] and GaAs
[12,37,38]. The system we consider is d dimensional with
d > 1. Experimental systems exist with both d = 2 (exactly
or approximately) and d = 3.

For phonon modes to be effectively two dimensional in a
layered heterostructure, it is sufficient to have the thickness
of the material in the third dimension larger than h̄vph/kBT .
Although in principle this seems easily achieved in GaAs,
where [12] T ≈ 1 K and vph ∼ 4 × 103 m/s is appropriate for
the hydrodynamic regime (the desired thickness is of order
30 nm), in practice the phonons may not be sharply bound
to the GaAs layer in a heterostructure. Alternatively, one
may consider van der Waals heterostructures as a natural ex-
perimental playground for two-dimensional electron-phonon
hydrodynamics. A possible complication in these systems
(especially in suspended monolayer graphene) will be the
addition of low energy flexural phonons [39,40], which we
have not included in our calculation.1

Note that all of the materials WP2, WTe2, PtSn4, and
PdCoO2 are anisotropic. Moreover, analyses of models with
electron-electron scattering [29] demonstrate new phenomena
arising from anisotropy. Nevertheless, we focus on the simpler
setting of isotropic liquids in this paper. As we will see, this
simpler setting is already extremely complex. We anticipate
that nearly all of the qualitative features of our model will
continue to hold in anisotropic models, with the likely ex-
ception of the low temperature scaling of incoherent conduct-
ivity [29].

As such, we press on with our minimal model. There are
three dimensionless numbers that will prove particularly im-
portant in our analysis. First, there is the small parameter

ā ≡ a

pF
≡ πT√

3pFvF

, (2.4)

which represents the smallness of thermal fluctuations of
the electrons about their Fermi surface—specifically, the en-
hancement of the momentum carried by thermal fluctuations

1We nevertheless anticipate that the hydrodynamics of electrons
interacting with flexural phonons is, in many respects, rather similar
to what is described in this work, albeit with numerous crossover
temperatures modified, and temperature dependencies modified.

of electrons. Second, we have the ratio

w̄ ≡ w

pF
√

ν/2
≡ I (d )

pF
√

ν/2

√
T d+1

vd+2
ph

, (2.5)

where I (d ) is a dimensionless number defined in (A2). w̄

represents the ratio of the momentum carried by phonons to
momentum carried by electrons in equilibrium. As w̄ becomes
larger with increasing temperature, the fluid’s properties qual-
itatively change. w̄ � 1 and w̄ � 1 are both limits which
can be achieved in experimental devices, as we will soon see.
Finally, there is the small ratio

r = vph

vF
(2.6)

characterizing the small ratio of quasiparticle velocities be-
tween phonons and electrons. We assume that the dispersion
relation is sufficiently simple so that TF ∼ pFvF, in which case
we also obtain the following useful scaling relation:

w̄ ∼
(

T

TF

)(d+1)/2

r−(d+2)/2 ∼ ā(d+1)/2

r (d+2)/2
. (2.7)

The main result of this paper is the calculation of
hydrodynamic transport coefficients in electron-phonon hy-
drodynamics. We summarize the results in Table I. As a
function of temperature T , in d > 2 spatial dimensions there
is a zoo of temperature scales at which certain properties
change, which we list below:

T1 = r
d+2
d−1 TF, (2.8a)

T2 = r
d−1
d−2 TF, (2.8b)

T3 = r
d

d−1 TF, (2.8c)

T4 = r
d+2
d+1 TF, (2.8d)

T5 = TBG = rTF, (2.8e)

T6 = r
d

d+1 TF, (2.8f)

T7 = r
d−2
d−1 TF, (2.8g)

T8 = r
d−2
d+1 TF. (2.8h)

When temperature is low enough (T < T1), the phonon
modes essentially become irrelevant, except for providing a
scattering mechanism for the electrons. This is the regime
studied in previous papers [30,32].

However, above temperature T1, the phonons begin to play
a more interesting role. For the discussion that follows, let us
assume the ballpark estimates TF ∼ 10 000 K and r ≈ 0.03,
and consider a metal in d = 3. In this cartoon metal, T1 ∼ 2 K.
When T > T1, the phonons begin to dominate the incoherent
part of the charge conductivity, which now becomes anoma-
lously large, even for an isotropic fluid.2 However, in an

2Note that in an anisotropic fluid [29], the incoherent conductivity
will be large even in the lower temperature regimes, in which case
this temperature scale becomes more dramatic.
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TABLE I. A summary of the hydrodynamic properties of a coupled electron-phonon fluid. The ratio r is defined in (2.6) and the temperature
crossovers are defined in (2.8).

T < T1 T1 to T2 T2 to T3 T3 to T4 T4 to TBG TBG to T6 T6 to T7 T7 to T8 T8 to TF

regime I II III IV V VI VII VIII IX

sound velocity vF/
√

d vF/w̄
√

d vph/
√

d

charge current coherent (|Jinc〉 ∝ ā) coherent (|Jinc〉 ∝ w̄) incoherent

heat current incoherent coherent

energy current coherent incoherent coherent

electron scattering small angle large angle

bulk viscosity by |2〉e by |1〉ph by |1〉e
Σ v.s. η Σ < η Σ > η

isotropic fluid, the effect will be fairly small. At temperature
T2 (about 10 K), the bulk viscosity becomes dominated by
phonons, although again the correction is quite small. At
T3 (about 60 K) and beyond, the bulk viscosity becomes
dominated by electrons again, but is not suppressed for any
electronic dispersion relation.3

The fluid completely begins to change its character at T4

(in our cartoon, about 140 K). At this temperature, w̄ ∼ 1,
and so the momentum of the coupled fluid begins to be-
come phonon dominated. This leads to a number of crucial
changes, including a rapid decrease in the sound speed (vs ∼
T −(d+1)/2), a large incoherent electrical conductivity, and a
sound mode whose decay is dominated by incoherent con-
ductivity rather than viscosity. As we describe later, such
changes may be visible in experiments by studying changes
to the plasmon dispersion relation. At T5 = TBG, the Bloch-
Grüneisen temperature,4 there are surprisingly few changes
to the hydrodynamic properties of the fluid, beyond a possible
sharp decrease in the shear viscosity. In our numerical cartoon,
TBG ∼ 300 K is room temperature.

The final dramatic change arises at temperature T6 (about
800 K in our cartoon), where the phonons dominate the sound
mode, which now propagates at its high temperature velocity
of

vs = vph√
d

. (2.9)

At temperature T7 (about 1800 K in our cartoon), the heat
current becomes approximately coherent; at temperature T8

(about 4000 K in our cartoon) the energy current becomes
coherent. Once the energy current becomes coherent, the

3If the electrons had ε ∝ p2, then the bulk viscosity (in the absence
of phonons carrying momentum) exactly vanishes. For T < T1 this
implies the bulk viscosity is much smaller than it would be for
a generic Fermi liquid. Admittedly, this effect is very hard to see
experimentally; this is simply an interesting theoretical observation.

4The Bloch-Grüneisen temperature TBG arises when the phonon-
limited resistivity shows a dramatic change from ρ ∼ T d+2 to ρ ∼ T
[41] (in the absence of phonon drag, at least). It can be understood
from the bosonic nature of phonon modes: when T < TBG, the vol-
ume of phonon momentum integration is restricted to the T/vph

window; when T > TBG, the phonons are more like a classical gas
with equipartition distribution.

hydrodynamics of the coupled electron-phonon fluid becomes
essentially a nearly charge neutral relativistic fluid [42]: the
energy current and momentum density are approximately
equivalent, and the charge current is incoherent while the
energy/heat currents are nearly coherent. Interestingly
enough, the speed of sound of the fluid is also compatible
with a conformal fluid, since at high temperatures vph plays
the role of an approximate speed of light for the dominant
species. However, the fluid has the largest bulk viscosity at
these high temperatures, so it is not ultimately a conformal
fluid, even approximately [43].

In Sec. III we summarize the kinetic theory approach that
we use to derive electron-phonon hydrodynamics. While our
kinetic approach is the standard one, we have nevertheless
uncovered numerous phenomena (described above) that have
previously been overlooked. We further give brief arguments
that the presence of rapid phonon-phonon scattering at high
temperatures does not change many qualitative features of
the hybrid electron-phonon fluid. Section IV then derives
the main results about hydrodynamics that we summarized
above.

In Sec. V we review the thermoelectric transport properties
of an electron-phonon fluid in the presence of momentum re-
laxation [44], in light of the eight different temperature scales
described in (2.8). Although the precise temperature scales at
which the WF law fails are sensitive to the precise rates of mo-
mentum relaxation, we will see that the qualitative features of
thermoelectric transport in an electron-phonon hydrodynamic
metal can look quite similar to a nonhydrodynamic metal. We
will explain why, and give a qualitative overview of how the
different temperature scales in (2.8) relate to features in the
Lorenz ratio. Since typical electron-phonon fluids exhibit vio-
lations of the Wiedemann-Franz law just below TBG and many
of the signatures of electron-phonon hydrodynamics in mate-
rials such as WP2 and PtSn4 arises at temperatures just as L
dips below L0, it may be reasonable to estimate many electron-
phonon fluids as being in the temperature regime T4 < T <

TBG. A more careful consideration of basic experimental data
in Sec. V confirms this expectation. We hope, therefore, that
many of the exotic hydrodynamic phenomena described above
could (in principle) be observable. For example, in thin films,
the exotic sound speed might be observable by careful studies
of the temperature dependence of the real part of plasmon
dispersion relations, as we will describe in Sec. IV E. The
imaginary part of the plasmon dispersion relation also will
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obtain (in two dimensions) a highly unusual imaginary part
[45] arising from the large incoherent conductivity.

In Sec. VI we briefly describe hydrodynamics and transport
of the electron-phonon fluid in a background magnetic field.
For simplicity we focus on the case of two-dimensional sys-
tems. Depending on microscopic details of phonon-phonon
scattering, the relationship between shear viscosity and Hall
viscosity can either mirror a conventional Fermi liquid with
negligible electron-phonon scattering [46] or appear rather
unconventional.

We also note there is an extensive and decades-old lit-
erature on the hydrodynamics of phonons alone, including
the propagation of hydrodynamic “second sound” and other
hydrodynamic phenomena of interacting phonons [47–53].
This phonon-only hydrodynamics typically arises in electrical
insulators. We do not expect that the model of this paper is
directly applicable to such systems, if there is a small number
of thermally excited electrons or holes, because our model as-
sumes that the electrons are nondegenerate, and that T � TF.
It could be interesting to generalize our results to study this
alternative regime.

III. KINETIC THEORY

In this section we review a general formalism to solve the
transport problem. Our notation follows [54–56].

A. Formalism

Consider a Fermi liquid with weak interactions. For the
moment, let us imagine a single species of particle—we will
relax this shortly. We can describe transport by determining
the response of the distribution function f (x, p), which can
roughly be interpreted as the number of quasiparticles of mo-
mentum p near the spatial point x. Since these quasiparticles
are assumed to be long lived, this interpretation is sensible.
The evolution of f is governed by the Boltzmann equation
[57]:

∂t f + vp · ∂x f + Fext · ∂p f = C[ f ], (3.1)

where
vp = ∂pεp (3.2)

is the quasiparticle velocity, Fext is the external force, and
C[ f ] accounts for the multiparticle scattering events arising
due to interactions between quasiparticles. We assume the
electron band εp to be inversion symmetric and time reversal
symmetric and neglect the spin degree of freedom for simplic-
ity. We write

f (x, p) = f0(x, p) + δ f (x, p) ≡ f0(x, p) +
(

−∂ f

∂ε

)

(x, p),

(3.3)
where f0 is the equilibrium distribution function, and δ f is the
infinitesimal correction due to the deviation from equilibrium.
Within linear response, (3.1) reduces to

∂tδ f + vp · ∂xδ f + δFext · ∂p f0 = δC[δ f ], (3.4)

where the right-hand side is, in general, a nonlocal function in
p. The external force is given by

δFext = −eδE + (ε − μ)
∇δT

T
(3.5)

and arises due to external electric fields and temperature
gradients.

