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Nonlocal kinetic energy functionals in real space using a Yukawa-potential kernel:
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In the quest for accurate approximations of the noninteracting kinetic energy functional as a functional of the
electronic density, two different paths are usually employed: semilocal functionals based on the derivatives of the
electronic density (mainly the gradient and the Laplacian) or nonlocal functionals based on the linear response
of the homogeneous electron gas, i.e., the Lindhard function. While the former are defined in real space but fail
to reproduce the Lindhard function, the latter cannot be expressed exactly in real space (being defined only in
the reciprocal space), so applications to finite systems are complicated. In this paper we introduce a nonlocal
ingredient (yα) based on the Yukawa potential, i.e., the screened Hartree potential, which can be combined
with other semilocal ingredients to obtain a more accurate description of the Lindhard function for both small
and large wave vectors. We show and analyze the different properties of yα and introduce a class of density
functionals, the Yukawa-generalized gradient approximation (yGGA). We show that both the total energy and
the first functional derivative (the kinetic potential) of yGGA functionals can be easily computed in real space.
We present model yGGA functionals which well approximate the Lindhard function for both small and large
wave vectors and can accurately describe jellium clusters and their perturbations.

DOI: 10.1103/PhysRevB.103.155127

I. INTRODUCTION

Several linear scaling methods attractive for large-scale
calculations of electronic systems, such as orbital-free density
functional theory (OF-DFT) [1–4], subsystem DFT [5–10],
and quantum hydrodynamic theory [11–14], strongly relay on
noninteracting kinetic energy (KE) functional approximations
[15–58].

However, such approximations are still rather difficult
to express as pure density functionals Ts[n(r)] = ∫

τ (r)d3r,
with τ (r) being the KE density; despite the noninteracting
KE, Ts, is exactly known as a function of occupied Kohn-
Sham (KS) orbitals φi(r), i.e., Ts = (1/2)

∑N
i

∫ |∇φi(r)|2d3r.
Considering the importance of the KE as an observable and

as a key ingredient for electronic structure methods, different
KE approximations have been developed during the last 30
years. Currently, they can, in general, be divided into two
classes: semilocal functionals [15–37], such as the generalized
gradient approximations (GGAs) [15,16,18–26,37] and the
Laplacian-level meta-GGAs (mGGA) [27–34], and nonlocal
functionals [38–54]. In semilocal functionals, the KE density
is written

τ semilocal(r) = τ (n(r),∇n(r),∇2n(r)) , (1)

such that the KE density is completely defined by the value
of the electron density and its derivatives at each single point

*fabio.dellasala@iit.it

in space. This makes this approach very efficient from a
computational point of view and quite easily transferable be-
tween systems with different natures (localized or extended
periodic systems). In fact, even rather simple semilocal KE
functionals have shown good accuracy for the description of
equilibrium lattice constants, bulk moduli, total, kinetic, and
vacancy energies of bulk solids in the context of solid-state
OF-DFT calculations [25,32,33] and a good ability to describe
noncovalent interactions between molecular complexes in the
context of subsystem DFT calculations [10,19,29,34,59,60].
However, because the KE density is constructed only from
the density information contained in an infinitesimal volume
around the point r, semilocal KE functionals, in general, can-
not correctly describe some of the strong nonlocal effects of
the exact KE functional.

Nonlocal KE functionals, on the other hand, have the gen-
eral form

τ non-local(r) = τ semilocal(r)

+
∫

nα (r)K (ζ (r, r′), r − r′)nβ (r′)d3r′, (2)

where α and β are parameters and K (ζ (r, r′), r − r′) is a non-
local kernel designed to exactly reproduce the linear response
of the noninteracting uniform electron gas, i.e., the Lindhard
function [1]. The kernel K depends on an effective Fermi
wave vector ζ (r, r′) [49] that can be chosen in several ways.
In particular, it can be a constant, making the kernel density
independent [38–40,44,51], or it can depend on the electron
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density at r and r′, making the kernel density dependent
[41–43,45–50,52]. These functionals, thanks to the presence
of the nonlocal kernel, are able to provide a very accurate
description of the KE features. However, they display several
disadvantages:

(1) The most evident one is related to the computational
cost, due to the nonlocal nature and the complicated expres-
sions of the nonlocal kernel [49,50], which is much higher
than the one required for semilocal functionals [61,62].

(2) A second significant drawback is related to the fact that
the kernel is based on the Lindhard function, which is only
defined in the reciprocal space, while its Fourier transform
function does not have an analytical expression in real space.
Several methods have been presented in literature [38,63–66]
to represent the Lindhard function in real space, which have
been used in real-space finite-element implementations of OF-
DFT [67–70]. However, most of these methods yield only an
approximate description of the Lindhard function and with
a quite complicated numerical implementation. Therefore,
an exact real-space description of the Lindhard function re-
mains problematic and Lindhard-based nonlocal functionals
are much better suited for extended periodic systems.

(3) Moreover, density-independent nonlocal KE function-
als [38–40,45,51] cannot be properly applied to finite systems
or surfaces [45]. A local density approximation has been intro-
duced in Ref. [53] and recently in Ref. [54], allowing accurate
calculations of finite systems with density-independent nonlo-
cal KE functionals. Yet, calculations for isolated systems can
only be performed in the periodic space with the use of a large
supercell approach (to avoid interactions of periodic replicas).

(4) Another important feature of most nonlocal KE func-
tionals is that, by construction, they are developed considering
small perturbations of the homogeneous electron gas (HEG),
with the density close to the bulk density. Therefore, they per-
form best for slowly varying systems, such as bulk solids, but
may also be accurate for rapidly varying density regions. Note
also that the accuracy of many nonlocal functionals originates
from the use of system-dependent parameters [49–52].

The construction of a good KE approximation therefore
poses a dilemma, since both classes display advantages and
disadvantages. To try to solve this problem, preserving on one
side the simplicity and universality of the semilocal functional
development and seeking on the other side for the good ac-
curacy typical of the nonlocal functionals, we have recently
proposed a simple u-mGGA approximation [71,72]

τ u-mGGA(r) = τ (n(r),∇n(r),∇2n(r), u(r)) . (3)

which has the general form of a meta-GGA functional but uses
as additional input ingredient the Hartree potential:

u(r) =
∫

n(r′)/|r − r′|d3r′ . (4)

This is a nonlocal ingredient that can be easily computed in
real space [indeed, u(r) is already computed anyway in any
electronic structure method] and provides nonlocal features to
the functional. In fact, the u-mGGA functional can be seen
as a semilocal functional with a nonlocal input ingredient or,
equivalently, as a generalization of nonlocal functionals, with
a Coulomb-like kernel. In fact, if we consider a u-mGGA

functional of the type τ ∝ n5/3F [n(r)]u(r), then

τ (r) ∝
∫

n5/3(r)
F [n(r)]

|r − r′| n(r′)d3r′ , (5)

which is analogous to Eq. (2) with α = 5/3 and β = 1.
The u-mGGA KE functionals therefore have important

potentialities in the field of KE approximations. Nevertheless,
in view of a general application of the method, they also
show a major limitation. In fact, this approach is constrained
only to finite systems because the Hartree potential diverges
for extended systems. For this reason, in this paper, we im-
prove this method of functional development by considering
an ingredient (yα) based on the Yukawa potential, i.e., the
screened Hartree potential. This preserves the good features
of the u-mGGA method and overcomes the limitations due to
the divergence of the Hartree potential for extended systems.
Moreover, we show that using the ingredient yα , an accurate
description of the Lindhard function can be obtained in real
space. As a result, we can construct semilocal functionals with
nonlocal features that are efficiently computed in real space
and can accurately describe different properties of electronic
systems.

In detail, the paper is organized as follows. In Sec. II, we
introduce the ingredient yα , its properties, and the class of
Yukawa-based functionals, showing how to compute the KE
and the kinetic potential. In Sec. III, we present computa-
tional details of our implementation for spherical systems. In
Sec. IV, we present results for total energy and perturbation
of jellium clusters, taken as examples. In Sec. V, conclusions
are drawn and possible extensions of this paper are discussed.

