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Recently, the concept of a rotation anomaly in the surface of Cn rotation (n = 2, 4, 6) protected topological
crystalline insulators (TCIs) was proposed. However, verified material realizations of the rotation anomaly are
still rare. Furthermore, owing to fruitful crystallographic symmetries, in addition to the rotation protected surface
states, other kinds of topological boundary states could also emerge on suitable surfaces or hinges in one material,
which is promising for manipulation in device applications. In this work, we identify a C2 rotation anomaly
in 24 TCIs and furthermore ascertain the positions of coexisting topological boundary states by first-principles
calculations. Of these TCIs, using BiSe in space group 164 to illustrate, we demonstrate the mirror and C2 rotation
protected surface states in specific surfaces as well as the C2 protected hinge states between two side surfaces.
The predicated TCI materials with the C2 rotation anomaly have diverse structures and chemical compositions
and thus provide a good reference for future experimental studies.
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I. INTRODUCTION

The study of topological materials has been a hot topic
in condensed-matter physics and material science over the
past around 15 years due to their novel electronic properties.
The Z2 topological insulators (TIs) protected by time reversal
symmetry (TRS) were proposed and realized in the early stage
[1–3]. Other than internal symmetries like TRS, there exist
fruitful crystallographic symmetries which can protect various
topological crystalline insulator (TCI) phases [4,5], such as
mirror Chern insulators [6], hourglass insulators protected by
glide symmetries [7], and high-order TIs [8–12]. The intro-
duction of crystallographic symmetries greatly enriched the
topological phases of insulating electronic states.

Among these TCIs, the rotation protected TCIs have at-
tracted broad research interest recently [13–19]. In these
rotation protected TCIs, n massless Dirac fermions could
emerge on the surface perpendicular to the n-fold rotation axis
(n = 2, 4, 6) [13]. Throughout this work, we assume that time
reversal symmetry T exists; namely, the investigated materials
are all nonmagnetic, so that the Cn (n = 2, 4, 6) protected
topology is Cn and T protected in essence, while we still use
the terminology of Cn protection without ambiguity. These
novel Dirac fermions cannot be realized in Cn-symmetric nor-
mal two-dimensional systems, thus dubbed a rotation anomaly
[13]. These surface states with a rotation anomaly can be
understood as the Cn (n = 2, 4, 6) generated n Cn and T pro-
tected Dirac states. Unlike mirror/glide symmetry protected
surface states whose Dirac cones are pinned at high-symmetry
lines, the Dirac cones of surface states corresponding to the
rotation anomaly could be located at generic points in the
surface Brillouin zone (BZ) possessing a higher tunability.
Furthermore, n one-dimensional (1D) helical hinge states [13]
could emerge along the hinges of a Cn-symmetric prism con-

figuration for Cn rotation protected TCIs. Up to now, several
materials have been reported to host a rotation anomaly by
first-principles calculations. For example, α-Bi4Br4 [14,19],
Ba3Cd2As4 [16], the transition metal dipnictide TaP2 [17],
and Bi [18] can have a C2 rotation anomaly, while the Ca2As
family of materials can host a C2 rotation anomaly when
breaking mirror symmetry [15]. The rotation anomaly, co-
existing with other exotic orders in solids, may open a new
door to devices with low-energy consumption. Recently, the
rotation anomaly in α-Bi4Br4 triggered the experimental study
of the pressure induced superconductivity [20]. Remarkably,
compared with other topological phases, the research on the
rotation anomaly is relatively new both theoretically and ex-
perimentally, and the number of material realizations is still
low. Hence, predicting more such materials is of important
significance in regard to both fundamental research and device
applications.

In order to discover rotation protected TCIs, one need to
calculate the rotation topological invariant [13] in the conven-
tional scheme. However, the conventional strategy is not very
efficient for predictions by first-principles calculations since
the calculations for the overlaps of wave functions usually
cost much computer time. As a matter of fact, in realistic
rotation protected TCIs, other crystallographic symmetries
often exist in addition to the rotation symmetry. Utilization of
these additional symmetries could accelerate the predictions
of TCIs simply based on calculations of symmetry properties
at high-symmetry momenta as exemplified by the method of
symmetry indicators (SIs) [21] or topological quantum chem-
istry [22], with thousands of topological materials predicted
[23–25]. In this work, we focus on C2 rotation protected TCIs.
The C2 rotation anomaly is expected to be more common than
those of C4 and C6 since C4 and C6 symmetries also imply
C2 symmetry. Our calculations are based on the database
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TABLE I. All TCI materials with the C2 rotation anomaly identified in this work. For them, the Fu-Kane-like formula for (z2,1, z2,2, z2,3, z4)
[27,28] in the Z2 × Z2 × Z2 × Z4 SI key group (SG 2) is calculated by first-principles calculations. Together with the first-principles calculated
MCN we can obtain the nonvanishing C2 topological invariant, as shown in the fourth column through the mappings from SIs to topological
invariants, and the double-stroke font represents the convention-independent case [27]. Note that the MCN is given in parentheses following
the material name.