We interpret 
(x, p) as a vector, with the p dependence
abstracted into Dirac bra-ket notation. Hence we write

|
〉 =
∫

dd p
(x, p)|p〉, (3.6)

and define the inner product

〈p|p′〉 =
(

−∂ f

∂ε

)∣∣∣∣
p

δ(p − p′)
(2π h̄)d

. (3.7)

The charge and thermal current, when evaluated on a given
distribution function f , can be written as inner products

Ji(x) = 〈
|Ji〉 = −e
∫

dd p

(2π h̄)d
vi

(
−∂ f

∂ε

)

(x, p),

|Ji〉 ≡ −e
∫

dd pvi(p)|p〉, (3.8a)

Qi(x) = 〈
|Qi〉 =
∫

dd p

(2π h̄)d
(ε − μ)vi

(
−∂ f

∂ε

)

(x, p),

|Qi〉 ≡
∫

dd p (ε − μ)vi(p)|p〉, (3.8b)

since in equilibrium there is no charge or heat current. We
define the linearized collision integral W to be the map in
the vector space W : |p〉 → |p′〉 giving the linearized collision
integral

δCp = 〈p|W |
〉. (3.9)

The linearized Boltzmann equation becomes

∂t |
〉 + vp · ∂x|
〉 − Ei|Ji〉 + ∇iT

T
|Qi〉 = −W |
〉. (3.10)

We remind readers that the equilibrium distribution for the
fermionic electronic quasiparticles is

f 0
F (p) = 1

1 + eβ[ε(p)−μ]
, (3.11)

while for the bosonic acoustic phonons it is

f 0
B (p) = 1

eβω(p) − 1
. (3.12)

The velocity of the electrons is

vp = ∂pεp = vF
p

|p| (3.13)

and the velocity of the phonons is

vp = ∂pω(p) = vph
p

|p| . (3.14)

B. Thermodynamics

We assume that the system is rotationally invariant, i.e.,
both the dispersion relation and collision integral are rotation-
ally invariant. Then, a convenient basis could be applied

|ñ, m〉e =
∫

dd p (p − pF)nYm(θ1, . . . , θd−1)|p〉,

|ñ, m〉ph =
∫

dd q qnYm(θ1, . . . , θd−1)|q〉, (3.15)

where Ym is the spherical harmonics with “angle” m =
(m1, . . . , md−1). In the above equation, and henceforth,
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p = |p|, θ1, . . . , θd−1 indicate the angular coordinates of p,
and we will use two-dimensional spherical harmonic Ym =
eimθ for illustration in the rest of this subsection. The gen-
eralization to higher dimension is straightforward. The angle
indices are omitted when indicating typical relaxation rate
from then on. However, these basis vectors are not normalized
in the radial direction, so we use the standard Gram-Schmidt
method to obtain an orthonormal basis |n, m〉e,ph, denoted with
no tildes. The most important normalization factors are listed
below (see Appendix A):

〈0̃, m′|0̃, m〉e = νδm,m′ , (3.16a)

〈1̃, m′|1̃, m〉e = νa2δm,m′ , (3.16b)

〈1̃, m′|1̃, m〉ph = 2w2δm,m′ . (3.16c)

In our example of d = 2, we can write the total momentum,
the charge current, and the thermal current as

|px〉 ± i|py〉 = pF|0̃,±1〉e + |1̃,±1〉e + |1̃,±1〉ph,

(3.17a)

|Jx〉 ± i|Jy〉 = −e(vF|0̃,±1〉e + ∂pvF|1̃,±1〉e + · · · ),

(3.17b)

|Qx〉 ± i|Qy〉 = v2
F|1̃,±1〉e + · · · + v2

ph|1̃,±1〉ph.

(3.17c)

The momentum operator is exact while the current oper-
ators are only written to leading order in T/TF. Besides, the
energy density vector |ε〉 and charge density vector |ρ〉 are
given by

|ε〉 = μ|ρ〉 + |ε̃〉 = μ|0̃, 0〉e + vF|1̃, 0〉e + vph|1̃, 0〉ph + · · · ,

(3.18)

where |ε̃〉 is the energy density part orthogonal to den-
sity. Based on the above identities, important thermodynamic
properties including momentum susceptibility M (mass den-
sity in a Galilean-invariant fluid), specific heat c, charge
density ρ, and energy density ε could be calculated explicitly,

M ≡ 〈px|px〉 = ν

2
p2

F(1 + ā2 + w̄2), (3.19a)

c = T ∂T ε = 〈ε̃|ε̃〉 = ν

2
v2

F p2
F(ā2 + r2w̄2 + · · · ), (3.19b)

ρ ≡ 〈Jx|px〉
−e

= ν

2
vF pF[1 + (pF∂p ln vF)ā2 + · · · ],

(3.19c)

ε ≡ 〈Qx|px〉
T

= ν

2T
v2

F p2
F(ā2 + r2w̄2 + · · · ).

(3.19d)

C. Electron-phonon collision integral

We now describe the collision integrals, beginning with the
electron-phonon interactions. The dominant such interaction
is a single phonon emission/absorption event [32,58]:

He-ph =
∑

q,k1,k2 (aq + a†
−q)c†

k1
ck2 . (3.20)

The Boltzmann equations for electrons and phonons are

∂t fF + vF · ∂x fF + F · ∇p fF = Ce-ph, (3.21a)

∂t fB + vph · ∂x fB + F · ∇p fB = Cph-e, (3.21b)

where

Ce-ph =
∫

dd qdd k1||2δ(k2 − k1 − q)δ
(
εk2 − εk1 − ωq

)
× {

fFk1

(
1 − fFk2

)
fBq − fFk2

(
1 − fFk1

)
(1 + fBq)

}
.

(3.22)

Cph-e is given by the same equation but with an integral over
k1, k2. In the long-wavelength limit, the transition probability
is approximated by [59]

|2| ∼ De-ph|q|. (3.23)

Following (3.3), we are able to linearize the Boltzmann equa-
tion (see explicit derivation in Appendix B)

〈
|We-ph|
〉

= β

∫
dd qdd k1dd k2||2δ(k2 − k1 − q)δ

× (
εk2 − εk1 − ωq

)(
1 − fFk2

)
fFk1 fBq

∣∣
k1 − 
k2 + 
q

∣∣2.
(3.24)

However, after linearization, (3.21) are still coupled integrod-
ifferential equations which are difficult to solve analytically.
Nevertheless, a typical relaxation rate is good enough to es-
timate the scalings of overall prefactors of hydrodynamics
and thermodynamic properties of thermoelectric transport. To
obtain the typical scattering rate for electron (phonon) modes,
we set the ansatz 
ph = 0 (
e = 0). We summarize the re-
sults here, and refer readers to the explicit calculations in
Appendix B:

γe = 〈0|We-ph|0〉e =
{
γ T < TBG,

γ̄ TBG < T � TF,
(3.25a)

γ ′
e = 〈1|We-ph|1〉e =

{
γ r2/ā2 T < TBG,

γ̄ TBG < T � TF,
(3.25b)

γph = 〈1|We-ph|1〉ph =
{
γ /w̄2 T < TBG,

γ̄ /w̄2 TBG < T � TF,
(3.25c)

where γ and γ̄ are celebrated electron-phonon scattering rates
separated by Bloch-Grüneisen temperature [41]:

γ = α2(2)
2

νp2
F

T d+2 ∼ γ0

(
T

TBG

)d+1( T

TF

)
∝ T d+2,

(3.26a)

γ̄ = α′2(2)
2

νp2
F

T ∼ γ0

(
T

TF

)
∝ T, (3.26b)

where

γ0 = De-ph
pd

F

vph
. (3.27)

So far, the results are exact, and they consist of diagonal
terms of the collision integral. To account for the momentum
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conservation, we multiply the collision integral with projec-
tors:

W ′
e-ph = (1 − P )We-ph(1 − P ), P = |px〉〈px|

〈px|px〉 . (3.28)

The explicit expression can be found in Appendix C by ig-
noring impurity scattering there. The projector above has two
physical meanings: first, it makes the total momentum a null
vector of the collision integral, i.e., the total momentum has
no relaxation; second, the projector gives (approximately) off-
diagonal terms of the collision integral by mixing the diagonal
terms, taking into account the fact that either electron or
phonon momentum could be transferred to each other through
electron-phonon scattering even if the total momentum is
conserved. Nevertheless, thanks to the semipositivity of the
collision integral (given directly by the second-law of ther-
modynamics), the off-diagonal terms cannot be qualitatively
important, that is, using diagonal terms is good enough to
determine the scaling in hydrodynamics.

D. Phonon-phonon collision integral

When the temperature is greater than the Bloch-Grüneisen
temperature TBG, high momentum phonon modes q > pF are
allowed to appear in electron phonon fluid. However, if there
is only electron-phonon interaction, they effectively cannot
be scattered via the coupling in (3.20) due to the simulta-
neous momentum conservation and energy conservation (no
two electrons can be connected by such a large momentum
transfer). A priori, this might seem to lead to the conclu-
sion that there is some noninteracting part of phonon modes
that does not participate in hydrodynamics, at least until
higher order scattering processes are considered. Another
practical solution is simply to account for phonon-phonon
scattering processes. For simplicity we also ignore umklapp
phonon-phonon processes, so that momentum remains exactly
conserved in the absence of impurities. In what follows, we
analyze the phonon-phonon interaction schematically. Our
primary goal is to show that the phonon-phonon interaction
will couple high energy phonons to low energy phonons, and
hence not lead to any additional long-lived degrees of freedom
in the hydrodynamic description.

Due to the relativistic dispersion relation of acoustic
phonon modes, momentum and energy conservation together
imply fast collinear scattering [13,60]. To see this explicitly,
we take a “random” ansatz in phonon subspace

|
〉 =
∫

dd q|q〉ph, 〈
|
〉 ∼ rd

(
T

TF

)d−1

. (3.29)

The first order phonon-phonon interaction

Hph-ph =
∑
q,k

U (q, k)a†
q+kaqak + H.c. (3.30)

gives rise to the linearized collision integral under the random
ansatz

〈
|Wph-ph|
〉

=
∫

dd q1dd q2dd q3|U |2δ(q1 − q2 − q3)δ

× (|q1| − |q2| − |q3|)
1

vph
β fBq1

(
1 + fBq2

)(
1 + fBq3

)

=
∫ T/vph

dd q2dd q3δ(|q2 + q3| − |q2| − |q3|)
T 2Dph

v4
ph

,

(3.31)

where we have noted that the phonon-phonon interaction typ-
ically takes the form [59]

|U |2 ∼ Dph|q1||q2||q3|. (3.32)

Obviously the δ function is only satisfied when the mo-
mentums stay parallel, i.e., realizing collinear scattering.
Schematically we denote the high momentum phonon modes
(q > pF) and low momentum phonon modes (q < pF) to be
|H〉ph and |L〉ph (normalized). Since collinear scattering pre-
serves momentum, it cannot relax the phonon momentum, but
can mix |L〉ph and |H〉ph effectively. We identify the typical
relaxation rate for |H〉ph to relax to |L〉ph as the collinear
scattering rate γph-ph,coll = 〈
|Wph-ph,coll|
〉/〈
|
〉. Let

q2 = (q2, 0), q3 = (q3, q⊥), (3.33)

where we assume q2⊥ = 0 and q3⊥ ≡ q⊥ � q2,3 for collinear
scattering. Then the delta function in (3.31) becomes

δ(|q2 + q3| − |q2| − |q3|) = 2δ

(
q2

⊥
q2 + q3

− q2
⊥

q3

)

= 2(q2 + q3)q3

q2
δ(q2

⊥). (3.34)

The collision integral is estimated through

〈
|Wph-ph,coll|
〉 =
∫ T/vph

dq2dq3
2(q2 + q3)q3

q2

T 2Dph

v4
ph

×
∫

dd−1q⊥q−1
⊥ δ(q⊥) ∼ r−7

(
T

TF

)5

×
{

log(1/α) d = 2,

const. d > 2,
(3.35)

where the integral has a logarithm divergence in d = 2 [60]
with α → 0 the cutoff from self-energy correction [61]. It
is known as collinear scattering singularity [13], which is
not truly divergent as long as the scattering amplitude |U |2
vanishes for collinear scattering. Then the collinear scattering
rate is given by γph-ph,coll ≈ TAph-ph,coll with

Aph-ph,coll ≈ Dph

vd−7
ph

T d−5
(3.36)

being the dimensionless parameter characterizing the typical
amplitude of the collinear phonon-phonon scattering. For T >

TBG, we can also write the electron-phonon scattering rate for
phonon modes as γe-ph ≈ TAe-ph with

Ae ≈ De-ph
2p2(d−1)

F

νv2
F

1

vph
, Aph ≈ De-ph

p2d
F

v2
F

vd+1
ph

T d+1
, (3.37)

and we find Aph-ph,coll � Ae-ph at T > TBG, assuming that De-ph

and Dph are similar magnitude and approximately momentum
independent. It suggests that due to the phonon-phonon in-
teraction, the rate for |H〉ph to relax to |L〉ph is much faster
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TABLE II. Summary of scattering rate in different temperature regimes. γph-ph is short hand for phonon-phonon scattering rate.

T <T3 T3 to T4 T4 to TBG TBG to TF

Scalings γe = γ ∼ T d+2, γ ′
e = γ r2/ā2 ∼ v2

phT d , γph = γ /w̄2 ∼ vd+2
ph T γe = γ ′

e = γ̄ ∼ T, γph = γ̄ /w̄2 ∼ vd+2
ph T −d

Relations γe < γ ′
e < γph γe < γph < γ ′

e γph < γe < γ ′
e γph < γe = γ ′

e � γph-ph

than that for the |1〉ph (effectively |L〉ph) to relax out due to
electron-phonon interaction. In other words, the total electron
and phonon momentum remains a good conserved quantity
at the timescale of γ −1

e-ph, thus the electron-phonon fluid is
well defined at T > TBG. For concreteness, let us write the
momentum as

|P〉 ∝ c2|0〉e + c1c2|L〉ph + c1|H〉ph, (3.38)

where c1,2 are dimensionless constants. The collision integral
with momentum conservation is of the form

〈
|W |
〉 = γe-ph
(
L − c1
e)2

1 + c2
1

+ γph-ph,coll
(
L − c2
H)2

1 + c2
2

.

(3.39)
In the limit of γe-ph/γph-ph,coll � (1 + c2

1 )(1 + c2
2 ), the eigen-

values of W are given by {0, γe-ph, γph-ph,coll} approxi-
mately. The null eigenvalue comes from momentum con-
servation. Notice that we obtain a looser constraint on
γe-ph/γph-ph,coll since c1 > 1 at high temperature. The eigen-
state, corresponding to the eigenvalue γph-ph, is c1(1 +
c2

1 )−1(γe-ph/γph-ph,coll )|0〉e − |L〉ph + c2|H〉ph, so that, in accor-
dance with (3.38), electron modes are strongly suppressed
in phonon-phonon collinear scattering, coinciding with the
previous argument.