II. THEORY

For a given approximate KE functional (T app
s [n]) of the

electron density n(r), we can compute the Thomas-Fermi (TF)
normalized linear response of the HEG in reciprocal space
(simply linear response in the following),

χ app(η)

χTF(η)
= 1

F app(η)
= π2

kF
F̂

[
δ2T app

s [n]

δn(r)δn(r′)

]−1

, (6)

where F̂ denotes the Fourier transform, η = k/(2kF ) is the
renormalized wave vector, the Fermi wave vector is kF =
(3π2n)1/3, and χTF = −kF /π2 is the TF linear response.

The exact linear response for the HEG is

χ (η)

χTF(η)
= 1

F Lind(η)
= 1

2
+ 1 − η2

4η
ln

∣∣∣∣1 + η

1 − η

∣∣∣∣, (7)

which has two important limits:

1/F Lind(η) → 1 − η2

3
− η4

15
+ · · · for η → 0, (8)

1/F Lind(η) → 1

3η2
+ 1

15η4
+ · · · for η → ∞. (9)

Note that sometimes in literature series expansions of F Lind

instead of 1/F Lind are reported [1,24]. Other important prop-
erties of the Lindhard function are [1,73] the derivative
singularity at η = 1, i.e., d (1/F )/dη = −∞ and its value,
i.e., 1/F (1) = 1/2, see first line of Table I.
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TABLE I. Values of the linear response function and its first
derivative, both calculated in η = 1, for the different functionals in
Fig. 1 as well as for the approximation in Ref. [73].

( 1
F )|η=1

d
dη

( 1
F )|η=1

Lindhard 0.50 −∞
TFvW 0.25 −0.375
Lind4 0.66 −0.60
PGSL0.25 0.56 −0.78
yuk1 0.31 −0.52
yuk2, yuk3, yuk4 0.39 −0.71
Ref. [73] 0.50 −0.75

We start by considering the general class of mGGA KE
functionals of the type

T mGGA
s [n] =

∫
τTFFs(p, q)d3r , (10)

where the TF energy density is τTF = (3/10)k2
F n and the KE

enhancement factor Fs is a general function of the squared
reduced gradient p = s2 = (∇n)2/(4k2

F n2) and the reduced
Laplacian q = (∇2n)/(4k2

F n). At the more conventional GGA
level of approximation, Fs is a function of p only. The linear
response of a general mGGA functional is (see Appendix A)

1

F mGGA(η)
= 1

(9/5)Dqqη4 + (9/5)Dpη2 + Fs(0, 0)
, (11)

where Dqq = (1/2)d2Fs/dq2 and Dp = dFs/d p computed at
p = q = 0. Eq. (11) tells us that it is enough to consider
a functional of the type F mGGA

s (p, q) = Fs(0, 0) + Dp p +
Dqqq2 to describe the linear response, whereas any higher-
order term does not contribute to it.

Any GGA or mGGA functional cannot simultaneously
satisfy conditions in Eqs. (8) and (9). At the GGA level,
the well-known Thomas-Fermi-λ-von Weizsäcker (TFλvW)
functional, i.e., with Fs = 1 + λ(5/3)p, has a response
1/F TFλvW(η) = 1/(1 + 3η2λ). When λ = 1, only Eq. (9) is
satisfied (but only up to second order); when λ = 1/9, only
Eq. (8) is satisfied (up to the second order). The TF1vW
(simply TFvW in the following) response is reported in Fig. 1:
While TFvW is correct at large η, it is quite bad at small η.
Moreover, values at η = 1 are quite incorrect (see Table I).

At the mGGA level of theory, Eq. (8) can be satisfied, with
Dp = 5/27 and Dqq = 8/81, i.e., the Lind4 functional [24],
but in this case Eq. (9) is largely violated (due to the Dqqη

4

term) and the response at large η is inaccurate (see Fig. 1).
The PGSL0.25 functional [32] well reproduces the Lindhard
function globally as shown in Fig. 1 and in Table I, but the
exact conditions at large wave vectors are not recovered.

With higher-order derivatives, the comparison with the
Lindhard function goes even worse [1].

Thus, reproducing the Lindhard function in real space with
semilocal ingredients is out of reach. This traces back to the
fact that any semilocal ingredient does not generate terms in
the numerator of Eq. (11), in contrast to Eq. (7). In Ref. [73],
an approximated Lindhard function using a rational polyno-
mial has been presented.

FIG. 1. Linear response (1/F) for different functionals; the inset
shows the function F in a log scale. TFvW and yuk1 have an incorrect
behavior at small η, whereas Lind4 and PGSL0.25 have incorrect
behaviors at large η. Note that the functionals yuk3 and yuk4 have
the same response as yuk1.

In this paper, we consider a nonlocal ingredient which can
be easily computed in real space:

yα (r) = 3πα2

4kF (r)
uα (r), with (12)

uα (r) =
∫

n(r′)e−αkF (r)|r−r′ |

|r − r′| d3r′ . (13)

The quantity yα (r) is proportional to the Yukawa potential
(or screened Coulomb potential) uα , with a screening length
α(3π2)1/3n(r)1/3. The Yukawa potential is widely used in
many different applications in physics and chemistry [74–80].
Note that the screening length is fixed for a given r, i.e., it
does not depend on the integration variable r′. Screening is
required (i.e., α > 0), otherwise uα (r) diverges as 1/α2 for
any extended system: When α → 0, however, yα (r) remains
finite thanks to the multiplication by α2 in Eq. (12). The
Yukawa potential can be very easily computed for spherical
systems, see Appendix B.

The ingredient yα has the following properties:
(i) yα is positive, adimensional, and invariant under the

uniform scaling of the density (see Appendix C).
(ii) When α → +∞, uα (r) → 4π/[αkF (r)]2n(r), i.e.,

there is no nonlocality. In this limit, using Eq. (12), we have
that yα → 1.

(iii) yα is unbound in the tail of finite systems: With
N electrons (with vanishing density in the tail), we have
uα (r) → (N/r) and thus yα diverges as n(r)−1/3. This is
shown in Fig. 2, e.g., for a jellium cluster with N = 92 elec-
trons, for different values of the α parameter. Increasing α, we
have that, inside the cluster, the Yukawa potential decreases
while yα approaches 1, see property ii.

(iv) Under the homogeneous scaling [n(r) → λn(r)], we
have that yα (r) → yλ1/3α (r). Therefore, the limit for large λ

(i.e., for a large number of electrons) is the same as the limit
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FIG. 2. (a) The Yukawa potential (uα) and (b) the nonlocal in-
gredient yα versus the scaled radial distance r/R, for different values
of α, for a jellium cluster with N = 92 electrons and rs = 4. Also
shown is the Hartree potential (α = 0). The electronic ground-state
density is reported in the inset of panel (b).

for large α, and thus, see point (ii) above, yα is approaching
1 in this limit. On the other hand, for small λ, yα can have
a size-dependent behavior. As an example, we consider the
model density njell(r) = n0 inside a sphere of radius R0 and
zero outside, and we obtain at the center of the sphere (see
Appendix D),

yα (0) = 1 − e−αkF R0 (1 + αkF R0) (14)

= 1 − e− α
2 (18πN )1/3

(
1 + α

2
(18πN )1/3

)
, (15)

where N = n04πR3
0/3 is the number of electrons. Equation

(15) shows that yα assumes different values inside the sphere,
depending on the number of electrons N (note that it ap-
proaches 1 for an infinite number of electrons, i.e., in the HEG
limit). Thus yα shows a system-size dependence, in contrast
to the behavior of all semilocal ingredients (reduced gradient
and reduced Laplacian) which are, in this case, exactly zero
regardless of the number of electrons.