SG SI (z2,1, z2,2, z2,3, z4) MCN mod 4a C2
b Materials

12 (0,1,0,0) 2 1 Bi2TeI [29] (2)
(0,1,0,2) 0 1 ZrCl [30] (0)
(1,0,1,2) 0 1 Ba3Cd2Sb4 [31] (0), BiHf2 [32] (0),Sc5Cl8N [33] (0)
(1,1,1,2) 0 1 NbAs2 [34] (0),NbP2 [35] (0), NbSb2 [36] (0),TaAs2 [34] (0),TaSb2 [37] (0),

Mo2As3 [38] (0),W2As3 [38] (0),Ta2Te3 [39](0),Ti3Se4 [40] (0),ReGe2[41] (0)
164 (0,0,1,0) 2 1 BiSe [42] (−2), BaSi2 [43] (2), BiTe [44] (−2), Bi3Te2S [45] (−2), Pb2Bi2Te5 [46] (−2)
166 (1,1,1,2) 0 1 LaBr [47](0), ZrBr [48] (0), ZrCl [30] (0), Nb2S2C [49] (0)

aFor SGs 12, 164, and 166, there is only one independent mirror plane, i.e., (11̄0), (100), and (101̄), respectively. The MCN can be any integer.
However, a cutoff p is set here, and −p < MCN � p for mapping from SIs to topological invariants [27]. For all three SGs, the corresponding
p is 2. Therefore, here we give the result of MCN modulo 4.
bFor SG 12, the C2 rotation is C110

2 . For SGs 164 and 166, it is C100
2 .

by Tang et al. [25]. Before the identification of C2 rotation
anomaly, we first filter out TCI materials for which the C2

rotation anomaly is impossible. To identify the C2 rotation
anomaly efficiently, we focus on the space groups (SGs) for
which we need to calculate only one mirror Chern number
(MCN) [26–28] for the TCIs, based on which all possible
coexisting TCI phases can thus be ascertained, including mir-
ror protected TCI phases, weak TI phases, and C2 protected
high-order TI phases. We focus on only those nearly ideal
TCIs with relatively clean Fermi surfaces and with the same
SI results predicted by both the generalized gradient approx-
imation (GGA) and the modified Becke-Johnson calculations
[25]. In total, we find 24 TCI materials with a C2 rotation
anomaly, as listed in Table I, which are expected to be further
studied by experiments. These materials with a C2 rotation
anomaly and other interesting topological crystalline phases
could provide a new route to control the topological states in
a material [50–53]. Here we choose BiSe crystallizing in SG
164 in Table I as the example to demonstrate the details of our
calculations, including those of SIs, MCNs, and topological
surface and hinge states. The TCI phases in other materials
are also discussed, but the details are left to the Supplemental
Material (SM) [54].

The rest of this paper is organized as follows. The com-
putational methods are described in Sec. II. Then in Sec. III
we demonstrate the details of calculations for identifying the
C2 rotation anomaly in BiSe (SG 164). Section IV A deals
with rotation protected surface states, while Secs. IV B and
IV C deal with mirror protected surface states and C2 protected
hinge states, respectively, both based on symmetry-respected
Wannier models. The remaining materials with a C2 rotation
anomaly are discussed in Sec. V. Finally, a brief summary and
discussion follow in Sec. VI.

II. COMPUTATIONAL METHODS

Our first-principles electronic structure calculations based
on the density functional theory (DFT) are implemented by
using the Vienna Ab initio Simulation Package (VASP) code
[55,56]. We choose the Perdew-Burke-Ernzerhof functional of
GGA as the exchange-correlation potential [57], and the pro-

jector augmented wave method is used to treat core-valence
electron interactions [58,59]. Spin-orbit coupling is taken into
account in all calculations. We use 1.5 times the maximum
cutoff energy recommended in pseudopotential files as the
plane wave cutoff energy and do the convergence test for k
point parameters of every structure. The experiment crystal
structures are used. The Z2PACK code interfaced with VASP

is employed for MCN calculations [60,61]. For surface and
hinge state calculations, high-quality tight-binding models un-
der atom-centered Wannier functions have been constructed
with the WANNIER90 code [62]. The calculations of surface
constant-energy contours are completed by using the itera-
tive Green’s function method in the WANNIERTOOLS package
[63,64].

III. IDENTIFICATION OF THE C2 ROTATION
ANOMALY IN BiSe

In this section, we take BiSe (SG 164) in Table I as the
typical example to show detailed analyses and calculations.
It crystallizes in a trigonal lattice [42] whose primitive unit
cell is schematically shown in Fig. 1(b), which contains six
chemical formulas in total. In BiSe, the bismuth bilayers are
sandwiched by two Bi2Se3 quintuple layers [42]. The layered
structure of BiSe may benefit the cleavages in experimental
studies of its boundary electronic states. The stacking di-
rection is along c, as shown in Fig. 1(b). With respect to
point symmetry, the point group of SG 164 is D3d with 12
symmetry operators in total, of which three generators can be
chosen to be inversion P, twofold rotation C100