Observe that the modes |1̃, m〉ph (which represent the
phonon momentum) are exact null vectors of the linearized
phonon-phonon collision integral for m = 0 due to conserva-
tion of phonon energy in phonon-phonon collisions, and when
m = ±1 due to conservation of momentum. Once |m| > 1,
|1̃, m > 1〉ph, will scatter noncollinearly and experience a non-
collinear phonon-phonon scattering rate

γph-ph,noncoll ∼ Dph

〈
|
〉
(

T

vph

)2d−1 T 2

v4
ph

∼ Dph
T d+2

vd+3
ph

. (3.40)

Formally, in the hydrodynamic calculations, the collision in-
tegral becomes

W ′ = W ′
e-ph + (γph-ph,noncoll + γph-ph,coll(1 − PL,H))

∑
|m|>1

Pm,

(3.41)
where Pm = |1, m〉ph〈1, m|ph is the normalized projector onto
phonon modes with angle m, and PL,H is the projection within

phonon sector making phonon momentum a null vector to the
collision integral.

Results of scattering rates computed in Secs. III C and III D
are summarized in Table II.

IV. HYDRODYNAMICS

Having developed the kinetic theory of electron phonon
fluid, we can study its universal properties in the hydrody-
namic limit of ∂t � min W ′

e-ph. Hydrodynamics is an effective
theory approach and describes the late time dynamics of the
conserved quantities. In our rotationally invariant electron-
phonon fluid, there are charge, energy, and momentum:

∂tρ + ∂iJi = 0, (4.1a)

∂tε + ∂iJEi = 0, (4.1b)

∂t pi + ∂ jτi j = 0, (4.1c)

and (
Ji

JEi

)
=
(

ρ

ε + P

)
ui − �0∂i

(
μ

T

)
+ · · · ,

τi j = −η

(
∂iu j + ∂ jui − 2

d
δi j∂kuk

)

− ζ δi j∂kuk + δi jP + · · · , (4.2)

where �0 is the incoherent conductivity matrix [42,62,63], η

is the shear viscosity, and ζ is the bulk viscosity. The hydrody-
namic quasinormal modes, which are the degrees of freedom
of the effective theory, are found by substituting a plane wave
ansatz into (4.1). We obtain a sound mode

ω = ±vsk − i�k2 + O(k3), (4.3)

where vs is the sound velocity, and � is the sound wave’s
“diffusion constant.” Apart from the sound mode, the per-
pendicular components of the velocity field (the transverse
momentum) obey a diffusion equation controlled by the shear
viscosity:

ω = −i
η

M
k2. (4.4)

For convenience we introduce operators: ρA = (ρ, ε), μA =
(μ, T ), A = 1, 2. Assisted with kinetic formalism, we could
calculate explicitly the transport coefficients in hydrodynamic
equations in the following subsections.

A. Speed of sound

Based on (3.19c) and (3.19d) we can derive the susceptibility matrix

χ ≡ ∂ρA

∂μB
=
( ∂ρ

∂μ

∂ρ

∂T
∂ε
∂μ

∂ε
∂T

)
≈
(

dν
2

∂
∂T

(
ν
2 ∂pvFa2

)
∂

∂μ

( νv2
Fa2

2T

)
ν
(

π2

6 + I2 dT d−1

vd
phν

))⇒ χ−1 ≈
( 2

dν
O
(

T
TF

)
O
(

T
TF

)
dν

2 det χ

)
, (4.5)
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FIG. 1. Hydrodynamics of electron-phonon fluid. (a) Log-log plot of sound velocity against temperature. (b) Log-log plot of bulk viscosity
over shear viscosity against temperature. (c) Log-log plot of diffusion constant (orange thick line), shear viscosity (red dashed line), and
incoherent conductivity (blue dot-dashed line) against temperature. In (c), the vertical green line separates the fluid into coherent and
incoherent.

where

det χ ≈ d

2

(
π2

6
ν2 + I2 dT d−1

vd
ph

ν

)
. (4.6)

Note that det χ switches from being dominated by electrons to dominated by phonons at T ∼ T3. Keeping the leading order in
T/TF, the sound wave velocity of the quasinormal mode is given by

vs =
√

ρAχ−1
AB ρB

M
≈
√(

1

d
ν2μ2 + 2d

(
ν2

2
v2

F p2
F

)2 (ā2 + r2w̄2)2

T 2 det χ

)/
ν2 p2

F(1 + ā2 + w̄2)

≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
μ2

d p2
F

= vF√
d

T < T4,√
μ2

d p2
Fw̄2 = vF

w̄
√

d
T4 < T < T6,√

v2
Fr2

d = vph√
d

T6 < T � TF,

(4.7)

where repeated indices are summed. To obtain the last phonon-limited sound velocity, we have used the identity (2.5) to replace
constant I with dimensionless w̄. The scaling is shown in Fig. 1(a). We observe that when temperature is low enough, electron
phonon fluid is more like a Fermi liquid with sound velocity given by the Fermi velocity. When the temperature rises over T4,
the phonon momentum starts to dominate over the total momentum such that the sound velocity is corrected by a factor of
1/w̄ < 1. With Fermi velocity and phonon momentum weight appearing in the same expression, this regime cannot be thought
of as phonon dominated or electron dominated, but electrons and phonons together flow as a single unified fluid. When the
temperature is higher than T6, the sound velocity is controlled by the phonon velocity vph/

√
d .

B. Shear viscosity

To calculate the shear viscosity, we first write down the momentum current (stress tensor) operator. Focusing on d = 2 for
ease of presentation:

|τxx〉 − |τyy〉 =
∫

dd ppvp cos 2θ |p〉 + vph

∫
dd qq cos 2θ |q〉

= 1

2
[pFvF|0̃, 2〉e + (vF + pF∂pvF)|1̃, 2〉e + ∂pvF|2̃, 2〉e + · · · + vph|1̃, 2〉ph + (m = −2)]. (4.8)

In the above equation, all the modes are in m = ±2 sector, thus there is no good conservation law. We then approximate that the
collision integral in this sector is diagonal, and obtain

η =(〈τxx| − 〈τyy|)W ′−1(|τxx〉 − |τyy〉) ≈ νμ2γ −1
e + w2v2

ph(γph + γph-ph)−1 ≈
{
νμ2γ −1 T < TBG,

νμ2
(
γ̄ −1 + r2w̄2γ −1

ph-ph

)
TBG < T � TF.

(4.9)
The change in η manifests in Bloch-Grüneisen effect with γ → γ̄ . Note that when T > TBG, the shear viscosity may still be
dominated by the electron modes due to the fast phonon-phonon scattering (including both collinear and noncollinear scattering).
However, it is also plausible that, depending on microscopic details, above T > TBG phonons can dominate the shear viscosity.

155128-8



ELECTRON-PHONON HYDRODYNAMICS PHYSICAL REVIEW B 103, 155128 (2021)

C. Bulk viscosity

Unlike the shear viscosity, to estimate the bulk viscosity, we need to search for the nonconserved part of the trace of the
momentum current. Again writing formulas in d = 2 for illustrative purposes, we obtain

|τxx〉 + |τyy〉 =
∫

dd ppvp|p〉 + vph

∫
dd qq|q〉 = pFvF|0̃, 0〉e + (vF + pF∂pvF)|1̃, 0〉e + ∂pvF|2̃, 0〉e + · · · + vph|1̃, 0〉ph.

(4.10)
To this end we consider the incoherent momentum current

(|τxx〉 + |τyy〉)inc ≡ |τxx〉 + |τyy〉 − 〈ε̃|(|τxx〉 + |τyy〉)

〈ε̃|ε̃〉 |ε̃〉 − 〈ρ|(|τxx〉 + |τyy〉)

〈ρ|ρ〉 |ρ〉

≈ 2r2w2

〈ε̃|ε̃〉 vF|1̃, 0〉e − a2

〈ε̃|ε̃〉vph|1̃, 0〉ph + · · · + |2̃, 0〉e. (4.11)

While vanishing for a quadratic electron band, the |2̃, 0〉e contribution above is present for a generic dispersion relation. Above
we omit the temperature-independent (also vph-independent) prefactor to simplify the scaling analysis. The bulk viscosity is
given by

ζ = (〈τxx| + 〈τyy|)incW
′−1

e-ph (|τxx〉 + |τyy〉)inc = ν(vF pF)2

[
r4ā2w̄4γ ′−1

e + r2ā4w̄2γ −1
ph − 2r3ā3w̄3γ ′−1

e−ph

(ā2 + r2w̄2)2
+
(

T

TF

)4

γ ′′−1
e

]
, (4.12)

where γ ′′
e = 〈2|We-ph|2〉e ≈ r4ā−2γ when T < TBG (see Appendix B). After some algebra we find that

ζ ≈

⎧⎪⎪⎨
⎪⎪⎩

ν(vF pF)2γ −1r−4ā6 ∼ ηr−4(T/TF)6 T < T2,

ν(vF pF)2γ −1r2w̄4 ∼ ηr−(2d+2)(T/TF)2d+2 T2 < T < T3,

ν(vF pF)2γ −1r−2ā4 ∼ ηr−2(T/TF)4 T3 < T < TBG,

ν(vF pF)2γ̄ −1r−2ā4 ∼ ηr−2(T/TF)4 TBG < T � TF.

(4.13)

The first two critical temperatures are unique to the bulk viscosity [see Fig. 1(b)]. T2 is the critical temperature below which
the incoherent momentum current, i.e., the nonconserved part of the momentum current, is predominated by |2̃, 0〉e. This is the
regime where electron-phonon fluid is completely dominated by the electron modes. However, unlike a generic Fermi liquid,
the relation ζ/η ∼ (T/TF)4 is not satisfied in such electron-phonon fluid even T < T2 because γ ′′

e �= γe for electron-phonon
interaction. After all, the radial deformations of the Fermi surface decay quite differently from radially uniform deformations.
The electron-phonon fluid is intrinsically different from the Fermi liquid dominated by electron-electron interactions, even if
transport is dominated by the electron modes. T3 is the critical temperature above which the phonon energy starts to dominate
the total energy.

Note that the bulk viscosity is much smaller than the shear viscosity at low temperatures. Interestingly, since shear viscosity
is suppressed at high temperature due to the noncollinear phonon-phonon scattering, in principle the bulk viscosity can exceed
the shear viscosity at sufficiently high temperature. The nonvanishing of bulk viscosity at high temperatures also implies that the
relativistic electron-phonon fluid at high temperature is strongly nonconformal, as conformal symmetry fixes ζ = 0 [43]. Note
that a phonon fluid on its own, however, would have ζ = 0 since (|τxx〉 + |τyy〉)inc = 0, as can readily be seen from (4.11).5

D. Incoherent conductivities

To calculate the incoherent conductivities, we need first to compute the incoherent currents. The incoherent charge current is
given by

‖|Jinc〉‖ ≡
∥∥∥∥|Jx〉 − 〈px|Jx〉

〈px|px〉 |px〉
∥∥∥∥ ≈

√
e2ν

2

√(
v2

F + p2
F∂pv

2
Fā2
)− (vF + pF∂pvFā2)2

1 + ā2 + w̄2

≈

⎧⎪⎨
⎪⎩

√
ν/2e|pF∂pvF − vF|ā ∼ T/TF T < T1,√
ν/2evFw̄ ∼ r−(d+2)/2(T/TF)(d+1)/2 T1 < T < T4,√
ν/2evF ∼ T 0 T4 < T � TF.

(4.14)

As ‖|Jx〉‖ ≈ √
ν/2evF ∼ T 0, we find that when T < T4 the charge current is coherent; when T > T4 the charge current is

incoherent. To understand this, we note that T4 is the temperature above which the phonon momentum starts to dominate the
total momentum, however, the charge is fully carried by the electron momentum, and such mismatch in charge current and
momentum operator results in an incoherent current. Note that when charge current is coherent, the incoherent current has

5This remains true until we consider subleading p2 corrections to the acoustic phonon dispersion relation (3.14).
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different scalings from |Jinc〉 ∼ ā to |Jinc〉 ∼ w̄ signaled by the critical temperature T1. This comes from the competition between
relative weights of total momentum in Fermi surface fluctuation and phonon momentum.

Next, the incoherent heat current is given by

‖|Qinc〉‖ ≡
∥∥∥∥|Qx〉 − 〈px|Qx〉

〈px|px〉 |px〉
∥∥∥∥ ≈

√
ν

2
p2

Fv
4
F

√
(ā2 + r4w̄2) − (ā2 + r2w̄2)2

1 + w̄2
≈
√

ν

2
p2

Fv
4
Fā2 ∼ T/TF, T � TF. (4.15)

Since

‖|Qx〉‖ =
√

ν

2
p2

Fv
4
F(ā2 + r4w̄2) ≈

⎧⎨
⎩
√

ν
2 p2

Fv
4
Fā2 ∼ T/TF T < T7,√

ν
2 p2

Fv
4
phw̄

2 ∼ r−(d−2)/2(T/TF)(d+1)/2 T7 < T � TF,
(4.16)

we find that when T � T7 the heat current is incoherent; when T � T7 the heat current is coherent. In contrast, the energy
current

|JEx〉 = μ

e
|Jx〉 + |Qx〉 (4.17)

is dominated by the charge current when T � T4 (and is thus trivially coherent); moreover, |JEx〉 ≈ μ|Jx〉 has the same coherent-
incoherent transition at T ∼ T4. When T � T8, however, |JEx〉 ≈ |Qx〉. Because when T � T8, the sound velocity vs ≈ vph/

√
d

arises from a thermodynamic equation of state which is dominated by the phonons, and there is a small incoherent thermal
conductivity, we claim that the fluid behaves as a nearly charge-neutral, approximately relativistic [64] fluid.