(vi) In the limit λ → ∞ of the TF density scaling [81],
nλ(r) = λ2n(λ1/3r), which describes the atomic core of the
semiclassical atom with an infinite number of electrons
[note that

∫
d3r nλ(r) = λ

∫
d3r n(r)], we have that yα → 1

(see Appendix E for an exponential density).
(v) For an atomic density of the type

nat(r) = 2Z3 f

π
e−2Zr , (16)

which is exact near the nucleus of a large-Z neutral atom
[ f = ζ (3)], see Ref. [82], we obtain (see Appendix E)

yα (r) = α2(
α + (

4
3π f

)1/3
)2 + O(Zr) . (17)

Thus the value of yα is less than 1 (namely, 0.343 for α = 1) at
the nucleus and does not depend on the number of electrons.

FIG. 3. The nonlocal ingredient yα for the radon neutral atom
for different values of α. The semilocal ingredients p and q are
also reported. The inset shows the electronic density (in a double-
logarithmic scale).

Figure 3 reports yα for several values of the α parameter for
the radon atom. For large α, yα approaches 1 everywhere in the
space. For α = 1, it approaches 0.34 as predicted by Eq. (17).
Figure 3 shows also that for α values around 1, the yα indicator
contains different information as compared to p and q (which
diverge to −∞ at the nucleus).

In conclusion, we have shown that the yα ingredient sat-
isfies all the properties required to be a valid indicator in the
construction of a generalized class of u-mGGA functionals
[72], which we define here as the Yukawa-GGA (yGGA)
functional. A yGGA functional has a KE of the type

T yGGA
s =

∫
τ (n,∇n,∇2n, uα )d3r (18)

=
∫

τ T F Fs(p, q, yα )d3r. (19)

As shown in Figs. 2 and 3, the value of the α parameter
should be around 1 to carry significant information in the
high-density region.

A. Kinetic potential of yGGA functionals

Having defined the yGGA energy functional, the next
fundamental step is to define the kinetic potential (its first
functional derivative), which is the most important quantity
in OF-DFT calculations.

The yGGA kinetic potential is (see Appendix F):

δT yGGA
s

δn(r)
= vmGGA

k (r) + v
yGGA,1
k (r) + v

yGGA,2
k (r) , (20)

where the first term,

vmGGA
k (r) = ∂τ

∂n
(r) − ∇ · ∂τ

∂∇n
(r) + ∇2 ∂τ

∂∇2n
(r), (21)
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is the kinetic potential of a mGGA-type functional [28,83],
whereas

v
yGGA,1
k (r) = 3kF (r)2

10
ỹα (r), (22)

v
yGGA,2
k (r) = −2kF (r)2

10
eα (r), (23)

with

ỹα (r) = 3πα2

4kF (r)n1/3(r)

×
∫

n(r′)4/3 ∂Fs

∂yα

(r′)
e−αkF (r′ )|r−r′ |

|r − r′| d3r′, (24)

eα (r) = 3πα3

8

∂Fs

∂yα

(r)
∫

n(r′)e−αkF (r)|r−r′ |d3r′, (25)

are the additional terms due to the dependence on yα . The
functions ỹα and eα (r) have been renormalized to be adimen-
sional and recovering 1 in the HEG limit (when dFs/dyα = 1,
see Appendix I).

The integrals appearing in Eqs. (24) and (25) can also be
easily computed for spherical systems, see Appendix B. The
form of the yGGA potential thus depends on the specific form
of the enhancement factor. In the following section, some
model functionals will be analyzed.

B. Model yGGA functionals

The simplest yGGA functional is

F yuk1
s (p, q, yα ) = (5/3)p + yα , (26)

which is a generalization of the TFvW one and satisfies the
condition [27,84]

Fθ = Fs − (5/3)p > 0 , (27)

where Fθ is the Pauli enhancement factor. The yuk1 functional
is defined with α = 1 and its linear response is (see Appendix
G)

1

F yuk1(η)
=

(
3η2 + −16η4 + 40η2 + 5

80η4 + 40η2 + 5

)−1

. (28)

Note that in this case a fourth-order polynomial in η is present
in the numerator, which is a striking difference with respect
to TFvW and also the to mGGAs. For η → ∞, we have that
F yuk1 → 3η2 − 1/5 + · · · which is close to the exact result
F Lind → 3η2 − 3/5 + · · · [1]. For η → 0, we have a F yuk1 →
3η2 + 1 + · · · which is like the TFvW functional.

If we consider the model density njell(r) = n0 inside a
sphere of radius R0 and zero outside, we obtain the kinetic po-
tential components, i.e., Eqs. (21)–(23) reported in Fig. 4. The
values at r = 0 are discussed in Appendix I: For R0 → ∞, the
sum of all contributions converges to the TF potential. Outside
the sphere, where the density is zero, we have that all con-
tributions are zero but v

yGGA,1
k , which decays proportionally

to e−αkF r/r, showing again the nonlocal features of yGGA
functionals (i.e., the potential is nonzero where the density is
exactly zero).

FIG. 4. Components of the yuk1 kinetic potential for a model
density (see text). For vmGGA

k , the vW part is not considered.

If we consider the model atomic density of Eq. (16), we
have at r = 0 [see Eq. (17) and Appendix I],

F yuk1
θ = yα=1(0) = 0.343 , (29)

v
yuk1
θ (0) = 1.77Z2 , (30)

where vθ = vk − vvW
k is the Pauli potential [84]. These results

can be be compared with the exact results [82,85]:

Fθ = 0.0286 , (31)

vθ (0) = Z2/2 . (32)

Thus, the yuk1 functional gives a kinetic potential at the
nucleus about three times larger than the exact one. This is a
very good result considering that TFvW overestimates it by
eight times [vTFvW

θ (0) = 4.003Z2], as also shown in Fig. 5
where we report the Pauli potential for the radon atom. Thus,
the yuk1 functional is quite accurate at the nucleus, consider-
ing that, in general, GGA and mGGA functionals diverge at

FIG. 5. Pauli potential for the Radon atom from different KE
functionals.
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the nucleus [28], as also shown in Fig. 5 for, e.g., PG1 [32]
and GE4 functionals. Although the reproduction of the exact
Pauli potential is challenging [28,55,56,86–89], the yuk1 has
some novel features.

Despite the yuk1 being quite correct at the atomic nucleus,
the yuk1 functional does not recover the properties of Eqs. (8)
and (9), and the linear response is not very different from the
TFvW functional, see Fig. 1 and Table I. Note, in fact, that the
nuclear region is a very rapidly varying density region, which
is thus not related to the HEG linear-response properties. In
other words, KE functionals which are accurate for the HEG
linear response may largely fail for the nuclear region. In
general, the accuracy for atoms is related to the semiclassical
atom theory [18] and not to the HEG. In fact, consider, for
example, that already the coefficients for the second-order
gradient expansion are different for atoms and HEG [18]. In
this paper, we focus on yGGA functionals which are accurate
for the HEG.

While a generic enhancement factor, see Eq. (19), can
be considered, we found that all the main properties of the
Lindhard function, i.e., Eqs. (8) and (9), can be obtained
considering a functional which is linear in yα and nonlinear
in p and q, i.e.,

F linyuk
s = (5/3)p + yαG(p, q) . (33)

The corresponding linear response is (see Appendix G)

1

F linyuk
s

=
(

3η2 + C8η
8 + C6η

6 + C4η
4 + C2η

2 + C0

80η4 + 40η2α2 + 5α4

)−1

,

(34)
with

C8 = 72Dqq, (35)

C6 = 36Dqqα
2 + 144Dp + 144Dq, (36)

C4 = (9/2)Dqqα
4 + (72Dp + 36Dq)α2 − 16G0, (37)

C2 = 9α4Dp + 40α2G0, (38)

C0 = 5G0α
4 , (39)

where Dq = dG/dq, Dqq = d2G/dq2, and Dp = dG/d p,
computed at p = q = 0, and G0 = G(0, 0). Thus the linear
response of a linyuk functional is completely described by
a function G(p, q) = G0 + Dp p + Dqq + Dqqq2/2 whereas
higher-order terms do not contribute. Note that while in
mGGA functionals a linear term in q in Fs is vanishing for
both energy and potential [90], in linyuk functionals we have
a linear term in q in G which is not vanishing. This is another
fundamental difference between yGGA and mGGA function-
als.