2 , and three-
fold rotation C001

3 [here the direction of the rotation axis is
expressed based on the basis lattice vectors a, b, c shown in
Fig. 1(b)]. Note that the other two C2 rotations can be found
through C010

2 = C100
2 C001

3 and C110
2 = C001

3 C100
2 . Hence, there

are three C2 nonvanishing rotation invariants, corresponding
to three sets of C2-symmetric surfaces (which are related by
C3 rotation) hosting the rotation anomaly. Three mirror op-
erations can be obtained by the products of P and the three
C2 rotations, e.g., M100 = PC100

2 . As shown later, those mirror
symmetries could guarantee the existence of six Dirac surface
states in the mirror-symmetric (001) plane.
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FIG. 1. (a) The electronic band structure of BiSe in SG 164,
which shows a continuous and finite direct gap around the Fermi
level (set to be 0 eV). The blue and red lines correspond to the
band structures calculated by first-principles and the Wannier model,
respectively. The orbital projected density of states for elements Bi
and Se are also demonstrated. (b) The crystal structure of BiSe and
a, b, c define the lattice basis vectors of the hexagonal lattice. The
purple and green balls denote Bi and Se atoms, respectively. (c) The
BZ of SG 164 where ka, kb, kc are reciprocal lattice basis vectors
with respect to a, b, c. High-symmetry points �, M, A, H, L, K are
shown. The C2 rotation around the (100) direction is also shown,
which is perpendicular to kb. The MCN calculation is performed in
the shaded rectangle, namely, the kb-kc plane. (d) The evolution of
the sum over occupied bands of HWCCs for a subspace with mirror
eigenvalue +i along kb, where the horizontal axis is in units of kb,
while the vertical axis is in units of 2π .

The first-principles electronic band structure of BiSe along
high-symmetry points [�, M, K, A, L, H ; see Fig. 1(c)] is
shown in Fig. 1(a). Although there is no full gap according
to the density of states as shown in Fig. 1(a), we carefully
check the eigenvalues of energy bands and find that there is
a continuous finite direct gap within the whole BZ, so that
the MCN can be well defined. In addition, the Fermi surfaces
are relatively clean, so we expect the topological boundary
states can be clearly demonstrated in some suitable energy-
momentum window. On the basis of the orbital projected
density of states shown in Fig. 1(a), around the Fermi level,
we found that the 4p orbitals of Se dominate in the energy
range from −6.5 to 0 eV, while the 6p orbitals of Bi dominate
in the energy range from 0 to 4 eV. Since each Se atom
contributes 4 valence electrons while each Bi contributes 3
valence electrons, there are, in total, 42 valence electrons in
one primitive unit cell. Hence, the filling number is 42. We
reproduce the same result for n j

k [the number of occurrences of
the jth irreducible representations (irreps) of the little group
of high-symmetry points k] as Ref. [25] for the 42 valence
bands, as shown below:

n = (
ν, n1

� = 3, n2
� = 3, n3

� = 8, n4
� = 3, n5

� = 3, n6
� = 7,

n1
M = 10, n2

M = 10, n3
M = 11, n4

M = 11,

n1
A = 3, n2

A = 3, n3
A = 7, n4

A = 3, n5
A = 3, n6

A = 8,

n1
L = 11, n2

L = 11, n3
L = 10, n4

L = 10,

n1
K = 7, n2

K = 7, n3
K = 14,

n1
H = 7, n2

H = 7, n3
H = 14

)
. (1)

Here ν = 42 is the filling number, and �, M, A, L, K, H are
high-symmetry points [65]. For �, M, A, L, K, H , there are 6,
4, 6, 4, 3, and 3 irreps, respectively [65]. The order of irreps
follows that in Ref. [65]. n in Eq. (1) can be expanded on
the nine atomic basis vectors ai, i = 1, 2, . . . , 9 (where a8 has
a common factor of 2, while a9 has a common factor of 4,
corresponding to Z2 and Z4, respectively, and the rest have no
common factor) [14,21]. It is found that n = 3a1 − a4 − a6 +
1
2 a8 + 1

2 a9, so that BiSe is a TCI [14] whose SI takes (1,2) in
the Z2 × Z4 SI group for SG 164.

As indicated by the nonvanishing SI, band inversion
should occur somewhere in the BZ. We thus calculate the
parity at eight time reversal invariant momenta (TRIM),
which include one �, one A, three M’s, and three L’s.
The numbers of occupied Kramers pairs with negative par-
ity at TRIM are 10, 11, 11, and 10 for �, A, M, and L,
respectively. Based on the results of parities, we can cal-
culate z2,1, z2,2, z2,3, z4 [27,28] as defined for the SI group
Z2 × Z2 × Z2 × Z4 of SG 2 ⊂ SG 164 (SG 2 is called
the key SI group) by z2, j = ∑

k∈TRIM,k j=π n−
k mod2 and z4 =

∑
k,k∈TRIM

n−
k −n+

k
2 mod4, where n+/−

k represent the number of
occupied Kramers pairs with even and odd parity, respectively.
We found that (z2,1, z2,2, z2,3, z4) = (0, 0, 1, 0), which shows
that BiSe is a weak TI due to the nonvanishing weak topolog-
ical index z2,3 [27,28]. Furthermore, the result that z2,3 = 1
means that an even number of Dirac cones in the (100) and
(010) surfaces exists [66]. The inversion topological invariant
z4 [27,28] is zero, indicating that no inversion protected hinge
states exist in BiSe. We then investigate the possible TCI
phases protected by rotation and mirror symmetries.