Within the framework of kinetic theory formalism, the incoherent conductivity matrix �0 can be written as

�AB =
(

σinc T αinc

T αinc T κ̄inc

)
=
( 〈Jinc|

〈Qinc|
)

W ′−1
e-ph (|Jinc〉 |Qinc〉), (4.18)

where all the quantities point to x direction. Explicit expressions and scalings of each element are

σinc ≈ e2v2
Fν

(1 + ā2 + w̄2)2

{
[(1 − pF∂p ln vF)ā2 + w̄2]2γ −1

e + [1 − (1 + w̄2)pF∂p ln vF]2ā2γ ′−1
e + w̄2γ −1

ph

}
(4.19a)

≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e2(vF − pF∂pvF )2νγ −1r−2ā4 ∼ r−2(T/TF)−(d−2) T < T1/r,

2e2v2
Fνγ −1w̄4 ∼ r−2(d+2)(T/TF)d T1/r < T < T4,

2e2v2
Fνγ −1 ∼ (T/TF)−(d+2) T4 < T < TBG,

2e2v2
Fνγ̄ −1 ∼ (T/TF)−1 TBG < T � TF,

T κ̄inc ≈ νp2
Fv

4
F

(1 + ā2 + w̄2)2

{
(ā2 + r2w̄2)2γ −1

e + (1 + w̄2)2ā2γ ′−1
e + (r2 − ā2)2w̄2γ −1

ph

}
(4.19b)

≈
{

νv4
F p2

Fγ
−1 ā4

r2 ∼ r−2(T/TF)−(d−2) T < TBG,

νv4
F p2

Fγ̄
−1ā2 ∼ T/TF TBG < T � TF,

T αinc ≈ − eνv3
F pF

(1 + ā2 + w̄2)2

{
[(1 − pF∂p ln vF)ā2 + w̄2](ā2 + r2w̄2)γ −1

e

+ [1 − (1 + w̄2)pF∂p ln vF](1 + w̄2)ā2γ ′−1
e + (r2 − ā2)w̄2γ −1

ph

}

≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−eνv2
F pF(vF − pF∂pvF)γ −1r−2ā4 ∼ r−2(T/TF)−(d−2) T < T3,

−2eνv3
F pFγ

−1r2w̄4 ∼ r−2(d+1)(T/TF)d T3 < T < T4,

−2eνv3
F pFγ

−1r2 ∼ r2(T/TF)−(d+2) T4 < T < TBG,

eνv3
F pFγ̄

−1ā2 ∼ T/TF TBG < T � TF.

(4.19c)

We observe that one might naively expect that for a Galilean dispersion relation in which vF − pF∂pvF = 0, that both σinc and
αinc must vanish identically since there is no incoherent current: electrical current and momentum are proportional [42]. However,
this is not true, because the presence of phonons dispersion relation necessarily leads to breaking of Galilean invariance. Notice
that naive estimation like σinc ∼ γ −1‖|Jx〉‖2 suitable for Fermi liquid is no longer true for electron-phonon fluids because of the
multiple scattering rates.

Now we are ready to compute the diffusion constant

� = 2 d−1
d η + ζ

M
+ �

M
, (4.20)
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where

� ≡ ρAχ−1
AC �CDχ−1

DBρB

v2
s

(4.21)

is a contribution to the decay rate arising from incoherent conductivities. After some algebra, we find that

� ∼
⎧⎨
⎩

γ −1 ∼ (T/TF)−(d+2) T < TBG,

γ̄ −1 ∼ (T/TF)−1 TBG < T < T6,

γ̄ −1r−2w̄−2 ∼ rd (T/TF)−(d+2) T6 < T � TF.

(4.22)

The scaling is shown in Fig. 1(c). When T < T4, the shear viscosity, given by the electron modes, controls the diffusion of the
fluid, i.e., η > �. When T > T4, the diffusion constant starts to be dominated by the incoherent conductivity, i.e., η < �, but
the scaling do not change. The interplay between shear viscosity and incoherent conductivity implies a transition from coherent
to incoherent, giving rise to a breakdown of Galilean invariance.

E. Plasmons

Although short-range interactions between individual elec-
trons are assumed to be negligible in our model (for
pedagogical purposes), the long-range Coulomb interaction,
responsible for the density-density interaction gives rise to
qualitative changes in the hydrodynamic dispersion relations,
and so we will briefly address what happens in the presence
of unscreened and long-range Coulomb interactions. We ac-
count for the long-range Coulomb interaction by replacing the
chemical potential with the external electrochemical potential
[45,65,66]

∂iμ → ∂iμ − Fext, (4.23)

where

Fext = −∂i

∫
dd y

e2

|x − y| [ρ(y) − ρ0]. (4.24)

Fourier transforming (4.2), we obtain the frequency-
momentum space hydrodynamic equation

−iωχABδμB + ikρAδui + k2�̃ABδμB = 0, (4.25a)

−iωMδui + ikρ̃AδμA +
(

η + 2d − 2

d
ζ

)
k2δui = 0,

(4.25b)

where we assume k is parallel to δu and

ρ̃1 = [1 + U (k)ν]ρ1, ρ̃2 = ρ2,

�̃A1 = [1 + U (k)ν]�A1, �̃A2 = �A2, (4.26)

with Fext(k) = −ikU (k)νδμ. Note that for tilded operators,
only components related to the chemical potential are cor-
rected by the long-range Coulomb interaction. We take d = 2
for illustration. For small wave vector we can approximate

[1 + U (k)ν]k2 ≈ 2πe2ν|k|. (4.27)

Solving (4.25) we have the dispersion relation of plasmons

ωplasmon = ±
√

ρ̃Aχ−1
AB ρB

M
k2 − i

(
2(d − 1)η

dM
+ ρ̃Aχ−1

AC �̃CDχ−1
DBρB

ρ̃Aχ−1
AB ρB

)
k2

≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

± vF√
d

√
2πe2ν|k| − iνμ2γ −1[k2 + ā4(2πe2ν)|k|] T < T1,

± vF√
d

√
2πe2ν|k| − iνμ2γ −1[k2 + w̄4(2πe2ν)|k|] T1 < T < T4,

± vF

w̄
√

d

√
2πe2ν|k| − iνμ2γ −1[k2/w̄2 + (2πe2ν)|k|] T4 < T < TBG,

± vF

w̄
√

d

√
2πe2ν|k| − iνμ2γ̄ −1[k2/w̄2 + (2πe2ν)|k|] TBG < T < T6,

± vF

w̄
√

d

√
2πe2ν|k| + r2w̄2k2 − iνμ2

γ̄

ā4k2+(2πe2ν)2

2πe2ν+r2w̄2|k| |k| T6 < T � TF.

(4.28)

In this expression we have used the fact that η � ζ to simplify
the result.

For T < T6, ωplasmon ∼ √
k manifests the conventional

plasmon dispersion relation [67–69]

ωplasmon =
√

2πe2n

m
|k| + · · · ; (4.29)

note we have used the identity (2.1). Importantly, however,
the prefactor of |k| is also affected by the large contribu-
tion of phonons to M (and therefore the effective value of
m) above T > T4, and so it will exhibit the same dramatic
T dependence as the sound velocity (4.7). This provides a
clear difference with the usual electron fluid where electron-
electron interactions dominate [45,70]. When the temperature
is below T4, the hydrodynamic is coherent, and the imaginary
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FIG. 2. Plasmon dispersion relation for electron-phonon fluid in
the regime T6 < T � TF.

part, known as the plasmon decay, is the usual sound wave
decay (4.20), but with a crossover to the more severe plasmon
decay δωplasmon ∼ −iγ −1|k| at ultralow k. However, when

T > T4, this plasmon decay starts to dominate indicating the
increasingly incoherent nature of the charge current.

As the temperature keeps increasing, the plasmon mode
starts to transform into the phonon-limited sound mode ω ∼
vph/

√
d when T > T6, at short enough distance scales. The

long distance physics with small enough k (r2w̄2|k| < 2πe2ν)
is always controlled by the long-range Coulomb interactions.
Interestingly, the plasmon decay in the high temperature
regime shows a dramatically different behavior. In the regime
T6 < T � TF, the second term ā4 in the imaginary part could
be neglected resulting in a k-independent plasmon decay
in d = 2 at short distance. Similar behavior exists in hy-
drodynamics with momentum relaxed by impurities [42],
where such k-independent decay is given by −iτ−1

imp. However,
here it is induced purely through the long-range Coulomb
interaction. Notice that such k-independent plasmon decay
will crossover to the incoherent plasmon decay ∼ − i|k| at
long distance (same as the crossover in the real part), while
crossover to the sound wave decay ∼ − ik2 at short distance
(ā2|k| > 2πe2ν). The behaviors are summarized in Fig. 2.

In three dimensions (d = 3), the generalization of the
above computation leads to

ωplasmon ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

± vF√
d

√
4πe2ν − iνμ2γ −1[k2 + ā4(4πe2ν)] T < T1,

± vF√
d

√
4πe2ν − iνμ2γ −1[k2 + w̄4(4πe2ν)] T1 < T < T4,

± vF

w̄
√

d

√
4πe2ν − iνμ2γ −1[k2/w̄2 + (4πe2ν)] T4 < T < TBG,

± vF

w̄
√

d

√
4πe2ν − iνμ2γ̄ −1[k2/w̄2 + (4πe2ν)] TBG < T < T6,

± vF

w̄
√

d

√
4πe2ν + r2w̄2k2 − iνμ2

γ̄

ā4k4+(4πe2ν)2

4πe2ν+r2w̄2k2 T6 < T � TF.

(4.30)

The plasmon dispersion relation becomes k independent,
and due to the incoherent conductivity, it also picks up a
k-independent finite lifetime (above T1). This might explain
the rapid plasmon decay in recent experiments on 3D strongly
correlated electron systems [35,36], if the electron-phonon
interaction is not negligible.

We emphasize that the imaginary part of the plasmon dis-
persion relation is also affected by impurities, recombination
processes, etc., beyond our kinetic theory treatment. So it may
be much easier to look for the unconventional real dispersion
relation modification that we predict above in a near-term
experiment.

V. THERMOELECTRIC TRANSPORT

In this section we carefully address the interplay of both
the electron- and phonon-impurity scattering and the electron-
phonon scattering, but neglect the electron-electron scattering,
as we have previously. We first summarize our results, and
then compare to existing experimental data and compare and
contrast our results from transport with our predictions in
Sec. IV for other types of experiment.

A. Formal results

We remind the reader that the vector without tilde is the
orthonormal basis after Gram-Schmidt method [see (3.16)],

and obtain

〈0|W e
imp|0〉e = �e, (5.1a)

〈1|W e
imp|1〉e = �e, (5.1b)

〈0|W e
imp|1〉e = πT√

3

(
∂�e

∂μ
− ∂pvF

v2
F

�e

)
≡ b, (5.1c)

〈1|W ph
imp|1〉ph = �ph, (5.1d)

where �e,ph is the impurity scattering rate based upon relax-
ation time approximation. We work in a simple limit

�e,ph � γ0, (5.2)

according to (3.26), such that the electron-phonon scattering
rate could be greater than the impurity scattering rate at an
appropriate temperature. Recalling (3.28), the total collision
integral is given by

W = W e
imp + W ph

imp + W ′
e-ph, (5.3)

where W ′
e-ph denotes the momentum-conserving collision in-

tegral studied before. The thermoelectric conductivity matrix
can be written as [54](

σxx T αxx

T αxx T κ̄xx

)
=
( 〈Jx|

〈Qx|
)

W −1(|Jx〉 |Qx〉). (5.4)
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FIG. 3. Thermoelectric conductivity versus temperature with five different impurity scattering rates. (a) Log-log plot of electrical conduc-
tivity against temperature. The dot-dashed green line overlaps with the blue line. (b) Log-log plot of open-circuit thermal conductivity against
temperature. (c) Log-linear plot of Lorenz number versus temperature. The inset (log-log plot) shows that the dip is approaching T4 as lowering
from ge = gph = 10−3, 10−4, to 10−5 (from top to bottom). The kink at TBG comes from the fact that the electron-phonon scattering rate in our
model has a jump there. We take r = 10−3 for the plots.

The detailed expression can be found in Appendix C. Focusing on T < TBG for simplicity, we observe that

σxx = e2 ν

2
v2

F

�ph + γ /w̄2

�e(�ph + γ /w̄2) + �phγ
+ O(T 2), (5.5a)

T κ̄xx = ν

2
p2

Fv
4
F

(
ā2

�e + γ r2/ā2
+ r4w̄2(�e + γ )

�e(�ph + γ /w̄2) + �phγ
+ 2r2ā

−(b − γ r2/ā)γ + (�e + γ )γ r2/ā

(�e + γ r2/ā2)[�e(�ph + γ /w̄2) + �phγ ]

)
, (5.5b)

T αxx = −e
ν

2
p2

Fv
2
F

(
r2γ

�e(�ph + γ /w̄2) + �phγ
+ ā2

�e + γ r2/ā2
+ ā

−(�ph + γ /w̄2)(b − γ r2/ā) + γ 2r2/(āw̄2)

(�e + γ r2/ā2)[�e(�ph + γ /w̄2) + �phγ ]

)
. (5.5c)

Several remarks follow the above equations. First, unlike the electron-electron interaction [54], the electrical conductivity can
be more strongly affected by the electron-phonon interaction if �ph is not negligible. More drastic is the correction to thermal
conductivity, as well as thermoelectric conductivity. Second, all the thermodynamic properties have a divergence in the limit
�e,ph → 0. This is a universal result for any hydrodynamic fluid with translation symmetry [42]. However, for the experimental
thermal conductivity

T κxx = T κ̄xx − (T αxx )2

σxx
≈ ν

2
p2

Fv
4
F

(
ā2

�e + γ r2/ā2
+ r4w̄2

�ph + γ /w̄2

)
, (5.6)

such divergence disappears consistently. Consequently, the ratio of the experimental thermal and electrical conductivity, i.e., the
Lorenz number L, approaches zero in the (hydrodynamic) limit �e,ph → 0. In particular, a controlled way to estimate how clean
a material should be to have a divergent Lorenz number is to compare the nondiverging and diverging term inside the thermal
conductivity (5.5b). By assuming �ph = 0 in the first place, we find that as long as

�e �
γ r4w̄2

ā2
, T < TBG (5.7)

the Lorenz number L � L0, where L0 = π2/3e2 is the noninteracting Lorenz number, and can become arbitrarily small. This
effect is well understood [42]: as �e → 0, at any finite charge density σxx is divergent while κxx remains finite. Another feature
that our model holds is that in the noninteracting limit γ → 0, which corresponds to T → 0, both the WF law and Mott law are
simultaneously recovered so long as the impurity scattering rate is not zero, as in a normal metal [54]. We determine the Lorenz
number with finite impurity scattering:

L ≡ κxx

T σxx
≈

⎧⎪⎨
⎪⎩

L0

(
�e(�ph+γ /w̄2 )+�phγ

(�e+γ r2/ā2 )(�ph+γ /w̄2 ) + r4w̄2

ā2
�e(�ph+γ /w̄2 )+�phγ

(�ph+γ /w̄2 )2

)
T < TBG,

L0

(
�e(�ph+γ̄ /w̄2 )+�phγ̄

(�e+γ̄ )(�ph+γ̄ /w̄2 ) + r4w̄2

ā2
�e(�ph+γ̄ /w̄2 )+�phγ̄

(�ph+γ̄ /w̄2 )2

)
TBG < T � TF.