As shown in Appendix H, the Lindhard conditions can be
(almost) recovered with

G0 = 1, Dqq = 0, Dq = 40/27 = −Dp; α = 1.3629,

(40)
which defines the yuk2 functional:

F yuk2
s = (5/3)p + yα

(
1 + 40

27
(q − p)

)
. (41)

FIG. 6. The function Ta(x) for different values of a.

The normalized linear response for the yuk2 functional is
shown in Fig. 1: The agreement with the Lindhard response
is very good. Values at η = 1 for the yuk2 functional are also
better and closer to the best functionals, i.e., PGSL0.25 and
the approximation in Ref. [73]. Clearly, all the functionals in
Table I do not reproduce the derivative discontinuity at η = 1,
which is very difficult to obtain in real space.

For general applications to finite systems, q and p can be
very far from zero, thus a KE functional with broad appli-
cability must not only satisfy the Lindhard response but also
other properties, in particular Eq. (27), which is not the case
for the yuk2 functional (as q can be negative or |q| < p). More
generally, we can consider a functional in which

G(p, q) = h(x), with x = 40

27
(q − p) , (42)

where h(x) > 0 is a positive function, so Eq. (27) is satisfied
and

h(x) → 1 + x + O(x3) for x → 0, (43)

i.e., with a null quadratic term, so yuk2 is recovered for small
p and q. A different linear combination between p and q has
been used in Ref. [30], as an approximation of the electron
localization. Here, the quantity x appears directly from the
Lindhard function analysis. Note that x is usually negative
and, in the tail of an exponentially decaying density, is pro-
portional to −s2/r [10] and thus it approaches −∞. Also, at
the core of an atom, where q → −∞ and p ≈ 0.13 − 0.14,
we have x → −∞.

In this paper, we consider a very simple one-parameter
function,

hyuk3(x) = Ta(x) = 4

a

eax

(eax + 1)
+ a − 2

a
, (44)

which is always positive for a > 2, satisfies Eq. (43), ap-
proaches 1 − 2/a for x → −∞ and 1 + 2/a for x → +∞,
as shown in Fig. 6.

We fix a = 4 from optimization of jellium clusters, as
described in Sec. III. Note that for jellium clusters, a describes
the details of the tail region, where the gradient expansion
cannot be applied and thus no exact constraint can be used.
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Another option to satisfy Eq. (43) is

Gyuk4(p, q) = Ta(−40p/27)T2(40q/27), (45)

i.e., using a product of separated functions in p and q. For the
function in q, we used a = 2 so, at the atomic core, where
q → −∞, we have Gyuk4 → 0 and thus F yuk4

θ → 0. This is a
quite correct condition, considering that the exact result, see
Eq. (31), is also close to zero. More importantly, with this
choice we have that the mGGA contribution to the potential
vanishes at the nucleus (see Appendix J) and thus only the
Yukawa terms in Eqs. (22) and (23) contribute to the potential.

The yuk4 functional thus has just one parameter as yuk3.
We fixed a = 3.3 from optimization of jellium clusters, as
described in Sec. III. The yuk3 and yuk4 functionals are close
to each other and have the same linear response as yuk2.
However, the yuk3 functional cannot distinguish between the
atomic core and the density tail (Gyuk3 = 1/2 for both cases),
while Gyuk4 = 0 in the former and Gyuk4 ≈ 1.67 in the latter.

In Sec. IV, we will analyze the performances of yuk1,
yuk3, and yuk4 for jellium clusters and noble atoms.

III. COMPUTATIONAL DETAILS

Jellium cluster calculations for kinetic energies and po-
tentials were performed using an in-house developed code,
in which all the kinetic functionals appearing in this paper
have been implemented. The reference values for the kinetic
energies and potentials were obtained by self-consistent KS
LDA calculations [12]. The external potential of a jellium
cluster with N electrons and Wigner-Seitz radius rs is

v
jell
ext (r) =

{
N

(− 3
2R + r2

2R3

)
, r < R = rsN1/3

−N/r, r � R = rsN1/3.
(46)

The errors for the Pauli potential for jellium clusters are
obtained by using the formula

εpot =
∫

4πr2nβ
∣∣vθ (r) − vref

θ (r)
∣∣ dr∫

4πr2nβvref
θ (r) dr

, (47)

where we indicated by vref
θ the exact Pauli potential from

KS calculation [i.e., μ − vKS(r) − vvW
k (r)] [86]. The weight

function n(r)β is required because we are also considering
functionals which contain a term q2 in their enhancement
factor (e.g., GE4 and PGSL0.25) so the corresponding kinetic
potential diverges in the tail as n(r)−2/3. Thus the term n(r)β

with β > 2/3 is required to obtain a finite value of the error:
We choose β = 0.7 (for larger values, the tail region becomes
not relevant for the error). The denominator normalizes to one
the value of εpot for the vW functional.

Optimization of the yuk3 and yuk4 functional has been
done considering the error

E =
∑

N

∑
rs

MAREene + εpot (48)

where MAREene is the mean absolute relative error for the en-
ergy, N runs over the number of electrons considered (40, 92,
138, 254, 438), and rs over the Wigner-Seitz radius considered
(2, 3, 4, 5). For both yuk3 and yuk4, we performed a scan from
a = 2 to a = 5 and the resulting minima is a = 4 for yuk3 and
a = 3.3 for yuk4.

TABLE II. Mean absolute relative errors (MAREs), in percent,
for the KEs (kinetic energies) of jellium clusters of different sizes
(N = 40, 92, 138, 254, 438) averaged over five different values of the
Wigner-Seitz radius (rs = 2, 3, 4, 5, 6). The last column contains the
value averaged over the number of electrons N . Best results (among
functionals with the full vW term) are in bold.

N 40 92 138 254 438 Average

TFvW 20.47 16.50 13.77 11.09 8.87 14.14
VT84f 16.70 13.38 11.16 8.86 7.08 11.44
PG1 12.19 9.92 8.18 6.47 5.11 8.37
PGS 9.89 8.02 6.56 5.11 4.00 6.72
PGSL0.25 24.33 18.96 15.46 12.17 9.51 16.10
yuk1 8.60 7.37 6.11 4.93 3.94 6.19
yuk3 1.02 0.86 1.09 1.15 1.15 1.06
yuk4 1.57 1.12 1.32 1.25 1.30 1.29

GE4 1.29 0.25 0.38 0.27 0.33 0.50
uGE4m 2.50 0.55 0.35 0.05 0.17 0.74

IV. RESULTS

In this section, we will present results for the yGGA func-
tionals introduced in Sec. II for jellium clusters and noble
atoms. We compare our yGGA functionals only with other
GGA and mGGA functionals which, correctly, use the full
vW term [i.e., satisfy Eq. (27)] and thus can have a correct
Pauli potential. At the semilocal level, we considered TFvW,
PG1 [32], PGS [32], PGSL025 [32], and VT84f [20]. Other
functionals based on the gradient expansion (e.g., GE2 and
GE4) or on the modified gradient expansion from the semi-
classical atom theory [18,19,91] employ just a fraction of the
vW and thus cannot correctly describe the electronic density
in OF-DFT calculations [12,20]. This is not really a problem
when these functionals are applied in the solid state but can
be a major shortcoming for finite systems. In literature, there
are other mGGA functionals with the full vW term [27,28],
which can be very accurate for total energies, but they have a
very bad and oscillating potential, thus they are not considered
in the following.

A. Total energies of jellium clusters

In Table II, we report the performance of different KE func-
tionals for the description of jellium clusters. We considered
functionals with the full vW term (upper part of the table)
and compared with GE4 and the uGE4m [72], which is a
u-mGGA functional: Both functionals are very accurate for
jellium clusters [72]. Recall that total KE energies are com-
puted non-self-consistently from the KS density. The yuk1
functional has an average error of 6% which is lower (more
than a factor of 2) than the related TFvW functional with
errors 14%, showing the importance of the yα ingredient. The
yuk3 functional, which approximates well the Lindhard func-
tion, is by far the best functional among the ones considered,
with an average error of about 1%. The yuk4 functional is also
very accurate, with an average error of only 1.29%. The yuk3
also compares well with the GE4 and uGE4m functionals
(with average errors of 0.5% and 0.7%), which are the most
accurate ones, but do not employ the full vW and have a
potential which diverges in the tail.
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FIG. 7. Exact and approximate Pauli potential vθ for a jellium
cluster with 254 electrons and rs = 4, versus the scaled radial dis-
tance r/R (R = 25.33 a.u. is the radius of the cluster).