For that we calculate the hybrid Wannier charge centers
(HWCCs) [67] along the shaded rectangle shown in Fig. 1(c)
and show the sum of HWCCs for the subspace with the mir-
ror eigenvalue being +i in Fig. 1(d). We conclude that the
MCN is −2 from Fig. 1(d). According to the mapping table
between SIs and topological invariants listed in [27], in the
case of SG 164, there are two possible sets of topological
invariants when the SI (z2,1, z2,2, z2,3, z4) = (0, 0, 1, 0). For
one set, the MCN is equal to zero, and the rotation invariant
of C100

2 is also equal to zero. For the other one, these two
invariants are equal to 2 and 1, respectively. Because the MCN
we calculate is −2 = 2(mod 4), the C100

2 rotation invariant
should be 1; thus, BiSe could host a C2 rotation anomaly
in C2 symmetry respected surfaces and C2 protected hinge
states along the C2-symmetric prism. In the following, we first
obtain a reasonable Wannier model which not only reproduces
the first-principles calculated band structure very well but also
has exactly the same n and MCN and then apply this model
to calculate the topological protected boundary states implied
by the nontrivial bulk topology.

IV. TOPOLOGICAL BOUNDARY STATES IN BiSe

As pointed out before, the dominant orbitals around the
energy range of −6.5 to 4 eV of the band structure come
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FIG. 2. (a) To construct a slab with C100
2 rotation symmetry, we choose different lattice basis vectors as shown in (b): a′ = a + 2b, b′ =

c, c′ = a, which are perpendicular to each other so that c′ is perpendicular to a′ and b′. Here we show the top view of the lattice, and the red
frame indicates the new unit cell in the a-b plane. (b) New lattice basis vectors a′, b′, c′. (c) The orthorhombic reciprocal BZ with respect to
the new lattice basis vectors is shown in the top panel: The reciprocal lattice basis vectors k′

a, k′
b, k′

c are also shown, as well as the surface BZ
for the (100) surface. In the bottom panel, we show the positions of two Dirac cones in the surface BZ for the C2 rotation anomaly by two green
stars, which are related by time reversal or inversion. (d) The electronic band structure for the slab described in (a) based on the Wannier model
for BiSe along the path shown in (c), namely, Ã1 − Ã2, which just crosses one of the two Dirac cones, as indicated by the green circle here.
The blue curves correspond to surface states and are twofold degenerate due to the Kramers theorem. The surface states connect the projected
bands of valence bands and conduction bands (red and black regions, respectively). (e) The energy band structures of the zone containing a
Dirac cone in the (100) surface BZ. (f) To verify the type-II character of the Dirac cone for the C2 rotation anomaly, we plot the energy contour
for different energies. e− and h+ denote an electron pocket and hole pocket, respectively.

from p orbitals from Bi and Se. We use these orbitals as the
initial guess of Wannier functions. The band structure of the
obtained Wannier model is shown by red curves in Fig. 1(a),
fitting the DFT bands (blue curves) very well. It is worth
mentioning that our Wannier model also respects the spatial
symmetries well. This is based on checking the transformation
of Wannier basis functions under operations in SG 164. The
Bloch eigenstates for the 42 occupied bands of the Wannier
model at high-symmetry points �, M, A, L, K, H are used to
calculate the representations of their little groups, and thus the
numbers (n j

k ) are found, exactly the same as Eq. (1). Hence,
the Wannier model has the same SI in Z2 × Z4 for SG 164,
and (z2,1, z2,2, z2,3, z4) for the Wannier model is also exactly
the same as those found by first-principles calculations. In
addition, the MCN for the shaded rectangle as in Fig. 1(c) is
−2 for the Wannier model, the same as the first-principles one.
Hence, we expect that the Wannier model could demonstrate
topological surface/hinge states of BiSe reasonably.

A. C2 rotation anomaly

Though the C2 invariant in BiSe (SG 164) can be trivialized
by choosing a different origin [27], the rotation anomaly can
still be observed in the surface which is symmetric under C2

whose fixed point coincides with the origin we adopted to cal-
culate the SI. In order to demonstrate the C2 rotation anomaly,
we should construct a slab which preserves C2 symmetry. Here
we choose the C2 symmetry around the(100) direction, while
the other two C2 rotations can be related by C3 around c.
As shown in Figs. 2(a) and 2(b), we choose a new unit cell
whose basis vectors are expressed as a′ = a + 2b, b′ = c, and
c′ = a. It is easy to find that c′ is perpendicular to a′ and b′;
thus, it is convenient for the C2 symmetry around a (c′) to
be fulfilled. As shown in the top view in Fig. 2(a), the red
frame representing the new unit cell in the ab plane possesses
C2 symmetry. We take the open boundary condition along c′,
and the slab is infinite in the other two directions. Based on
the Wannier model for BiSe, we thus obtain the electronic
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band structure of the slab through direct diagonalization for
the surface BZ, namely, the shaded rectangle in Fig. 2(c).
Two surface Dirac cones for the rotation anomaly are found
based on their real-space distribution of the Bloch states, and
they are located at ±(0.297k′