(5.8)

Defining the ratios

ge ≡ �e

rγ0
, (5.9a)

gph ≡ �ph

rγ0
(5.9b)

[recall the definition of γ0 in (3.27)], we sketch out the electri-
cal and thermal conductivity, and the Lorenz number against
the temperature with various ge,ph in Fig. 3.

B. Comparison to canonical transport theory

Let us now compare our predictions to the standard theory
of thermoelectric transport in metals with electron-phonon

155128-13



XIAOYANG HUANG AND ANDREW LUCAS PHYSICAL REVIEW B 103, 155128 (2021)

scattering. The qualitative shape of these curves is extremely
similar to conventional metals [59], as we now explain. First,
at low temperatures, assuming ge �= 0, we see that

σxx ≈ νe2v2
F

2�e
, (5.10)

and L ≈ L0—this is because at low temperatures, electron-
impurity scattering controls transport. The Wiedemann-Franz
law holds, in accordance with experiments.

At intermediate temperatures approaching (but below) TBG,
we see a dip in L/L0 below 1. One of the primary reasons
for this is that the thermal conductivity obtains a correction
due to energy-relaxing scattering events that occur with rate
T 3 (in d = 3 dimensions). This leads to κ̄xx ∼ T 1−d , which
is the standard κ̄xx ∼ T −2 scaling that arises at intermediate
temperatures in a standard metal. We identify the temperature
where L starts to deviate from L0 as

T ∗ ≈ g1/d
e TBG. (5.11)

This comes from �e ≈ γ r2/ā2 and should be compared with
Ti in [44]. Meanwhile, the minimum value of L is located at
Tmin = xTBG where x is the solution of

−dge + (d + 2)gex2 + 2xd+2 = 0. (5.12)

Both T ∗ and Tmin are not universal and depend on the impurity
strength; they vanish in the clean limit ge → 0, where L ≈
L0ā2/r2 at low temperature scales as ∼T 2. On the other hand,
lowering gph hardly affects L below TBG, but makes L increase
more rapidly above TBG. When T > TBG, L will eventually
surpass L0 due to the plethora of phonon excitations.

In contrast, if we set ge = 0, the electrical conductivity
σ in the clean limit ge = 0 scales as ∼T −d−2 below TBG

while ∼T −1 above TBG. The reason for this is essentially the
conventional one given in the literature: the phonons relax
away momentum, and the small-angle scattering of an elec-
tron by phonons dominates electrical transport. In contrast, for
T < TBG, the thermal conductivity κ ∼ T −d+1, for the same
reason described above. Similar plots can be found in [44].

One interesting result that is absent in the literature is
shown in the inset of Fig. 3(c). Instead of tuning ge down
alone, we gradually decrease ge ∼ gph together, and we find
that the minimum of L approaches T4. Such behavior and
the scaling of L near T4 can been seen from the asymptotic
expression

L ≈
{

L0
1

γ r2/ā2 ∼ T −d T � T4,

L0
w̄2

γ r2/ā2 ∼ T T � T4,
(5.13)

where we assumed �ph ∼ �e � γ . The change in T scal-
ing arises when w̄ � 1 at T = T4, and so this physics arises
from the same mechanism which gives rise to the nontriv-
ial T dependence of the sound speed discussed in Sec. IV.
Hence, whenever the electron and phonon momentum relax-
ing scattering rates are comparable and small compared to
momentum-conserving scattering rates, we can unambigu-
ously state that T4 instead plays the role as a universal
temperature for the strong violation of WF law.

One difference between our work and [44] is what happens
at high T . In [44] they argue that L/L0 decreases due to
thermal smearing of the Fermi surface. This effect lies at

temperatures T ∼ TF which are not studied in this work. With-
out electron-phonon umklapp scattering, L/L0 will eventually
exceed 1; this arises when the phonons dominate the energy
density of the hybrid fluid, and the fluid becomes a nearly
charge-neutral relativistic fluid. The hydrodynamic equations
become similar to those describing the Dirac fluid in charge
neutral graphene [3].

A transport regimes that differs from the canonical ex-
pectations, but which we expect is not likely to realize in
experiment, can be found in Appendix D.

Overall, due to the similarity between our theory and
the conventional theory of transport in a metal with
electron-phonon interactions, we emphasize that extracting
hydrodynamic signatures of an electron-phonon fluid from
conventional transport measurements is delicate. Neverthe-
less, as we will discuss below, our theory above can still be
used to analyze experimental data in relevant materials, and
we will argue that many materials lie in the very interesting
regime T4 < T < TBG.

C. Comparison to real materials

Having discussed the key predictions of our theory of ho-
mogeneous transport, let us now comment on experiments in
a number of materials where evidence for electron-phonon
hydrodynamics has been obtained. Our main conclusion is
that it is likely that at least PtSn4 and WP2 are hydrodynamic
at temperatures T4 � T � TBG.

There are two caveats, common to both materials, that
we state upfront. (1) Because T4 and TBG are not orders of
magnitude apart, one should not expect parametric scaling
regimes like those of Sec. IV to be easily detected. One might
hope instead to see “kinks” in the T dependence of various
quantities whose relative signs/amplitudes are consistent with
Sec. IV. (2) These materials are highly anisotropic. We, like
other authors, are attempting to use an isotropic theory to ap-
proximately describe them; there is no quantitative guarantee
that anisotropy leads to only negligible corrections.

Having stated our main conclusions and their limitations,
we first turn to PtSn4, which was studied in [27]. Above T ≈
25 K, the resistivity scales as ρ ∼ T , manifesting the linear-
in-T behavior expected at T > TBG [71]. Since the thermal
conductivity scaling κ ∼ T −2 also ends at T ≈ 25 K [recall
Fig. 3(b)], we conclude that TBG ≈ 25 K. Below T ≈ 8 K, the
resistivity saturates to the residual resistance, and the thermal
conductivity scales as κ ∼ T . The WF law also remains valid
due to the dominant impurity scattering below T ≈ 8 K. Thus
the relative electron impurity strength can be extracted from
this temperature turning point by noticing that the maximum
point of κ is given by T ≈ g1/d

e TBG, the same as (5.11) where
the Lorenz number starts to go below L0; we have ge ≈ 0.04.
Then, (5.12) is solved to give the temperature of the minimum
Lorenz number at Tmin ≈ 12.7 K. Interestingly, this minimum
is at 14 K in experiment [27], which is quite close to our
predictions (which did not account for the complication of the
Fermi surface geometry!). A careful study about the influence
of Fermi surface geometry will be a future work.

Now, let us see which temperature regime (Table I) such
transport phenomena would correspond to. Using the fol-
lowing experimental data [27]: effective mass meff ≈ 0.2me,
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electron density n ∼ 4 × 1020 cm−3, and Fermi velocity vF ∼
4 × 105 m/s, we estimated that TF is around 5000 to 10 000 K.
Hence we estimate r = TBG/TF ∼ (2.5–5) × 10−3, thus we
have T4 = r1/4TBG ≈ 5–6 K, and the violation of WF law in
PtSn4 is cleanly located within T4 < T < TBG. This is ex-
pected from various hydrodynamic calculations in Sec. IV
(see also Fig. 1) where electrons and phonons flow as a single
unified fluid. In general, we argue that as long as the impurity
strength satisfies rd/(d+1) < ge, the “strong hybrid” electron-
phonon fluid would be identified in the temperature regime
T4 < T < TBG.

Next, we turn to WP2: first we discuss data re-
ported in [23,26]. Taking ρ0 ≈ 5 × 10−9 � cm, A5 ≈ 4 ×
10−15 � cm K−5, and B3 ≈ 6.5 × 10−12 � cm K−3[26], and
TF = EF/kB ≈ 6.8 × 104 K [23], we obtain

ger3 = ρ0

B3T 3
F

≈ 2.4 × 10−12, (5.14a)

ger5 = ρ0

A5T 5
F

≈ 8.6 × 10−19. (5.14b)

Thus r ≈ 6 × 10−4 and ge ≈ 0.01. Moreover, TBG =
rTF ≈ 40 K, and Tmin ≈ 16 K by solving (5.12). Note that
our estimate of 40 K for TBG is compatible with the ab initio
estimate for a Debye temperature in this material [24], which
plays qualitatively the same role of modifying the T depen-
dence in scattering mechanisms. We see that the temperature
for the minimum point of the Lorenz number well matches
the experimental results of [23]. Hence, it is plausible for
the transport in WP2 to exist within electron-phonon hydro-
dynamics, especially when the violation of WF law happens
above T4 ≈ 6 K.

Another recent experiment found somewhat similar results
[26], yet gave a quite different interpretation, suggesting that
electron-electron scattering is responsible for the deviation
from the WF law in WP2. First, [26] observes that at low
temperatures there is a mismatch between T 2 prefactors in
electrical and thermal resistivity, suggesting that momentum-
conserving electron-electron scattering is important. This is
not in conflict with the ab initio proposal that phonons dom-
inate at higher temperatures [24]. Second, [26] argues that
the ratio of B3 and A5 is similar in WP2 and Ag, while the
latter does not have a significant deviation in L/L0 at low
T . However, we emphasize that in our transport theory, the
coefficients A3 and B5 are robust and not sensitive to the
hydrodynamic regime; rather, it is the small values of �e and
�ph that induce electron-phonon hydrodynamics.

Both experiments [23,26] agree on the scale at which L/L0

is minimal. If electron-phonon hydrodynamics does arise in
this material, it is likely in the range T4 � T � T6 (though we
note that phonon hydrodynamics above a Debye temperature
might look quite different to our model: in our model, TBG is
below the Debye temperature).

We propose studying plasmon dispersion relations in both
of these materials, as the decreasing real part of the dispersion
with temperature is a crisp signature of our electron-phonon
hydrodynamics. At higher temperatures, it may also be pos-
sible to carry out nonlocal magnetotransport experiments
(similar to [7], see the next section) to crisply test our theory.

VI. MAGNETIC FIELDS

In this section we describe the hydrodynamic coefficients
upon turning on a relatively small, classical background
magnetic field. For simplicity, we restrict the discussion to
two-dimensional fluids, applying a magnetic field perpendic-
ular to the plane. The Boltzmann equation reads

∂t |
〉 + Fmag · ∇p|
〉 + W |
〉 = Ei|Ji〉, (6.1)

where Fmag is the Lorentz force acting merely on the electron
modes:

(Fmag)i = −eBεi jv j (p). (6.2)

We introduce the cyclotron frequency

ωc = eBvF

pF
. (6.3)

We define the collision integral Wmag|
〉 = Fmag · ∇p|
〉,
and note that 〈
1|Wmag|
2〉 = −〈
2|Wmag|
1〉. Such anti-
symmetry of Wmag implies that these effects are, in some
sense, dissipationless—however, dissipative transport coeffi-
cients can and do become dependent on B.

A. Viscosity

Since the magnetic field necessarily breaks momentum
conservation, we must actually consider a “quasihydrody-
namic” [72] limit where the magnetic field is small: γ −1 �
ω−1

c such that the momentum is still a long-lived and approxi-
mately conserved quantity. The angle dependence of Wmag on
a random ansatz follows:

〈0, m′|Wmag|0, m〉e =
∫ 2π

0

dθ

2π
e−im′θ

(
−eBεi jv j

∂

∂ pi

)
eimθ = imωcδm,m′ . (6.4)

The shear viscosity (4.9) is modified by the magnetic field through

η ≈ νμ2

2

(
1

γe + 2iωc
+ 1

γe − 2iωc

)
+ w2v2

ph(γph + γph-ph)−1

≈
⎧⎨
⎩

νμ2
(

γ −1

1+(2ωcγ −1 )2 + r2w̄2(γph + γph−ph)−1
)

T < TBG,

νμ2
(

γ̄ −1

1+(2ωc γ̄ −1 )2 + r2w̄2(γph + γph−ph)−1
)

TBG < T � TF.
(6.5)
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However, if the phonon-phonon scattering is weak in the sense of Dph � De-ph, then the second term in the above equation could
contribute nontrivially, making the electron-phonon fluid under background magnetic field an exotic fluid with unconventional
shear viscosity. This is analogous, in many ways, to the emergence of incoherent conductivities spoiling the conventional Kohn’s
theorem [64]. The Hall viscosity is given by

ηH = (〈τxx| − 〈τyy|)γ −1
ii (|τxy〉 + |τyx〉) ≈ 1

2i
νμ2

(
1

γe + 2iωc
− 1

γe − 2iωc

)
≈
⎧⎨
⎩

−νμ2 2ωcγ
−2

1+(2ωcγ −1 )2 T < TBG,

−νμ2 2ωc γ̄
−2

1+(2ωc γ̄ −1 )2 TBG < T � TF,
(6.6)

and it takes the more conventional form [46] in a Fermi liq-
uid. Therefore, a simple test for the phonon contribution to
transport and viscosity in an electron-phonon fluid would be
to study the ratio

R(B) = η2 + η2
H

η
, (6.7)

which will be a decreasing function of B because of the
phonon contribution to shear viscosity.