In Fig. 7, we report the Pauli potential for a jellium cluster
with 254 electrons and rs = 4 as computed from different KE
functionals. None of the functionals is able to reproduce the
exact Pauli potential accurately, which is a very challenging
task [28,55,56,86–89]. The GE4 functional, which is reputed
among the best ones for jellium systems and is very accurate
for the total energy, reproduces the oscillations of the exact
KS result inside the cluster only qualitatively (the magnitude
of the oscillations cannot be reproduced), shows a large bump
outside the jellium sphere, and diverges in the tail. The TFvW
potential cannot even reproduce qualitatively the KS oscilla-
tions, showing maxima and minima out of phase with respect
to the exact potential. However, the TFvW potential does not
diverge asymptotically, despite it decays too fast. The yuk1,
yuk3, and yuk4 functionals are all quite similar to the GE4
one inside the jellium sphere (except at the origin, which has
zero measure, thus it is not very relevant), suggesting that they
can be reasonably accurate in this region even if they cannot
closely reproduce all the features of the exact potential. Also,
on the edge of the jellium sphere (0.7 � r/R � 1), they are
rather accurate, being close to GE4 and the exact potentials.
At the border of the sphere (r/R = 1), the yuk3 and yuk4
potentials show a discontinuity due to a discontinuity of the
second (radial) derivative of q, which in turn depends on
the discontinuity of the fourth derivative of the density at
this point (because of the discontinuous positive background).
Note that the GE4 potential also has a discontinuity at the
jellium edge even if it cannot be seen on the actual plot scale.
Outside the jellium sphere, the yuk1, yuk3, and yuk4 poten-
tials show a bump similar to the GE4 one, but then they decay
correctly in the long-range limit, which is a very important
requirement [12,20,86,89,92].

In Table III, we report the error in potential as computed
by Eq. (47). We recall that the error εpot mainly considers
the difference with respect the KS one, mostly inside the
jellium cluster. The εpot for yuk1, yuk2, and yuk3 are all
quite small, in the range of 11%−12%, with an accuracy
better than the best GGA functional (i.e., PGS). The yuk3
is the best functional with an average error of only 11%. As
previously discussed, GE4 and uGE4m, which are accurate
for total energy are instead much worse for the potential.

TABLE III. Error in the potential, εpot, see Eq. (47), in percent,
of jellium clusters of different sizes (N = 40, 92, 138, 254, 438)
averaged over five different values of the Wigner-Seitz radius (rs =
2, 3, 4, 5, 6). The last column contains the value averaged over the
number of electrons N . Best results (among functionals with the full
vW term) are in bold.

N 40 92 138 254 438 Average

TFvW 22.3 39.8 20.6 21.2 15.3 21.9
VT84f 29.7 32.6 23.2 21.9 16.1 24.7
PG1 15.7 23.0 14.8 15.4 10.6 15.9
PGS 18.1 22.0 14.0 14.4 9.8 15.6
PGSL0.25 615.1 392.1 256.0 178.0 122.4 312.7
yuk1 11.5 17.7 11.6 12.9 9.2 12.6
yuk3 16.4 12.2 9.2 9.7 7.7 11.1
yuk4 18.4 13.3 10.7 11.2 8.8 12.5

GE4 33 26.0 17.4 14.3 10.5 20.6
uGE4m 206 128.0 84.3 58.3 41.5 100.8

B. Perturbation of jellium clusters

We tested jellium clusters with N = 40 and 92 electrons,
and 2 � rs � 6 in a perturbed external potential of the follow-
ing form [89]:

vext,κ (r) = v
jell
ext (r)

(
1 + 1

m
sin(κr)

)
, (49)

In Eq. (49), m is a parameter that can vary the amplitude of
the perturbation and κ is the wave vector of the perturbation.
We fix m = 50, such that the amplitude of the perturbation is
small. Then, we vary 0 � κ � 2.1, capturing both the long-
wavelength perturbations (κ → 0) and the rapidly oscillating
perturbations (κ � 2π/R), where R is the radius of the cluster.
For all these cases, we calculate the KE response of the KE
functional T app

s as

δκT app
s = T app

s [vext,κ ] − T app
s

[
v

jell
ext

]
. (50)

We also considered the relative KE response defined as
δ̄κT app

s = δκT app
s /T KS

s [vjell
ext ].

Then we measure its κ-averaged KE response error as

�T app
s =

∫ κmax

κmin
dκ

∣∣δκT app
s − δκT KS

s

∣∣/(κmax − κmin), (51)

where κmin = 0 and κmax = 2.1 bohr−1 (and we use a step
of 0.05 for the integration over κ). A similar definition is
used for the κ-averaged relative KE response errror, �̄T app

s =
�T app

s /T KS
s [vjell

ext ].
In Table IV, we report �Ts, see Eq. (51), for several se-

lected KE functionals, for the jellium clusters with 40 and 92
electrons in the case of several bulk parameters (2 � rs � 6).
The second to last column reports �Ts averaged among all
rs whereas the last column considers the rs-averaged �̄Ts,
which takes into account the different KE total energies for
different rs. For all clusters, we observe that �Ts follows the
trend TF > GE2 > u-mGGA > GE4, that agrees with Table
4 of Ref. [72]. The first five functionals in Table IV (i.e., all
functionals with the full vW term, but yuk4) display a signifi-
cant dependence on the value of rs, being much more accurate
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TABLE IV. The κ-averaged KE response errors [�Ts of Eq. (51)
in mH] of various KE functionals for the jellium clusters with 40 and
92 electrons in the case of several bulk parameters (2 � rs � 6). The
second-last column shows the overall accuracy (averaged over rs),
whereas the last column considers the rs-averaged �̄Ts in percent.
The best two results of each column are highlighted in bold.

rs Overall

2 3 4 5 6 �Ts �̄Ts

Jellium cluster with 40 e−

TFvW 168 98 62 43 33 81.0 2.4%
PG1 102 47 32 24 19 44.8 1.3%
PGSL025 243 158 113 90 78 136.5 4.5%
yuk1 77 44 27 19 14 36.5 1.1%
yuk3 69 50 39 32 27 43.4 1.5%
yuk4 53 33 27 28 28 34.0 1.3%
TF 99 101 88 76 67 86.2 3.4%
GE2 72 80 72 63 55 68.2 2.8%
GE4 57 63 54 45 38 51.4 2.0%
uGE4m 70 73 62 53 44 60.2 2.3%

Jellium cluster with 92 e−

TFvW 1039 575 373 262 195 488.8 6.0%
PG1 477 259 190 152 128 241.1 3.3%
PGSL025 785 438 351 337 338 449.8 6.9%
yuk1 552 279 173 117 85 241.2 2.8%
yuk3 250 109 90 88 80 123.6 1.8%
yuk4 263 312 298 258 219 269.9 4.7%
TF 528 565 513 455 403 429.8 8.5%
GE2 387 449 419 376 337 393.7 6.9%
GE4 301 348 314 268 227 291.7 5.0%
uGE4m 334 376 338 291 250 317.9 5.4%

(in absolute value) for large rs than for small rs. The PG1 func-
tional is the most accurate among the considered semilocal
functionals, whereas GE2 and GE4 are significantly less ac-
curate. Recall that, see Table II, GE4 is very accurate for total
energy (MARE is 1.29% and 0.25% for N = 40 and N = 92,
respectively), but when a perturbation is considered the accu-
racy largely decreases (down to 2.0% and 5.0%, respectively).

The yGGA functionals have the best accuracy for most of
the clusters. In particular, yuk1 is the best functional for N =
40, while yuk3 is for N = 90.