a − 0.41k′
b), where k′

a and k′
b are

the reciprocal lattice basis vectors corresponding to a′, b′, c′.
They are indicated by two green stars in Fig. 2(c). In order
to verify the surface Dirac cone, we choose a loop enclosing
it in the (100) surface BZ and calculate the Berry phase of
wave functions of surface states. The corresponding details
are demonstrated in the SM [54], and a result close to π is ac-
quired, which verifies the existence of the C2 rotation anomaly
Dirac cone. To display the band plot of the surface Dirac
states, we choose the path to be Ã1 − Ã2 as in Fig. 2(c), which
just crosses one of the two Dirac points. The calculated bands
of the slab for that path are shown in Fig. 2(d), where the red
and black regions represent the bulk band projections of va-
lence and conduction bands, while the blue curves, connecting
the valence and conduction bulk bands, are bands of surface
states. Note that the blue curves are twofold degenerate due
to the Kramers degeneracy by PT symmetry because the slab
we use also has an inversion center. The circle in Fig. 2(d)
indicates the position of one Dirac point. Furthermore, a three-
dimensional plot of energy bands of surface states around the
C2 protected Dirac point is shown in Fig. 2(e). It can be found
that the Dirac point is tilted or of type-II character, which is
verified by the energy contour plots in Fig. 2(f). The Dirac
cones with respect to the C2 rotation anomaly are located at
generic positions in the surface BZ and can be tuned to move
by C2 and time reversal preserved perturbations. Next, we
study the mirror (M100 = PC100

2 ) protected surface states.

B. Mirror protected surface states

The surface we take above for the calculation of the C2

rotation anomaly is actually not invariant under mirror opera-
tion; thus, the mirror protected surface states are expected to
emerge in other surfaces. As a matter of fact, the (001) surface,
whose BZ is shown in Fig. 3(a), can host such surface states.
We choose a slab with finite length in the (001) direction
but infinite length in the other two directions. The surface
is actually invariant under M100 mirror symmetry as well as
C001

3 symmetry. Hence, the surface is symmetric under all
three mirror operations. The slab we use is also found to have
inversion symmetry such that the electronic bands of the slab
should be at least twofold degenerate due to Kramers theorem.
In addition, to demonstrate the mirror protected surface Dirac
states in the (001) surface, we need to plot only the band
structure in the �̄-L̄ path shown in Fig. 3(a) since the other
Dirac points can be obtained by C3 or T . Note that the �̄-L̄
path is invariant under M100. The band structure along that
path is shown in Fig. 3(b), from which the surface states are
found to traverse the gap between the valence and conduction
bands (red and black, respectively). The blue curves cross
each other, resulting in a Dirac cone, as denoted by the green
circle. Due to time reversal symmetry or inversion symmetry,
there is another Dirac point in the −kb direction, consistent
with the result of MCN (= −2). Considering C001

3 symmetry,
there will be six Dirac cones in the (001) surface BZ.

C. C2 protected hinge states

In addition to the topologically protected surface states by
rotation and mirror, it is also predicted that two 1D helical
hinge states along the hinge formed by two side surfaces par-
allel to the C2 rotation axis will be found [13]. In order to catch
such hinge states, we then construct a prism along the (100)
direction, preserving C100

2 rotation symmetry. First, we choose
a set of new lattice basis vectors defined as a′′ = a + 2b, b′′ =
2a + 4b + c, and c′′ = a. Apparently, c′′ is perpendicular to
the other basis vectors, and it is thus convenient to impose C2

symmetry around c′′ [the original (100) direction]. The prism
is thus along c′′, in which direction the length is infinite. In the
other two directions, the boundary conditions are open. The
top view of the prism is schematically shown in the xy plane in
Fig. 3(c). Based on the Wannier model we constructed, which
reproduces the first-principles results of BiSe very well, we
calculate the electronic band structure of the C2-symmetric
prism, shown in Fig. 3(d). Through the real-space distribution
of the Bloch wave functions, we could identify the bulk and
surface states corresponding to the red and black regions in
Fig. 3(d), and the hinge states represented by blue curves are
found. Since the prism we take is found to be inversion sym-
metric, the bands of the hinge states are twofold degenerate.
The specific real-space distribution of the wave functions of
hinge states is shown in Fig. 3(c). Considering the motion in
the direction of c′′, the hinge states thus constitute a helical
pattern, as predicted by the nontrivial band topology.