Note that there are highly quantum effects which we have
not captured in our semiclassical treatment [73].

B. Magnetotransport

We study the magnetotransport phenomenon by consid-
ering the strong electron-phonon interaction, the impurities,
and the magnetic field together W̃ = W + Wimp + Wmag. We
present the results of conductivities in the limit �ph → 0, and
we will see that this limit preserves much of the interesting
quantitative behavior of conductivities, but will simplify the
expressions a lot. The complete expressions can be found in
Appendix E. First, we find that the electrical conductivity is
given by

σxx = e2 ν

2
v2

F
�e

�2
e + ω2

c

, (6.8a)

σyx = e2 ν

2
v2

F
ωc

�2
e + ω2

c

. (6.8b)

They are very similar to the form in clean Fermi liquid
[54]. As discussed in the nonmagnetic case, the σi j become

independent of electron-phonon interactions if �ph is negli-
gible, and coincide with the form in the noninteracting limit
(E4). The open-circuit thermal conductivities are given by
(T < TBG)

T κxx = ν

2
p2

Fv
4
F

(
ā2(�e + γ r2/ā2)

(�e + γ r2/ā2)2 + ω2
c

+ r4w̄4γ −1

)
, (6.9a)

T κyx = ν

2
p2

Fv
4
F

ā2ωc

(�e + γ r2/ā2)2 + ω2
c

, (6.9b)

while the closed-circuit thermal conductivities are

T κ̄xx = T κxx + ν

2
p2

Fv
4
F

r4w̄4�e

�2
e + ω2

c

, (6.10a)

T κ̄yx = T κyx + ν

2
p2

Fv
4
F

r4w̄4ωc

�2
e + ω2

c

. (6.10b)

We see that in the limit B → 0, the closed-circuit thermal
conductivity diverges in the clean limit �e → 0 while the
open-circuit thermal conductivity does not. As the Lorentz
force does not act on phonon modes, one may naively think
that phonon modes will not contribute to the Hall thermal
conductivity. This is true for open-circuit Hall thermal con-
ductivity, but not for closed circuit: in the latter case, the
hybrid electron-phonon fluid is charged and participates in
cyclotron motion, even when the energy density of the fluid
is dominated by phonons. The thermoelectric conductivity is
given by (T < TBG)

T αxx = −e
ν

2
pFv

3
F

(
r2w̄2�e

�2
e + ω2

c

+ ā2(�e + γ r2/ā2)

(�e + γ r2/ā2)2 + ω2
c

− ā
cωc(2�e + γ r2ā2) + (b − 2γ r2/ā)

(
�2

e − ω2
c + �eγ r2/ā2

)
[
(�e + γ r2/ā2)2 + ω2

c

](
�e + ω2

c

) )
,

(6.11a)

T αyx = −e
ν

2
pFv

3
F

(
r2w̄2ωc

�e + ω2
c

+ ā2ωc

(�e + γ r2/ā2)2 + ω2
c

+ ā
(2γ r2/ā − b)(2�e + γ r2ā2)ωc + c

(
�2

e − ω2
c + �eγ r2/ā2

)
[
(�e + γ r2/ā2)2 + ω2

c

](
�e + ω2

c

) )
,

(6.11b)

where c is the off-diagonal term in the magnetic collision integral (E3). For the Hall conductivities (in Appendix E) we show
their temperature dependence in Fig. 4, where we defined the dimensionless parameter

ω̃c = ωc

rγ0
. (6.12)

The behavior is quite similar to the dissipative conductivities but with the scaling sort of “doubled”: the diagonal matrix element
is squared in the determinant through the off-diagonal matrix element. Besides, the electric Hall conductivity well not diverge at
clean limit ge → 0 due to the cyclotron motion; the thermal Hall conductivity decreases as T −1 above TBG.
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FIG. 4. Hall transport versus temperature with different field strengths and impurity scattering rates. (a) and (b) Log-log plot of electrical
and thermal Hall conductivity against temperature with ω̃c = 0.05. κH does not depend on gph. (c) and (d) Log-linear plot of (Hall) Lorenz
number against temperature.

We summarize the main results by studying two Lorenz numbers. The normal Lorenz number with magnetic field is given by
(including �ph)

L = κxx

T σxx
≈
⎧⎨
⎩

L0
( (�e+γ r2/ā2 )

(�e+γ r2/ā2 )2+ω2
c
+ r4w̄2/ā2

�ph+γ /w̄2

) [�e(�ph+γ /w̄2 )+�phγ ]2+(�ph+γ /w̄2 )2ω2
c

(�ph+γ /w̄2 )[�e(�ph+γ /w̄2 )+�phγ ] T < TBG,

L0
( (�e+γ̄ )

(�e+γ̄ )2+ω2
c
+ r4w̄2/ā2

�ph+γ̄ /w̄2

) [�e(�ph+γ̄ /w̄2 )+�phγ̄ ]2+(�ph+γ̄ /w̄2 )2ω2
c

(�ph+γ̄ /w̄2 )[�e(�ph+γ̄ /w̄2 )+�phγ̄ ] TBG < T � TF,
(6.13)

while the “Hall” Lorenz number is

LH = κyx

T σyx
≈
⎧⎨
⎩

L0
[�e(�ph+γ /w̄2 )+�phγ ]2+(�ph+γ /w̄2 )2ω2

c

[(�e+γ r2/ā2 )2+ω2
c ](�ph+γ /w̄2 )2 T < TBG,

L0
[�e(�ph+γ̄ /w̄2 )+�phγ̄ ]2+(�ph+γ̄ /w̄2 )2ω2

c

[(�e+γ̄ )2+ω2
c ](�ph+γ̄ /w̄2 )2 TBG < T � TF.

(6.14)

At low temperature, L shows a nonmonotonic temperature
dependence when ωc/�e > 1. This is similar to the result
of interacting Fermi liquid [54], even though the underlying
scattering mechanism is quite different. A nonzero B field
gives rise to a divergence for ge = 0 while shows little influ-
ence for gph = 0, since in a hybrid electron-phonon fluid, only
electrons directly interact with the B field.

As shown in Fig. 4, the nondissipative LH strictly decreases
with increasing temperature at low temperatures, in contrast
to L. It is important to note that, in principle, we can study LH

even as B → 0: although σxy and κxy individually become very

small, their ratio is fixed. Interestingly, we find that if gph = 0,
LH continues to decrease at higher temperatures. However, in
most experimental systems, we expect that gph > 0, in which
case we predict that near T ∼ TBG, LH ≈ L0.

VII. CONCLUSION

We have revisited the hydrodynamics and the thermoelec-
tric transport of a fluid of coupled electrons and acoustic
phonons in the presence of relatively strong electron-phonon
interactions. Solving the quantum Boltzmann equation, we
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found nine different temperature regimes when d > 2, and
seven temperature regimes for d = 2, most of which exhibited
unconventional thermodynamic properties and/or hydrody-
namic transport coefficients such as viscosity or incoherent
conductivity.

An explicit and important example of unusual temperature
dependence that we discovered occurs in the fluid’s sound
velocity. In an intermediate temperature regime T4 < T <

T6, vs ≈ vph/w̄ ∝ T −(d+1)/2 decreases with temperature, and
is a clear experimental signature for the strongly coupled
electron-phonon fluid. In particular, our model implies that
in two dimensions, the exotic sound wave above will lead
to an unusual plasmon dispersion relation, even in the pres-
ence of unscreened (or weakly screened) long-range Coulomb
interactions. The anomalous scaling of both the real and
imaginary parts of ωplasmon ∼ (vph/w̄)

√
k − iγ −1|k| represent

unambiguous predictions that appear to us to be unique and
“smoking gun” signatures for electron-phonon hydrodynam-
ics. Since the real part of plasmon dispersion relations is quite
readily measurable, we hope that our theory can be immedi-
ately tested with present day experimental capabilities (should
an appropriate experimental candidate arise).

Another experimental test which might be possible (indi-
rectly) with present day experimental techniques is to look
for the unusual relationships between shear viscosity and Hall
viscosity, as both of these coefficients can indirectly be mea-
sured using nonlocal transport experiments [15,16,74]. Such
experiments have been successfully performed in graphene
[2,7]. We hope that similar indirect measurements for inco-
herent conductivity can soon be developed.

After including electron-impurity and phonon-impurity
scattering rates, we discussed the more conventionally studied
thermoelectric transport coefficients of the bulk material. As is
well known [44], we obtain a breakdown of the Wiedemann-
Franz law at an intermediate temperature regime. While this
effect is not unique to hydrodynamic theories of transport, it
does represent a key signature for what temperature regime an
experimental device may be operating in. In many materials
including WTe2, WP2, and PtSn4, notable dips in L/L0 have
appeared at quite low temperatures ∼30 K. Perhaps this cor-
responds in these materials to the temperature range T ∼ T4,
where the conventional electron-phonon hydrodynamics of
the literature—which is entirely dominated by electrons, with
phonons modifying only scattering rates—is not applicable?
Especially in materials where first-principles calculations [24]
are possible, it will be important to carefully estimate the
temperature scales T1, . . . , T8 in order to carefully match our
theoretical predictions to future experiments.

A promising platform in realizing the simplest electron-
phonon hydrodynamics developed in this paper should (at

least) satisfy the conditions of low electron density and high
mobility. The low density of electrons seems to demand a
small Fermi surface, so that umklapp scattering is weak.
At the same time, the impurity density must also be quite
low, to facilitate a high mobility sample with very long
momentum-relaxing mean free paths. They both contribute to
the dominant momentum-conserving electron-phonon inter-
action. Moreover, the low density semimetal/semiconductor
makes itself different from normal metal that TBG drops
from ∼300 to ∼30 K. It is thus possible to have TBG < TD,
where TD is the Debye temperature, such that the phonon-
drag peak temperature ∼TD/10 [27] is more likely to be
located inside the highlighted regime T4 < T < T6, indi-
cating an out-of-equilibrium phonon mode. Such a feature
has been widely used in experiments [27,75] to suggest a
strong electron-phonon interaction. Meanwhile, twisted bi-
layer graphene [71,76,77] is also a possible candidate system
with strong electron-phonon interactions, although in these
twisted samples, the ratio r (which controlled much of the
interesting physics) may become rather large. Lastly, a sys-
tem where very strong electron-electron and electron-phonon
interactions might both coexist is in the Si MOSFETs [78]
where both TF and TBG can be below 30 K. Since the hybrid
electron-phonon sound speed does not depend on scattering
rates, being intrinsically thermodynamic, such systems may
also exhibit this unusual behavior. As noted previously, the
main limitation to studying electron-phonon hydrodynamics
in these systems is the sample thickness; we hope that such
a materials-dependent limitation may be overcome in future
experiments.

Our work demonstrates an exciting possibility of uncov-
ering novel hydrodynamic phenomena and plasmonics in
quantum materials with correlated electrons and phonons.
We encourage experimentalists to carefully study plasmon
dispersion relations in ultrathin films of a number of com-
pounds including PtSn4, PdCoO2, WTe2, and WP2. In each of
these materials, electron-phonon scattering has been argued
to play a critical role in possibly unconventional transport
physics. However, all of these materials exhibit anisotropic
Fermi surfaces and, as in [29,79], this anisotropy may well
cause qualitative changes to our theory. This is an important
issue which we hope to address in the near future.
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APPENDIX A: NORMALIZATION FACTOR OF ROTATIONALLY INVARIANT BASIS

Following the definition in (3.15), we calculate the normalization for n � 1 to the leading order T/TF. The higher n modes
are suppressed by even higher powers of T/TF. They are

〈0̃, m′|0̃, m〉e =
∫

dd p

(2π h̄)d
YmYm′

(
−∂ fF

∂ε

)
|p = �d−1δm,m′

∫
dε

(2π h̄)dvF
pd−1δ(ε − μ) = νδm,m′ + O

(
T 2

T 2
F

)
, (A1a)
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〈1̃, m′|1̃, m〉e =
∫

dd p

(2π h̄)d
YmYm′ (p − pF)2

(
−∂ fF

∂ε

)
|p = �d−1δm,m′

∫
dε

(2π h̄)dvF
pd−1(p − pF)2 π2T 2

3
δ′′(ε − μ)

= ν
π2T 2

3v2
F

δm,m′ + O
(

T 4

T 4
F

)
, (A1b)

〈2̃, m′|2̃, m〉e =
∫

dd p

(2π h̄)2
YmYm′ (p − pF)4

(
−∂ fF

∂ε

)
|p = �d−1δm,m′

∫
dε

(2π h̄)dvF
pd−1(p − pF)4 7π4T 4

180
δ(4)(ε − μ) (A1c)

= O
(

T 4

T 4
F

)
,

〈0̃, m′|1̃, m〉e =
∫

dd p

(2π h̄)2
YmYm′ (p − pF)

(
−∂ fF

∂ε

)
|p = �d−1δm,m′

∫
dε

(2π h̄)dvF
pd−1(p − pF)

π2T 2

3
δ′′(ε − μ)

= ν

2

π2T 2

3

(
−∂pvF

v2
F

)
δm,m′ + O

(
T 4

T 4
F

)
, (A1d)

〈1̃, m′|1̃, m〉ph =
∫

dd q

(2π h̄)d
YmYm′q2

(
−∂ fB

∂ε

)
|q = �d−1T d+1δm,m′

(2π h̄)dvd+2
ph

∫
dx

xd+1ex

(ex − 1)2
= 2w2δm,m′ , (A1e)

where we define

I (d ) =
∫ ∞

0
dx

xd+1ex

(ex − 1)2
. (A2)

APPENDIX B: EXPLICIT EXPRESSIONS OF ELECTRON-PHONON RELAXATION RATE

First, we compute the collision integral after linearization. The zeroth order of (3.22) vanishes due to the detailed balance
condition. Notice that

−∂ f 0
F

∂ε
= f 0

F

(
1 − f 0

F

)
, −∂ f 0

B

∂ε
= b0

B

(
1 + b0

B

)
. (B1)

Then the first order of Cph-e becomes

T δCe-ph = { fFk2

(
1 − fFk2

)(
1 − fFk1

)
(1 + bBq) + fFk1 fFk2

(
1 − fFk2

)
bBq
}

k2

+ {− fFk2 fFk1

(
1 − fFk1

)
(1 + bBq) − fFk1

(
1 − fFk1

)(
1 − fFk2

)
bBq
}

k1

+ {
fFk2

(
1 − fFk1

)
bBq(1 + bBq) − fFk1

(
1 − fFk2

)
bBq(1 + bBq)

}

q

= (1 − fFk2

)
fFk1 bBq

(

k2 − 
k1

)+ ( fFk2 − fFk1

)
bBq(1 + bBq)
q

= (1 − fFk2

)
fFk1 bBq

(

k2 − 
k1 − 
q

)
, (B2)

where in the last equation we use the energy conservation. (3.24) is obtained straightforwardly.
Next, we want to calculate the scaling on temperature of the collision integral. Based on the discussion below (3.24), we

separate our discussions into two temperature regimes: T < TBG and T > TBG.