To better clarify the performances reported in Table IV,
we show in Fig. 8 the relative KE response (δ̄κTs) versus κ

for several KE functionals for the considered jellium clusters
with rs = 3. We observe that the exact KS energy changes
significantly with κ (about 10–20%) despite the perturbing
potential being small (m = 50). All the functionals follow
the KS oscillations versus κ but TFvW (GE4) largely over-
estimates (underestimates) them. For N = 40 (N = 92), we
see that yuk4 (yuk3) matches very well the KS results, cor-
respondingly yielding the lowest errors in Table IV. A more
detailed analysis of the performances of the yGGA functionals
for different cluster sizes and different values of m will be
presented elsewhere.

C. Atoms

Finally, in this section we briefly report results for some
closed-shell neutral noble atoms, up to 290 electrons. We

FIG. 8. Relative kinetic response errors (δ̄κTs ) versus κ of several
KE functionals for the jellium clusters with N = 40 (upper panel)
and N = 92 (lower panel), and rs = 3.

recall that, as already discussed in Sec. II B, atoms are not
slowly varying systems; thus a functional that satisfies the
Lindhard response may not be accurate for atoms.

In Table V, we report the error for the total KE. Results
show that yuk1 is significantly more accurate than the related
TFvW. The accuracy of the yuk3 functional is also quite
interesting considering that it recovers the Lindhard function
with great accuracy and does not diverge at the nucleus in
contrast to the PG1, PGS, and PGSL0.25 functionals. The
VT84f functional does not diverge at the nucleus, too, but
its accuracy is very close to the TFvW. The best results are

TABLE V. Kinetic energy relative errors (in percent) for different
noble atoms and functionals. Best results are in bold.

Ne Ar Kr Xe Rn 118 290 Average

TFvW 61.4 51.3 40.4 35.3 30.0 27.0 19.8 37.9
VT84f 55.0 46.1 35.4 30.0 24.3 21.2 14.3 32.2
PG1 29.8 23.3 17.2 14.6 12.0 10.7 7.6 16.5
PGS 19.8 13.8 8.6 6.7 5.0 4.2 2.7 8.7
PGSL0.25 23.9 16.6 10.4 8.2 6.2 5.3 3.4 10.6
yuk1 33.0 27.7 22.4 20.1 17.7 16.2 12.5 21.4
yuk3 18.1 13.8 10.1 8.7 7.2 6.3 4.5 10.6
yuk4 13.1 8.2 5.0 4.1 3.4 3.1 2.3 5.6
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obtained with the yuk4 functional. Recall that yuk4 (as well
as yuk3) does not use any parameter fitted from atoms (the a
parameter is fitted from jellium clusters). Note, however, that
GE4 and uGE4m show a much better accuracy (below 1%
for all the noble atoms considered) but their potential diverges
both at the nucleus and in the tail [72]. Further investigations
on (optimized) yGGA functionals for atoms will be presented
elsewhere.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper, we have introduced an ingredient yα which
can be used in the construction of a class of kinetic function-
als, the yGGA. The ingredient yα is adimensional, invariant
under the uniform scaling of the density, and can be used
both for finite systems as well as for extended systems, ap-
proaching 1 for the HEG. The ingredient yα is finite at the
atomic nucleus and diverges in the tail of finite systems: This
feature resembles the one of the reduced gradient but yα shows
a size-dependent behavior.

The most relevant property of the yα ingredient is that it can
be combined with the reduced gradient and reduced Laplacian
to obtain an improved approximation of the linear response
of the HEG, both for small and large wave vectors, which is
out of reach for GGA and meta-GGA functionals (and also
for the recent class of u-mGGA functionals, which cannot
be applied to extended systems). We present two very simple
and nonempirical model functionals (yuk3 and yuk4) which
are linear in the yα ingredient. These functionals yield an
improved description of the Lindhard function and the Pauli
potential of jellium clusters with respect to mGGAs and give
accurate total and perturbation energies of jellium clusters.
The simultaneous satisfaction of these properties is out of
reach for all the previous mGGA and u-mGGA class of func-
tionals. Results indicate that the class of yGGA functionals
can be very promising due to its novel features.

Different paths can be followed in the future: performing
fully self-consistent OF-DFT calculations (in this paper, we
only used the exact KS density), development of functionals
which depend in a nonlinear way from yα , as well as function-
als which are also accurate for atoms. In this paper, we have
indeed shown that yGGA functionals can have both a finite
KE density and kinetic potential at the nucleus, which is an
important prerequisite. Moreover, implementation of the func-
tionals for molecular and extended systems is required (in this
paper, we considered only spherical systems) to further check
the accuracy of the yGGA functionals for those systems. Fi-
nally, the yGGA class of functionals can be further extended,
considering other quantities instead of the electronic density
in Eq. (13), e.g., n(r) to some power, as well as a different
screening function, e.g., which depends also on the density
gradient [82].

APPENDIX A: LINEAR RESPONSE
OF A MGGA FUNCTIONAL

Following Ref. [93], we can calculate the linear response
function for a generic mGGA kinetic functional defined in
Eq. (10). We start from considering a perturbed density n(r) =
n0 + nke−ik·r (with n0 and nk constants) and, evaluating in

r = 0, we have n = n0 + nk , |∇n|2 = n2
kk2 and ∇2n = −nkk2.

We write p and q in terms of these new expressions and use
them in the generic mGGA kinetic energy density obtaining

τ = τ T F Fs(p, q) = 3

10
k2

0 (n0 + nk )5/3

×Fs

(
n2

kk2

4k2
0 (n0 + nk )8/3

,− nkk2

4k2
0 (n0 + nk )5/3

)
, (A1)

with k0 = (3π2)1/3. If we expand Eq. (A1) in powers of nk ,
we have

τ = 3

10
k2

0n5/3
0 Fs(0, 0)

+ 1

40

(
20k2

0n2/3
0 Fs(0, 0) − 3k2Dq

)
nk

+ 1

2

1

240k2
0n5/3

0

(
80Fs(0, 0)k4

0n4/3
0

+ 36Dpk2
0k2n2/3

0 + 9Dqqk4
)
n2

k + O
(
n3

k

)
, (A2)

where Dqq = (1/2)d2Fs/dq2 and Dq = dFs/d p computed at
p = q = 0.

The linear response χ (η) is the negative of the half of the
reciprocal of coefficient of the n2

k term [93], and using k =
2ηkF :

χ (η) = −15n1/3
0

k2
0

1

9Dqqη4 + 9Dpη2 + 5Fs(0, 0)
. (A3)

Multiplying this expression by 1/χT F = −π2/(kF ), we fi-
nally obtain Eq. (11).

APPENDIX B: SPHERICAL INTEGRALS

The screened Coulomb integral can be easily computed
for any system with spherical symmetry. Let us consider two
generic functions with spherical symmetry, f (r) and a(r), and
define

u[a](r) =
∫

f (r′)
e−a(r)|r−r′ |

|r − r′| d3r′. (B1)

Equation (13) can be obtained using f (r) = n(r) and a(r) =
αkF (r)1/3. Due to the spherical symmetry, it is enough to
compute u[a](r) along the z axis:

u[a](z) =
∫ ∞

0

∫ π

0
2πr2 sin(θ ) f (r)

× e−a(z)
√

r2+z2−2rz cos(θ )√
r2 + z2 − 2rz cos(θ )

drdθ. (B2)

The integral over θ can be easily computed,

2π f (r)re−a(z)|z−r|

za(z)
− 2π f (r)re−a(z)(r+z)

za(z)
, (B3)

and thus we finally have

u[a](z) = 2π

za(z)

∫ ∞

0
r′ f (r′)

× (e−a(z)|z−r′ | − e−a(z)|z+r′ |)dr′. (B4)
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For z = 0, we have (expanding the exponential functions
in series)

u[a](0) = 4π

∫ ∞

0
r′ f (r′)e−a(0)r′

dr′ . (B5)

For the calculation of the kinetic potential, two different
integrals are present, see Eqs. (24) and (25). In Eq. (24), the
screening coefficient depends on the integration variable, i.e.,
a(r′) instead of a(r):

ũ[a](r) =
∫

f (r′)
e−a(r′ )|r−r′ |

|r − r′| d3r′. (B6)

In this case, Eq. (B3) is still valid with a(z) → a(r) and we
obtain

ũ[a](z) = 2π

z

∫ ∞

0

r′ f (r′)
a(r′)

× (e−a(r′ )|z−r′ | − e−a(r′ )|z+r′ |)dr′, (B7)

where we can use f (r′) = ∂τ
∂uα

(r′) and a(r′) = αkF (r′) to ob-
tain Eq. (24). For z = 0, we have

ũ[a](0) = 4π

∫ ∞

0
r′ f (r′)e−a(r′ )r′

dr′ . (B8)

This expression does not have an analytical solution but can
be computed in series as we will show in Appendix I.