V. OTHER C2 PROTECTED TCIs

As displayed in Table I for all 24 TCIs with C2 rotations,
they have diverse topological properties other than the non-
vanishing C2 topological invariant. It should be noted that the
C2 invariant is convention independent in the case when the
SG is 12, SI is (1,0,1,2), and MCN is zero [27]. This fact
means that the C2 rotation anomaly is physical for Ba3Cd2Sb4,
BiHf2, and Sc5Cl8N. The details of the calculations for all 24
TCIs are left to the SM [54]. It can be found that all these
materials have nonvanishing weak topological indices from
the calculated z2, j, j = 1, 2, 3. Hence, there TCIs could host
translation protected surface states in suitable surfaces. The
inversion invariant z4 can take only two values, 0 or 2; oth-
erwise, the material will be a TI [27,28]. Interestingly, when
z4 = 0, the MCN is a nonvanishing even number from Table I.
And when z4 = 2, the MCN is vanishing. z4 = 2 means that
the TCI could host inversion protected hinge states [27,28]
other than the C2 protected ones. It is worth mentioning that
when surface states that can be protected simultaneously by
mirror and C2 symmetries exist, we need to break both sym-
metries to gap the surface states. When the mirror symmetry
is broken, the surface Dirac cones could then move to generic
positions in the surface BZ. And when the C2 symmetry is
broken, the surface Dirac cones can still be protected by the
mirror symmetry to lie in high-symmetry lines in the surface
BZ, but with modifications in the low-energy Dirac physics
(e.g., generating more anisotropy). Furthermore, the surface
and hinge states may coexist in one material, possibly pro-
viding a novel way of manipulating the different types of
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FIG. 3. (a) The surface BZ of the (001) surface is shown by the shaded hexagon in the top panel, while in the bottom panel, �̄-L̄, which is
invariant under mirror operation M100, shows a Dirac cone, as indicated by the green star. (b) The electronic band structure of the slab which
preserves M100 mirror symmetry and has finite length in the (001) direction based on the Wannier model of BiSe and along �̄-L̄ in (a). The
circle denotes the position of the Dirac cone for the surface states, for which two surface bands represented by blue curves cross each other and
connect the projections of conduction (black) and valence (red) bands. Each band is twofold degenerate due to the coexistence of time reversal
symmetry and inversion symmetry. (c) The real-space distribution of hinge state wave functions, where each site in the xy plane represents an
atom from the top view of the prism to calculate the hinge states. (d) The electronic structure of the prism for C2 protected hinge states based
on the Wannier model of BiSe where X = π

c′′ . Red and black denote the bands projected from the bulk and surfaces, while the blue curves
denote the hinge states. The prism we take also has inversion symmetry other than C2 symmetry, so that each band is twofold degenerate. The
positions of hinge states in the green circle are schematically shown in (c) by two red circles.

topological boundary states, which may be useful for transport
study or device application.

VI. CONCLUSIONS AND DISCUSSION

In summary, through first-principles calculations we
checked suitable TCI materials from the database established
by Tang et al. [25] and predicted 24 materials in total with a
C2 rotation anomaly in their C2-symmetric surfaces. Among
these rotation anomaly materials, Ba3Cd2Sb4, BiHf2, and
Sc5Cl8N have the physical C2 protected nontrivial topology.

Other kinds of TCI phases, including weak TIs, mirror pro-
tected TCIs, and C2 protected high-order TIs, which may
coexist in one material were also explored. Our calculations
are based on SIs combined with the MCN calculation, and
then all other topological invariants can be found [27,28].
Our results suggest that all 24 materials here are also weak
TIs. Furthermore, Bi2TeI in SG 12 and all of the predicted
materials in SG 164 have MCN equal to 2. We take BiSe in
SG 164 as the illustrative example to show detailed analyses in
the main text: With the same n as Ref. [25], we conclude that
the material has the same SI in the SI group (Z2 × Z4) [21].
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Since the parent group is SG 2, we thus calculated z2,1,

z2,2, z2,3, z4 ∈ Z2 × Z2 × Z2 × Z4 (the SI group of SG 2)
to further survey all TCI phases [27,28]. Then the rotation
anomaly, mirror Chern insulator, weak TI, and high-order
band TI phases in this material were identified from the MCN
with respect to the (100) mirror plane. We thus constructed a
Wannier model not only fitting the electronic band structure
well but reproducing the same n and MCN. Based on the
Wannier model, we observed two type-II Dirac cones located
at generic points on the (100) surface due to the rotation
anomaly, while six Dirac cones appeared on the (001) surface
due to the finite MCN (= −2; C3-related Dirac cones are
enumerated). Other than topological surface states, 1D helical
hinge states could also appear. We expect that our results pro-

vide a good platform for further theoretical and experimental
studies.

ACKNOWLEDGMENTS

We were supported by the National Key R&D Pro-
gram of China (Grants No. 2017YFA0303203 and No.
2018YFA0305704), the National Natural Science Founda-
tion of China (NSFC Grants No. 11834006, No. 12004170,
No. 51721001, and No. 11790311), and the excellent pro-
gram at Nanjing University. X.W. also acknowledges the
support from the Tencent Foundation through the XPLORER
PRIZE. F.T. was supported by the Fundamental Research
Fund for the Central Universities (Grants No. 14380144 and
No. 14380157).

[1] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[2] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[3] A. Bansil, H. Lin, and T. Das, Colloquium: Topological band
theory, Rev. Mod. Phys. 88, 021004 (2016).