1. T < TBG

We evaluate (3.24) in a general ground by assuming 
’s being ε dependent:

〈
|We-ph|
〉

≈ β

∫
q,k1,k2

||2δ(k2 − k1 − q)δ
(
εk2 − εk1 − ωq

)(
1 − fFk2

)
fFk1 fBq|
|2

=
∫

q

∫
dε2

|v(k2)|
dd−1k‖
(2π )d

β||2δ(εk2 − εk2−q − ωq
)(

1 − fFk2

)
fFk2−q fBq|
|2

=
∫

q

∫
dε2

|v(k2)|
dd−1k‖
(2π )d

||2δ(εk2 − εk2−q − ωq
)
β
(
1 − fFk2

)
fFk2

fFk2−q

fFk2

fBq|
|2
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=
∫

q

∫
dε2

|v(k2)|
dd−1k‖
(2π )d

||2δ(εk2 − εk2−q − ωq
)(

δ(ε2 − μ) + π2T 2

3
δ′′(ε2 − μ) + · · ·

)
fFk2−q

fFk2

fBq|
|2

=
∫

q

∫
dd−1k‖

(2π )dvF
De-ph|q|δ

(
cos θqk‖ − vph/vF

)
vFq

2

e−βω + 1

1

eβω − 1

∫
dε2

(
δ(ε2 − μ) + π2T 2

3
δ′′(ε2 − μ) + · · ·

)
|
|2

= De-ph

∫
q

∫
dd−1k‖

(2π )dv2
F

δ(cos θqk‖ − vph/vF)
1

sinh(βω)

∫
dε2

(
δ(ε2 − μ)+π2T 2

3
δ′′(ε2 − μ)+ · · ·

)
|
|2

≈ De-ph

∫
q

∫
dd−1k‖
(2π )dv2

F

δ(cos θqk‖ − vph/vF)�(T − vphq)
∫

dε2

(
δ(ε2 − μ) + π2T 2

3
δ′′(ε2 − μ) + · · ·

)
|
|2

= De-ph

∫ T/vph

0

dd q

(2π )d

∫
dd−1k‖

(2π )dv2
F

δ(cos θqk‖ − vph/vF)
∫

dε2

(
δ(ε2 − μ) + π2T 2

3
δ′′(ε2 − μ) + · · ·

)
|
|2. (B3)

We find that θqk‖ ≈ π/2 implying that phonon momentum is approximately perpendicular to electron momentum. We then apply
the “Bloch ansatz” |
〉ph = 0, and replace the |
〉 mode with a rotationally invariant basis. We have

e〈0̃|We-ph|0̃〉e ≈ De-ph

∫ T/vph

0

dd q

(2π )d

∫
dd−1k‖

(2π )dv2
F

δ(cos θqk‖ − vph/vF)
q2

p2
F

= α2(2)
1

p2
F

T d+2, (B4a)

e〈1̃|We-ph|1̃〉e ≈ De-ph

∫ T/vph

0

dd q

(2π )d

∫
dd−1k‖

(2π )dv2
F

δ(cos θqk‖ − vph/vF)
v2

ph

v2
F

q2 = α2(2)
v2

ph

v2
F

T d+2, (B4b)

e〈2̃|We-ph|2̃〉e ≈ De-ph

∫ T/vph

0

dd q

(2π )d

∫
dd−1k‖

(2π )dv2
F

δ(cos θqk‖ − vph/vF)
v4

ph

v4
F

q4 = α2(4)
v4

ph

v4
F

T d+4, (B4c)

where

α2(n) = De-ph

∫ 1

0

dd xxn

(2π )d

∫
dd−1k‖

(2π )dv2
Fv

d+n
ph

δ(cos θxk‖ − vph/vF). (B5)

To derive the relaxation time for phonons, we set 
e = 0. Then the collision integral for phonon modes is given by

ph〈1̃|We-ph|1̃〉ph ≈ De-ph

∫ T/vph

0

dd q

(2π )d

∫
dd−1k‖

(2π )dv2
F

δ(cos θqk‖ − vph/vF)(qq̂)2 = α2(2)T d+2. (B6)

2. T > TBG

We need to recalculate the collision integral (B3), and this time the phonon behaves more like a classical boson gas with
equipartition distribution:

〈
|We-ph|
〉 ≈
∫

q

∫
dd−1k‖

(2π )dvF
||2δ(εk2 − εk2−q − ωq

) 1

sinh(βωq)

∫
dε2

(
δ(ε2 − μ) + π2T 2

3
δ′′(ε2 − μ) + · · ·

)
|
|2

≈ De-ph

∫ kF dd q

(2π )d

∫
dd−1k‖

(2π )dvF
δ
(
εk2 − εk2−q − ωq

) T

vph

∫
dε2

(
δ(ε2 − μ) + π2T 2

3
δ′′(ε2 − μ) + · · ·

)
|
|2. (B7)

We apply |
〉ph = 0, and find

e〈0̃|We-ph|0̃〉e ≈ De-ph

∫ kF dd q

(2π )d

∫
dd−1k‖

(2π )dvF
δ
(
εk2 − εk2−q − ωq

) T

vph

q2

p2
F

= α′2(2)
1

p2
F

T, (B8a)

e〈1̃|We-ph|1̃〉e ≈ De-ph

∫ kF dd q

(2π )d

∫
dd−1k‖

(2π )dvF
δ
(
εk2 − εk2−q − ωq

) T

vph
a2 ≈ α′2(2)

a2

p2
F

T, (B8b)

where

α′2(n) = De-ph

∫ kF dd q

(2π )d

∫
dd−1k‖

(2π )dvF
δ
(
εk2 − εk2−q − ωq

) qn

vph
. (B9)

If we apply |
〉e = 0, we have

ph〈1̃|We-ph|1̃〉ph ≈ De-ph

∫ kF dd q

(2π )d

∫
dd−1k‖

(2π )dvF
δ
(
εk2 − εk2−q − ωq

) T

vph
q2 = α′2(2)T . (B10)
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APPENDIX C: MATRIX ELEMENTS OF COLLISION
INTEGRALS WITHOUT MAGNETIC FIELD

According to (3.28) we have

W ′
e-ph =

⎛
⎝ā2 + w̄2 −ā −w̄

−ā 1 + w̄2 −āw̄

−w̄ −āw̄ 1 + ā2

⎞
⎠ We-ph

(1 + ā2 + w̄2)2

×
⎛
⎝ā2 + w̄2 −ā −w̄

−ā 1 + w̄2 −āw̄

−w̄ −āw̄ 1 + ā2

⎞
⎠. (C1)

We write

W = W e
imp + W ph

imp + W ′
e-ph =

⎛
⎝A1 A4 A5

A4 A2 A6

A5 A6 A3

⎞
⎠, (C2)

where for T < TBG,

A1 = �e + γ
[1 + r2 + (ā2 + w̄2)2]

(1 + ā2 + w̄2)2
, (C3a)

A2 = �e + γ
r2(1 + w̄2)2

ā2(1 + ā2 + w̄2)2
, (C3b)

A3 = �ph + γ
[(1 + ā2)2 + w̄4]

w̄2(1 + ā2 + w̄2)2
, (C3c)

A4 = b − γ
ā2(−1 + w̄2) + r2(1 + w̄2)

ā(1 + ā2 + w̄2)2
, (C3d)

A5 = −γ
1 + (ā2 − r2)w̄2 + w̄4

w̄(1 + ā2 + w̄2)2
, (C3e)

A6 = γ
ā2(−1 + w̄2) − r2(1 + w̄2)

āw̄(1 + ā2 + w̄2)2
, (C3f)

and for T > TBG,

A1 = �e + γ̄
[1 + ā4 + w̄4 + ā2(1 + 2w̄2)]

(1 + ā2 + w̄2)2
, (C4a)

A2 = �e + γ̄
2ā2 + (1 + w̄2)2

(1 + ā2 + w̄2)2
, (C4b)

A3 = �ph + γ̄
(1 + ā2)(1 + ā2 + w̄4)

w̄2(1 + ā2 + w̄2)2
, (C4c)

A4 = b − γ̄
ā(ā2 + 2w̄2)

(1 + ā2 + w̄2)2
, (C4d)

A5 = −γ̄
1 + ā2 + w̄4

w̄(1 + ā2 + w̄2)2
, (C4e)

A6 = γ̄
ā(1 + ā2 + w̄4)

w̄(1 + ā2 + w̄2)2
. (C4f)

The inverse of W matrix is given by

W −1 = D−1

⎛
⎜⎝

A2A3 − A2
6 −A3A4 + A5A6 −A2A5 + A4A6

−A3A4 + A5A6 A1A3 − A2
5 A4A5 − A1A6

−A2A5 + A4A6 A4A5 − A1A6 A1A2 − A2
4

⎞
⎟⎠, (C5)

where

D = det W = A1A2A3 − A3A2
4 − A2A2

5 + 2A4A5A6 − A1A2
6. (C6)

We then approximate the W −1 in the above two temperature regimes.
At T < TBG we have the determinant

D ≈ (�e + r2γ /ā2)[�e(�ph + γ /w̄2) + �phγ ], (C7)

and the collision integral becomes

W −1 ≈

⎛
⎜⎜⎜⎜⎝

�ph+γ /w̄2

�e(�ph+γ /w̄2 )+�phγ

−(�ph+γ /w̄2 )(b−γ r2/ā)+γ 2r2/(āw̄2 )
D

γ /w̄

�e(�ph+γ /w̄2 )+�phγ

−(�ph+γ /w̄2 )(b−γ r2/ā)+γ 2r2/(āw̄2 )
D

1
�e+r2γ /ā2

−(b−γ r2/ā)γ /w̄+(�e+γ )γ r2/(āw̄)
D

γ /w̄

�e(�ph+γ /w̄2 )+�phγ

−(b−γ r2/ā)γ /w̄+(�e+γ )γ r2/(āw̄)
D

�e+γ

�e(�ph+γ /w̄2 )+�phγ

⎞
⎟⎟⎟⎟⎠, (C8)

while at T > TBG we have the determinant

D ≈ (�e + γ̄ )[�e(�ph + γ̄ /w̄2) + �phγ̄ ], (C9)

and the collision integral becomes

W −1 ≈

⎛
⎜⎜⎜⎜⎝

�ph+γ̄ /w̄2

�e(�ph+γ̄ /w̄2 )+�phγ̄

−(�ph+γ̄ /w̄2 )(b−γ̄ ā)+γ̄ 2 ā/w̄2

D
γ̄ /w̄

�e(�ph+γ̄ /w̄2 )+�phγ̄

−(�ph+γ̄ /w̄2 )(b−γ̄ ā)+γ̄ 2 ā/w̄2

D
1

�e+γ̄

−(b−γ̄ ā)γ̄ /w̄+(�e+γ̄ )γ̄ ā/w̄

D

γ̄ /w̄

�e(�ph+γ̄ /w̄2 )+�phγ̄

−(b−γ̄ ā)γ̄ /w̄+(�e+γ̄ )γ̄ ā/w̄

D
�e+γ̄

�e(�ph+γ̄ /w̄2 )+�phγ̄

⎞
⎟⎟⎟⎟⎠. (C10)

In above equations we keep the leading order in T/TF.
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APPENDIX D: TRANSPORT WITH LOW
PHONON SCATTERING

When momentum relaxing phonon scattering is low
(gph → 0), drastic changes show up in the temperature scal-
ing of thermoelectric transport quantities (see Fig. 3). More
precisely, consider the limit

0 < �ph � γ /w̄2 �⇒ 0 < gph � T/TF. (D1)

Hence, we obtain, when T < TBG,

σxx(gph → 0) ≈ e2 ν

2
v2

F
1

�e + �phw̄2
, (D2a)

T κxx(gph → 0) ≈ ν

2
p2

Fv
4
F

(
ā2

�e + γ r2/ā2
+ r4w̄4

γ

)
, (D2b)

L(gph → 0)/L0 ≈ �e + �phw̄
2

�e + γ r2/ā2
+ r4w̄4

ā2

�e + �phw̄
2

γ
. (D2c)

A similar calculation can be performed for T > TBG.
The electrical conductivity does not depend on the

electron-phonon scattering strength γ now; it saturates to
a constant when gph = 0. The saturation is the canonical
Drude result in noninteracting electron systems [54] [see also
Fig. 3(a)]. The thermal conductivity is also affected by such
an ultraclean lattice as depicted in Fig. 3(b), where no plateau
appears above TBG but a faster scaling ∼T 2d+1; the scaling
κ ∼ T −d+1 is also get corrected by the phonon contribution.
Although T ∗, which is the temperature where L starts to
deviate from L0 as defined in (5.11), is roughly not affected,
Tmin = xTBG has changed and now the x is given by the solu-
tion of

−drge + (d + 1)gphgex + gphxd+1 = 0. (D3)

Significantly, lowering gph does affect L below TBG (Tmin in-
creases) contrasting the case in the main text [see Fig. 3(c)].