For Eq. (25), we have an expression of the type

h[a](r) =
∫

f (r′)e−a(r)|r−r′ |d3r′, (B9)

where we can use again f (r) = n(r) and a(r) = αkF (r). After
similar algebra, we obtain

h[a](z) = 2π

za(z)2

∫ ∞

0
r′ f (r′)

× (e−a(z)|z−r′ |(1 + a(z)|z − r′|)
− e−a(z)|z+r′ |(1 + a(z)|z + r′|))dr′. (B10)

For z = 0, we have

h[a](0) = 4π

∫ ∞

0
r′2 f (r′)e−a(0)r′

dr′ . (B11)

APPENDIX C: UNIFORM SCALING BEHAVIOR

The quantity yα is invariant under the uniform scaling of
the density [i.e., n(r) → nλ = λ3n(λr)]. In fact, under such a
scaling we have that kF (r) → λkF (λr); this implies that the
Yukawa potential becomes

uα (r) →
∫

λ3n(λr′)e−αλkF (λr)|r−r′ |

|r − r′| d3r′

= λ

∫
n(λr′)e−αkF (λr)|λr−λr′ |

|λr − λr′| d3(λr′)

= λuα (λr) . (C1)

Hence, for the quantity yα (r), we find

yα (r) → 3πα2

4λkF (λr)
λuα (λr) = yα (λr) . (C2)

APPENDIX D: HOMOGENEOUS SPHERE
DENSITY AT THE ORIGIN

If we consider a homogeneous sphere of radius R0 and
with density n0 inside and zero outside, Eqs. (B5) and (B11)
become at r = 0,

uS[a](0) = 4πn0

a2
0

[1 − e−a0R0 (1 + R0a0)] , (D1)

hS[a](0) = 8πn0

a3
0

{
1 − e−a0R0

[
1 + R0a0 + (1/2)R2

0a2
0

]}
,

(D2)

where a0 = a(0) and in both expressions we use f (r) = n(r).
When using a0 = αkF = α(3π2)1/3n1/3

0 , we also obtain
simple expressions for Eqs. (12) and (25):

yS
α (0) = 3πα2

4kF
uS[αkF ](0) (D3)

= [1 − e−αkF R0 (1 + αkF R0)], (D4)

eS (0) = 3πα3

8

∂Fs

∂yα

(0)hS[αkF ](0) (D5)

= ∂Fs

∂yα

(0)
{
1 − e−αkF R0

× [
1 + αkF R0 + (1/2)α2k2

F R2
0

]}
. (D6)

APPENDIX E: EXPONENTIAL ATOMIC DENSITY
AT THE ORIGIN

If we consider an exponential density n(r) = Ae−ζ r and a
screening function a(r), Eqs. (B5) and (B11) become at r = 0:

uA[a](0) = 4πA

[ζ + a(0)]2
, (E1)

hA[a](0) = 8πA

[ζ + a(0)]3
. (E2)

Using the screening function a(0) = αkF = α(3π2)1/3A1/3,
we obtain for Eqs. (12) and (25):

yA
α (0) = 3πα2

4kF
uA[αkF ](0) = α2(

α + ζ

(3π2 )1/3A1/3

)2 , (E3)

eA(0) = ∂Fs

∂yα

(0)
3πα3

8
hA[αkF ](0)

= ∂Fs

∂yα

(0)
α3(

α + ζ

(3π2 )1/3A1/3

)3 . (E4)

Using the density from Eq. (16), we have that
ζ/[(3π2)1/3A1/3] = [4/(3π f )]1/3 and thus Eq. (17) is
obtained.

For a TF scaling, we can consider A → Aλ = λ2A and ζ →
ζλ = λ1/3ζ , so the second term in the denominator of Eq. (E3)
becomes ζλ/A1/3

λ ∝ 1/λ1/3, which vanishes for λ → ∞. Thus,
yA
α (0) → 1 for λ → ∞.
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APPENDIX F: DERIVATION OF THE FUNCTIONAL DERIVATIVE OF YGGA FUNCTIONALS

The functional derivative of T yGGA
s is defined by the identity∫

δT yGGA
s

δn(r)
g(r) d3r = d

dλ

[∫
τ (n + λg,∇(n + λg),∇2(n + λg), u′

α ) d3r
]

λ=0

, (F1)

where

u′
α =

∫
(n(r′) + λg(r′))

|r − r′| e−k0α(n(r)+λg(r))1/3|r−r′ | d3r′, (F2)

with k0 = (3π2)1/3 and λg (λ is a real positive number and g is an arbitrary function) is the variation of the density. Expanding
τ according to its Taylor series allows us to write

∫
δT yGGA

s

δn(r)
g(r) d3r =

∫
∂τ

∂n
gd3r +

∫
∂τ

∂∇n
∇gd3r +

∫
∂τ

∂∇2n
∇2gd3r +

∫
∂τ

∂uα

(
du′

α

dλ

)
λ=0

d3r. (F3)

Using the first Green’s identity [94], the second integral can be written as∫
∂τ

∂∇n
∇g(r) d3r = −

∫ (
∇ · ∂τ

∂∇n

)
g(r) d3r . (F4)

Similarly, using the second Green’s identity [94], we have∫
∂τ

∂∇2n
∇2g(r) d3r =

∫
∇2

(
∂τ

∂∇2n

)
g(r) d3r . (F5)

For the last integral in Eq. (F3), we can calculate(
du′

α

dλ

)
λ=0

=
∫

d

dλ

(n(r′) + λg(r′)
|r − r′| e−k0α(n(r)+λg(r))1/3|r−r′ |

)
λ=0

d3r′

=
( ∫

1

|r − r′|e−k0α(n(r)+λg(r))1/3|r−r′ |g(r′) d3r′ +

− αk0

3
(n(r) + λg(r))−2/3

∫
(n(r′) + λg(r′))e−k0α(n(r)+λg(r))1/3|r−r′ |g(r) d3r′

)
λ=0

=
∫

1

|r − r′|e−αkF (r)|r−r′ |g(r′) d3r′ + −αk0

3
n−2/3(r)

∫
n(r′)e−αkF (r)|r−r′ |g(r) d3r′ (F6)

Inserting Eq. (F6) in the last integral of Eq. (F3), and interchanging the integration variables so that the function g(r) appears
in each term, we have ∫ (

g(r)
∫

∂τ

∂uα

(r′)
1

|r − r′|e−αkF (r′ )|r−r′ | d3r′
)

d3r +

−
∫

g(r)

(
∂τ

∂uα

(r)
αk0

3
n−2/3(r)

∫
n(r′)e−αkF (r)|r−r′ | d3r′

)
d3r (F7)

Recalling Eq. (20), we finally obtain

v
yGGA,1
k (r) =

∫
∂τ

∂uα

(r′)
e−αkF (r′ )|r−r′ |

|r − r′| d3r′, (F8)

v
yGGA,2
k (r) = −αkF (r)

3n(r)

∂τ

∂uα

(r)
∫

n(r′)e−αkF (r)|r−r′ |d3r′. (F9)

The final expression in Eqs. (22) and (23) in the paper can be obtained using that

∂τ

∂uα

(r) = 9πα2kF (r)n(r)

40

∂Fs

∂yα

(r). (F10)
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APPENDIX G: LINEAR RESPONSE
OF LINYUK FUNCTIONALS

We can employ the method presented in Appendix A to
calculate the linear response of the kinetic functional with
τ = τTFyα (r)G(p, q).