[4] Y. Ando and L. Fu, Topological crystalline insulators and
topological superconductors: From concepts to materials,
Annu. Rev. Condens. Matter Phys. 6, 361 (2015).

[5] L. Fu, Topological Crystalline Insulators, Phys. Rev. Lett. 106,
106802 (2011).

[6] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu,
Topological crystalline insulators in the SnTe material class,
Nat. Commun. 3, 982 (2012).

[7] Z. Wang, A. Alexandradinata, R. J. Cava, and B. A. Bernevig,
Hourglass fermions, Nature (London) 532, 189 (2016).

[8] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized
electric multipole insulators, Science 357, 61 (2017).

[9] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[10] Z. Song, Z. Fang, and C. Fang, (d − 2)-Dimensional Edge
States of Rotation Symmetry Protected Topological States,
Phys. Rev. Lett. 119, 246402 (2017).

[11] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.
Brouwer, Reflection-Symmetric Second-Order Topological In-
sulators and Superconductors, Phys. Rev. Lett. 119, 246401
(2017).

[12] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.
Parkin, B. A. Bernevig, and T. Neupert, Higher-order topologi-
cal insulators, Sci. Adv. 4, eaat0346 (2018).

[13] C. Fang and L. Fu, New classes of topological crystalline in-
sulators having surface rotation anomaly, Sci. Adv. 5, eaat2374
(2019).

[14] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Efficient
topological materials discovery using symmetry indicators,
Nat. Phys. 15, 470 (2019).

[15] X. Zhou, C.-H. Hsu, T.-R. Chang, H.-J. Tien, Q. Ma, P. Jarillo-
Herrero, N. Gedik, A. Bansil, V. M. Pereira, S.-Y. Xu, H. Lin,
and L. Fu, Topological crystalline insulator states in the Ca2As
family, Phys. Rev. B 98, 241104(R) (2018).

[16] T. Zhang, C. Yue, T. Zhang, S. Nie, Z. Wang, C. Fang,
H. Weng, and Z. Fang, Topological crystalline insulators

with C2 rotation anomaly, Phys. Rev. Res. 1, 012001(R)
(2019).

[17] B. Wang, B. Singh, B. Ghosh, W.-C. Chiu, M. M. Hosen, Q.
Zhang, L. Ying, M. Neupane, A. Agarwal, H. Lin, and A.
Bansil, Topological crystalline insulator state with type-II Dirac
fermions in transition metal dipnictides, Phys. Rev. B 100,
205118 (2019).

[18] C.-H. Hsu, X. Zhou, T.-R. Chang, Q. Ma, N. Gedik, A. Bansil,
S.-Y. Xu, H. Lin, and L. Fu, Topology on a new facet of bis-
muth, Proc. Natl. Acad. Sci. USA 116, 13255 (2019).

[19] C.-H. Hsu, X. Zhou, Q. Ma, N. Gedik, A. Bansil, V. M. Pereira,
H. Lin, L. Fu, S.-Y. Xu, and T.-R. Chang, Purely rotational
symmetry-protected topological crystalline insulator α-Bi4Br4,
2D Mater. 6, 031004 (2019).

[20] X. Li, D. Chen, M. Jin, D. Ma, Y. Ge, J. Sun, W. Guo, H.
Sun, J. Han, W. Xiao, J. Duan, Q. Wang, C.-C. Liu, R. Zou,
J. Cheng, C. Jin, J. Zhou, J. B. Goodenough, J. Zhu, and Y. Yao,
Pressure-induced phase transitions and superconductivity in a
quasi-1-dimensional topological crystalline insulator α-Bi4Br4,
Proc. Natl. Acad. Sci. USA 116, 17696 (2019).

[21] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-
based indicators of band topology in the 230 space groups,
Nat. Commun. 8, 50 (2017).

[22] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C.
Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum
chemistry, Nature (London) 547, 298 (2017).

[23] T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng,
and C. Fang, Catalogue of topological electronic materials,
Nature (London) 566, 475 (2019).

[24] M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A.
Bernevig, and Z. Wang, A complete catalog of high-quality
topological materials, Nature (London) 566, 480 (2019).

[25] F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehen-
sive search for topological materials using symmetry indicators,
Nature (London) 566, 486 (2019).

[26] J. C. Y. Teo, L. Fu, and C. L. Kane, Surface states and topo-
logical invariants in three-dimensional topological insulators:
Application to Bi1−xSbx , Phys. Rev. B 78, 045426 (2008).

[27] Z. Song, T. Zhang, Z. Fang, and C. Fang, Quantitative mappings
between symmetry and topology in solids, Nat. Commun. 9,
3530 (2018).

[28] E. Khalaf, H. C. Po, A. Vishwanath, and H. Watanabe, Sym-
metry Indicators and Anomalous Surface States of Topological
Crystalline Insulators, Phys. Rev. X 8, 031070 (2018).