APPENDIX E: MATRIX ELEMENTS OF COLLISION
INTEGRALS WITH MAGNETIC FIELD

We consider only |0x,y〉e, |1x,y〉e, and |1x,y〉ph to keep track
of the leading order temperature dependence of all conductiv-
ities. Here the integers correspond to the radial modes (not the
angular modes). We focus on d = 2 spatial dimensions. We
write

W̃ = W ⊗ δi j + W̃mag ⊗ εi j, (E1)

where

W̃mag = ωc(|0〉e〈0|e + |1〉e〈1|e) + c(|0〉e〈1|e + |1〉e〈0|e)
(E2)

and

c = πTeB(pF∂pvF − vF)√
3vF pF

. (E3)

Using (E1) we are allowed to invert the 6 × 6 collision matrix
to calculate the conductivities.

Let us begin by studying the noninteracting limit γ → 0.
After some algebra we have

σxx ≈ e2 ν

2
v2

F
�e

�2
e + ω2

c

, (E4a)

σyx ≈ e2 ν

2
v2

F
ωc

�2
e + ω2

c

, (E4b)

T κxx ≈ T κ̄xx ≈ ν

2
p2

Fv
4
F

(
ā2�e

�2
e + ω2

c

+ r4w̄2

�ph

)
, (E4c)

T κyx ≈ T κ̄yx ≈ ν

2
p2

Fv
4
F

ā2ωc

�2
e + ω2

c

, (E4d)

T αxx ≈ −e
ν

2
pFv

3
F

(
ā2�e

�2
e + ω2

c

− ā
b
(
�2

e − ω2
c

)+ 2c�eωc(
�2

e + ω2
c

)2
)

,

(E4e)

T αyx ≈ −e
ν

2
pFv

3
F

(
ā2ωc

�2
e + ω2

c

+ ā
c
(
�2

e − ω2
c

)− 2b�eωc(
�2

e + ω2
c

)2
)

.

(E4f)

In above equations we keep the leading order in the limit
T → 0. They are well reduced to the nonmagnetic cases as
discussed in the main text. We see that only (non-Hall) ther-
mal conductivity receives a phonon’s contribution which is
totally B irrelevant. This leads to two consequences. First, for
a large enough B, phonon modes will dominate the thermal
conductivity. Second, in the clean limit �e,ph → 0, the diver-
gence shows up in thermal conductivity through the phonon
modes.

Including the momentum-conserving electron-phonon in-
teraction, we obtain at T < TBG,

σxx ≈ e2 ν

2
v2

F

(
γ + �phw̄

2
)
[γ�e + (γ + �e)�phw̄

2]

γ 2
(
�2

e + ω2
c

)+ 2γ�ph
[
�e(γ + �e) + ω2

c

]
w̄2 + �2

ph

[
(γ + �e)2 + ω2

c

]
w̄4

, (E5a)

σyx ≈ e2 ν

2
v2

F

ωc(γ + �phw̄
2)2

γ 2
(
�2

e + ω2
c

)+ 2γ�ph
[
�e(γ + �e) + ω2

c

]
w̄2 + �2

ph

[
(γ + �e)2 + ω2

c

]
w̄4

, (E5b)

T κ̄xx ≈ ν

2
p2

Fv
4
F

(
(ā2�e+r2γ )

�2
e +ω2

c+2�eγ r2/ā2+γ 2r4/ā4
+ r4w̄2

{
w̄2γ

[
�e(γ+�e)+ω2

c

]+w̄4�ph
[
(γ+�e)2+ω2

c

]}
γ 2
(
�2

e +ω2
c

)+2γ�ph
[
�e(γ+�e)+ω2

c

]
w̄2+�2

ph

[
(γ+�e)2+ω2

c

]
w̄4

)
, (E5c)

T κ̄yx ≈ ν

2
p2

Fv
4
F

(
ωcā2(

�2
e +ω2

c

)+2�eγ r2/ā2+γ 2r4/ā4
+ r4w̄4γ 2ωc

γ 2
(
�2

e +ω2
c

)+2γ�ph
[
�e(γ+�e)+ω2

c

]
w̄2+�2

ph

[
(γ+�e)2+ω2

c

]
w̄4

)
,

(E5d)
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T αxx ≈ −e
ν

2
pFv

3
F

(
γ r2w̄2[γ�e+(γ+�e)�phw̄

2]

γ 2
(
�2

e +ω2
c

)+2γ�ph
[
�e(γ+�e)+ω2

c

]
w̄2+�2

ph

[
(γ+�e)2+ω2

c

]
w̄4

+ (ā2�e+r2γ )

�2
e +ω2

c+2�eγ r2/ā2+γ 2r4/ā4

+ ā[
(�e + γ r2/ā2)2 + ω2

c

]{
[γ�e + �ph(γ + �e)w̄2]2 + ω2

c (γ + �phw̄2)2
}

× {(γ + �phw̄
2)
(−c[2γ�eωc + �ph(γ + 2�e)ωcw̄

2] + b{γ (−�2
e + ω2

c

)+ �ph
[−�e(γ + �e) + ω2

c

]
w̄2
})

− γ r2/ā2
{
cωc(γ + �ph)2 + b

[
γ 2�e + γ�ph(γ + 2�e)w̄2 + �2

ph(γ + �e)w̄4
]}

− āγ r2/ā2(2γ + �phw̄
2)
{
γ
(−�2

e + ω2
c

)+ �ph
[−�e(γ + �e) + ω2

c

]
w̄2
}

+ āγ 2r4/ā4(2γ + �phw̄
2)
[
�e�phw̄

2 + γ (�e + �phw̄
2)
]})

, (E5e)

T αyx ≈ −e
ν

2
pFv

3
F

(
ωcγ r2w̄2(γ + �phw̄

2)

γ 2
(
�2

e + ω2
c

)+ 2γ�ph
[
�e(γ + �e) + ω2

c

]
w̄2 + �2

ph[(γ + �e)2+)w̄]4

+ ωcā2(
�2

e + ω2
c

)+ 2�eγ r2/ā2 + γ 2r4/ā4

+ ā[
(�e + γ r2/ā2)2 + ω2

c

]{
[γ�e + �ph(γ + �e)w̄2]2 + ω2

c (γ + �phw̄2)2
}

× {(γ + �phw̄
2)
(−b[2γ�eωc + �ph(γ + 2�e)ωcw̄

2] − c
{
γ
(−�2

e + ω2
c

)+ �ph
[− �e(γ + �e) + ω2

c

]
w̄2
})

− γ r2/ā2
{
bωc(γ + �ph)2 − c

[
γ 2�e + γ�ph(γ + 2�e)w̄2 + �2

ph(γ + �e)w̄4
]}

+ āγ r2/ā2ωc(2γ + �ew̄
2)[2γ�e + (γ + 2�e)�phw̄

2]

+ āγ 2r4/ā4ωc(2γ + �phw̄
2)(γ + �phw̄

2)
})

, (E5f)

and at T > TBG,

σxx ≈ e2 ν

2
v2

F

(γ̄ + �phw̄
2)[γ̄ �e + (γ̄ + �e)�phw̄

2]

γ̄ 2
(
�2

e + ω2
c

)+ 2γ̄ �ph
[
�e(γ̄ + �e) + ω2

c

]
w̄2 + �2

ph

[
(γ̄ + �e)2 + ω2

c

]
w̄4

, (E6a)

σyx ≈ e2 ν

2
v2

F

ωc(γ̄ + �phw̄
2)2

γ̄ 2
(
�2

e + ω2
c

)+ 2γ̄ �ph
[
�e(γ̄ + �e) + ω2

c

]
w̄2 + �2

ph

[
(γ̄ + �e)2 + ω2

c

]
w̄4

, (E6b)

T κ̄xx ≈ ν

2
p2

Fv
4
F

(
ā2(�e + γ̄ )

�2
e + ω2

c + 2�eγ̄ + γ̄ 2
+ r4w̄2

{
w̄2γ̄

[
�e(γ̄ + �e) + ω2

c

]+ w̄4�ph
[
(γ̄ + �e)2 + ω2

c

]}
γ̄ 2
(
�2

e + ω2
c

)+ 2γ̄ �ph
[
�e(γ̄ + �e) + ω2

c

]
w̄2 + �2

ph

[
(γ̄ + �e)2 + ω2

c

]
w̄4

)
, (E6c)

T κ̄yx ≈ ν

2
p2

Fv
4
F

(
ωcā2

�2
e + ω2

c + 2�eγ̄ + γ̄ 2
+ r4w̄4γ̄ 2ωc

γ̄ 2
(
�2

e + ω2
c

)+ 2γ̄ �ph
[
�e(γ̄ + �e) + ω2

c

]
w̄2 + �2

ph

[
(γ̄ + �e)2 + ω2

c

]
w̄4

)
, (E6d)

T αxx ≈ −e
ν

2
pFv

3
F

(
γ̄ r2w̄2[γ̄ �e + (γ̄ + �e)�phw̄

2]

γ̄ 2
(
�2

e + ω2
c

)+ 2γ̄ �ph
[
�e(γ̄ + �e) + ω2

c

]
w̄2 + �2

ph

[
(γ̄ + �e)2 + ω2

c

]
w̄4

+ ā2(�e + γ̄ )

�2
e + ω2

c + 2�eγ̄ + γ̄ 2

+ ā[
(γ̄e + γ̄ )2 + ω2

c

]{
[γ̄ �e + �ph(γ̄ + �e)w̄2]2 + ω2

c (γ̄ + �phw̄2)2
}

×
{

(γ̄ + �phw̄
2)
(−c[2γ̄ �eωc + �ph(γ̄ + 2�e)ωcw̄

2] + b
{
γ̄
(−�2

e + ω2
c

)+ �ph
[−�e(γ̄ + �e) + ω2

c

]
w̄2
})

−γ̄
{
cωc(γ̄ + �ph)2 + b

[
γ̄ 2�e + γ̄ �ph(γ̄ + 2�e)w̄2 + �2

ph(γ̄ + �e)w̄4
}]

−āγ̄ (2γ̄ + �phw̄
2)
{
γ̄
(− �2

e + ω2
c

)+ �ph
[−�e(γ̄ + �e) + ω2

c

]
w̄2
}

+āγ̄ 2(2γ̄ + �phw̄
2)[�e�phw̄

2 + γ̄ (�e + �phw̄
2)]

})
, (E6e)
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T αyx ≈ −e
ν

2
pFv

3
F

(
ωcγ̄ r2w̄2(γ̄ + �phw̄

2)

γ̄ 2
(
�2

e + ω2
c

)+ 2γ̄ �ph
[
�e(γ̄ + �e) + ω2

c

]
w̄2 + �2

ph

[
(γ̄ + �e)2 + ω2

c

]
w̄4

+ ωcā2(
�2

e + ω2
c

)+ 2�eγ̄ + γ̄ 2

+ ā[
(�e + γ̄ )2 + ω2

c

]{
[γ̄ �e + �ph(γ̄ + �e)w̄2]2 + ω2

c (γ̄ + �phw̄2)2
}

×{(γ̄ + �phw̄
2)
(−b[2γ̄ �eωc + �ph(γ̄ + 2�e)ωcw̄

2] − c
{
γ̄
(−�2

e + ω2
c

)+ �ph
[−�e(γ̄ + �e) + ω2

c

]
w̄2
})

− γ̄
{
bωc(γ̄ + �ph)2 − c[γ̄ 2�e + γ̄ �ph(γ̄ + 2�e)w̄2 + �2

ph(γ̄ + �e)w̄4]
}

+ āγ̄ ωc(2γ̄ + �ew̄
2)[2γ̄ �e + (γ̄ + 2�e)�phw̄

2]

+ āγ̄ 2ωc(2γ̄ + �phw̄
2)(γ̄ + �phw̄

2)
})

. (E6f)

Notice that we still keep the leading order in T/TF. All the conductivities above can be checked to reduce to (5.5) when B = 0.
The experimental thermal conductivity is given by

T κxx ≈
⎧⎨
⎩

ν
2 p2

Fv
4
F

( (ā2�e+r2γ )
�2

e +ω2
c +2�eγ r2/ā2+γ 2r4/ā4 + r4w̄2

�ph+γ /w̄2

)
T < TBG,

ν
2 p2

Fv
4
F

( ā2(�e+γ̄ )
�2

e +ω2
c +2�eγ̄+γ̄ 2 + r4w̄2

�ph+γ̄ /w̄2

)
TBG < T � TF,

(E7a)

T κyx ≈
⎧⎨
⎩

ν
2 p2

Fv
4
F

ωcā2

(�2
e +ω2

c )+2�eγ r2/ā2+γ 2r4/ā4 T < TBG,

ν
2 p2

Fv
4
F

ωcā2

�2
e +ω2

c +2�eγ̄+γ̄ 2 TBG < T � TF.
(E7b)

We find that the phonon modes contribute to the dissipative experimental thermal conductivity in a B-independent way, while
do not contribute to the experimental thermal Hall conductivity.
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