We first consider the ingredient yα only: Inserting the ex-
pression of the density perturbation (taking r = 0) in yα , we
obtain

yα (0) = 3πα2

4(3π2)1/3(n0 + nk )1/3

×
∫

(n0 + nke−ik·r′
)e−α(3π2 )1/3(n0+nk )1/3r′

r′ d3r′. (G1)

Let us choose a coordinate system where k lays on the z
axis, so k · r′ = kr′ cos(θ ) (with θ being the angle between
the positive z axis and the variable of integration, namely, r′).
We can thus rewrite the integral, passing from Cartesian to
spherical coordinates, as

yα (0) = 3πα2

4(3π2)1/3(n0 + nk )1/3
(2π )

∫ π

0

∫ ∞

0
r′2 sin(θ )

× (n0 + nke−ikr′ cos(θ ) )e−α(3π2 )1/3(n0+nk )1/3r′

r′ dr′ dθ,

(G2)

where the factor 2π takes into account the integration in the
angular variable φ. This integral can be computed analytically,
yielding

yα (0) = α232/3π4/3(n0 + nk )5/3 + k2n0

(n0 + nk )((n0 + nk )2/3α232/3π4/3 + k2)
. (G3)

We now expand the resulting expression in a Taylor series in
powers of nk :

yα (0) = 1 − k2

n0
(
(3π2)2/3α2n2/3

0 + k2
)nk

+ 1

3n2
0

k2
(
5(3π2)2/3α2n2/3

0 + 3k2
)

(
(3π2)2/3n2/3

0 α2 + k2
)2 n2

k + O
(
n3

k

)
. (G4)

To obtain the linear response function of the linyuk functional,
it is possible to multiply Eq. (G4) by Eq. (A2) (which is
obtained by the perturbation of τTFG(p, q)) and to take half of
the reciprocal of the coefficient of the n2

k term in the resulting
expression. After some algebra, the expression in Eq. (34) is
obtained.

APPENDIX H: COEFFICIENTS
FOR THE YUK2 FUNCTIONAL

In this Appendix, we derive the coefficients of the yuk2
functional, a linyuk functional which correctly reproduces
the expansion of Lindhard function for small and large wave
vectors.

The series expansion of a general linyuk functional for
η → 0 taking Dqq = 0 is, see Eq. (34),

1

F linyuk
→ 1

G0
− 9Dp + 15

5G2
0

η2 + C0η
4 + O(η6), (H1)

with

C0 = 81
(
Dp + 5

3

)2
α4 − 180DqG0α

2 + 480G2
0

25G3
0α

4
. (H2)

From the first two terms of Eq. (H1), we have that G0 = 1 and
Dp = −40/27 to satisfy the first two terms in Eq. (8).

For η → ∞, we have, setting Dqq = 0,

1

F linyuk
→ 5

(9Dp + 9Dq + 15)η2
+ C∞

η4
+ O(η−6), (H3)

with

C∞ = 5

36

9Dqα
2 + 4G0

(3Dp + 3Dq + 5)2
. (H4)

From the first term of Eq. (H3), we have that Dq = −Dp =
40/27 to recover the first term of Eq. (9). With the above
settings, the coefficients of the fourth-order term in Eqs. (H1)
and (H3) become

C0 = 5α4 − 480α2 + 864

45α4
= −1/15, (H5)

C∞ = 2α2

27
+ 1

45
= 1/15 . (H6)

As there is just one parameter (α), the above two equa-
tions cannot be satisfied simultaneously. In general, it is
much more important to have the correct response to small
η, whereas details for large η are less relevant. Thus, we
solve Eq. (H5), which has two positive solutions, α1 =
1.362903313 and α2 = 7.625122593, the corresponding C∞
values being 0.1598 and 4.329, respectively. The α2 value
generates a too large C∞ coefficient (64 times larger) and must
be disregarded. Thus we select α = α1, which gives a quite
correct (only about two times larger) C∞.

APPENDIX I: KINETIC POTENTIAL
OF THE YUK1 FUNCTIONAL

In this Appendix, we derive expressions for the Pauli po-
tential for the yuk1 functional (the vW term can be considered
separately). For a KE density of the form τ = τTFyα , the
mGGA potential, see Eq. (21), is

vmGGA
k (r) = ∂τ

∂n
(r) = 3π

10
(3π2)1/3α2n(r)1/3uα (r)

= 4

10
kF (r)2yα (r) . (I1)

Using that dFs/dyα = 1, Eqs. (24) and (25) become

ỹα (r) = 3πα2

4kF (r)n1/3(r)

×
∫

n(r′)4/3 e−αkF (r′ )|r−r′ |

|r − r′| d3r′, (I2)

eα (r) = 3πα3

8

∫
n(r′)e−αkF (r)|r−r′ |d3r′, (I3)

which can be used in Eqs. (22) and (23) to obtain the potential
terms.
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The yuk1 potential terms at the center (r = 0) of an uni-
form sphere with density n0 inside and zero outside, are

vmGGA
k (0) = 4

10
k2

F yS
α (0) , (I4)

v
yGGA,1
k (0) = 3

10
k2

F ỹS
α (0) , (I5)

v
yGGA,2
k (0) = − 2

10
k2

F eS
α (0) , (I6)

where we used Eqs. (I1), (22), and (23). Considering
Eqs. (D3) and (D5) and that

ỹS
α (0) = 3πα2

4kF
uS[αkF ](0)

= [1 − e−αkF R0 (1 + αkF R0)] , (I7)

we have, summing up all potential terms, in the limit of a
large number of electrons, v

yuk1
k (0) = 5/10k2

F , which is the
TF potential.

For an atomic exponential density, let us first consider the
term in Eq. (I2) which at r = 0 becomes

ỹα (0) = 3πα2

4(3π2)1/3A2/3
ũ[a = αkF ; f = n4/3](0) , (I8)

where we used the definition in Eq. (B6). We found that we
can approximate Eq. (I8), computing the Taylor expansion
of ỹα (0)−1 for small α: Using the density of Eq. (16), we
obtained

ỹapp
α (0) = 1.02916α2

1.033
f 2/3 + 1.056α

f 1/3 + 0.4693α2 + 0.1066α3 f 1/3
, (I9)

which has an error less than 1.5% for α up to 3. For α = 1, we
have ỹapp

α (0) = 0.41335. Thus the yuk1 potential terms are

vmGGA
k (0) = 4

10
k2

F

α2(
α + (

4
3π f

)1/3)2 , (I10)

v
yGGA,1
k (0) = 3

10
k2

F ỹapp
α (0) , (I11)

v
yGGA,2
k (0) = − 2

10
k2

F

α3(
α + (

4
3π f

)1/3)3 , (I12)

where we used Eqs. (I1), (22), and (23) and the definitions in
Eqs. (E3) and (E4). Considering that k2

F = 8.007263127Z2,
for α = 1 we finally have

vmGGA
k (0) = 1.099476475 Z2 , (I13)

v
yGGA,1
k (0) = 0.9929508721 Z2 , (I14)

v
yGGA,2
k (0) = −0.3220897252 Z2 , (I15)

v
yuk1
k (0) = 1.770337622 Z2 . (I16)

APPENDIX J: POTENTIAL OF AN
EXPONENTIAL-LAPLACIAN FUNCTIONAL

Let us consider an enhancement factor of the form

Fs = eβq (J1)

for an exponential density of the type n(r) = Ae−ar . The cor-
responding mGGA potential, see Eq. (21), near r = 0 is (after
some algebra)

vk (r) → 32/3a2β3 exp
(

β31/3a2

12π4/3A2/3

)
r4480π8/3A4/3

× exp

(
−1

r

aβ31/3 exp [(2/3)ar]

6π4/3A2/3

)
, (J2)

which is null with all derivatives null.
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