155113-7

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1146/annurev-conmatphys-031214-014501
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1038/nature17410
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1126/sciadv.aat2374
https://doi.org/10.1038/s41567-019-0418-7
https://doi.org/10.1103/PhysRevB.98.241104
https://doi.org/10.1103/PhysRevResearch.1.012001
https://doi.org/10.1103/PhysRevB.100.205118
https://doi.org/10.1073/pnas.1900527116
https://doi.org/10.1088/2053-1583/ab1607
https://doi.org/10.1073/pnas.1909276116
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1038/nature23268
https://doi.org/10.1038/s41586-019-0944-6
https://doi.org/10.1038/s41586-019-0954-4
https://doi.org/10.1038/s41586-019-0937-5
https://doi.org/10.1103/PhysRevB.78.045426
https://doi.org/10.1038/s41467-018-06010-w


CAO, TANG, WANG, AND WAN PHYSICAL REVIEW B 103, 155113 (2021)

[29] S. V. Savilov, V. N. Khrustalev, A. N. Kuznetsov, B. A.
Popovkin, and M. Yu. Antipin, New subvalent bismuth tel-
luroiodides incorporating Bi2 layers: The crystal and electronic
structure of Bi2TeI, Russ. Chem. Bull. 54, 87 (2005).

[30] D. G. Adolphson and J. D. Corbett, Crystal structure of zir-
conium monochloride. A novel phase containing metal-metal
bonded sheets, Inorg. Chem. 15, 1820 (1976).

[31] B. Saparov, S. Xia, and S. Bobev, Synthesis, structure, and
bonding of the Zintl phase Ba3Cd2Sb4, Inorg. Chem. 47, 11237
(2008).

[32] O. Levy, G. L. W. Hart, and S. Curtarolo, Hafnium binary alloys
from experiments and first principles, Acta Mater. 58, 2887
(2010).

[33] S.-J. Hwu, D. S. Dudis, and J. D. Corbett, Synthesis, structure,
and properties of the infinite-chain compounds Sc5Cl8C and
Sc5Cl8N, Inorg. Chem. 26, 469 (1987).

[34] Yi.-Y. Wang, Q.-H. Yu, P.-J. Guo, K. Liu, and T.-L. Xia, Resis-
tivity plateau and extremely large magnetoresistance in NbAs2

and TaAs2, Phys. Rev. B 94, 041103(R) (2016).
[35] F. Hulliger, New representatives of the NbAs2 and ZrAs2 struc-

tures, Nature (London) 204, 775 (1964).
[36] S. Furuseth and A. Kjekshus, On the arsenides and antimonides

of niobium, Acta Chem. Scand. 18, 1180 (1964).
[37] Y. Li, L. Li, J. Wang, T. Wang, X. Xu, C. Xi, C. Cao, and

J. Dai, Resistivity plateau and negative magnetoresistance in
the topological semimetal TaSb2, Phys. Rev. B 94, 121115(R)
(2016).

[38] P. Jensen, A. Kjekshus, and T. Skansen, The crystal structures
of Mo2As3 and W2As3, Acta Chem. Scand. 20, 1003 (1966).

[39] M. Conrad and B. Harbrecht, Synthesis of tantalum tellurides:
The crystal structure of Ta2Te3, J. Alloys Compd. 187, 181
(1992).

[40] A. Hayashi, Y. Ueda, K. Kosuge, H. Murata, H. Asano, N.
Watanabe, and F. Izumi, Cation distribution in (M’,M)3Se4: I.
(Cr,Ti)3Se4, J. Solid State Chem. 67, 346 (1987).

[41] V. I. Larchev and S. V. Popova, The new chimney-ladder phases
Co2Si3 and Re4Ge7 formed by treatment at high temperatures
and pressures, J. Less-Common Met. 84, 87 (1982).

[42] M. M. Stasova, Crystal structure of bismuth selenides and bis-
muth and antimony tellurides, J. Struct. Chem. 8, 584 (1967).

[43] J. Evers, G. Oehlinger, and A. Weiss, Crystal structure of bar-
ium disilicide at high pressures, Angew. Chem., Int. Ed. Engl.
16, 659 (1977).

[44] K. Yamana, K. Kihara, and T. Matsumoto, Bismuth tellurides:
BiTe and Bi4Te3, Acta Cryst. B 35, 147 (1979).

[45] Ye. N. Zav’yalov and V. D. Begizov, Sulphotsumoite, Bi3Te2S-a
new bismuth mineral, Int. Geol. Rev. 25, 854 (1983).

[46] I. I. Petrov and R. M. Imamov, Electron diffraction study of
PbTe-Bi2Te3 phases, Kristallografiya 14, 699 (1969).

[47] Hj. Mattausch, A. Simon, N. Holzer, and R. Eger, Monohalo-
genide der Lanthanoide, Z. Anorg. Allg. Chem. 466, 7 (1980).

[48] R. L. Daake and J. D. Corbett, Zirconium monobromide, a sec-
ond double metal sheet structure. Some physical and chemical
properties of the metallic zirconium monochloride and mono-
bromide, Inorg. Chem. 16, 2029 (1977).

[49] K. Sakamaki, H. Wada, H. Nozaki, Y. Ōnuki, and M. Kawai,
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