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Lattice symmetry and emergence of antiferromagnetic quantum Hall states
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Strong local interaction in systems with nontrivial topological bands can stabilize quantum states such as
magnetic topological insulators. We investigate the influence of the lattice symmetry on the possible emergence
of antiferromagnetic quantum Hall states. We consider the spinful Harper-Hofstadter model extended by a
next-nearest-neighbor (NNN) hopping which opens a gap at half filling and allows for the realization of a
quantum Hall insulator. The quantum Hall insulator has the Chern number C = 2 as both spin components are in
the same quantum Hall state. We add to the system a staggered potential � along the x̂ direction favoring a normal
insulator and the Hubbard interaction U favoring a Mott insulator. The Mott insulator is a Néel antiferromagnet
for small NNN hopping and a stripe antiferromagnet for large NNN hopping. We investigate the U -� phase
diagram of the model for both small and large NNN hoppings. We show that, while for large NNN hopping there
exists a C = 1 stripe antiferromagnetic quantum Hall insulator in the phase diagram, there is no equivalent
C = 1 Néel antiferromagnetic quantum Hall insulator at the small NNN hopping. We discuss that a C = 1
antiferromagnetic quantum Hall insulator can emerge only if the effect of the spin-flip transformation cannot
be compensated by a space-group operation. Our findings can be used as a guideline in future investigations
searching for antiferromagnetic quantum Hall states.
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I. INTRODUCTION

The role of symmetry in the development of modern con-
densed matter physics especially in the field of topological
insulators (TIs) is unequivocally recognized. Magnetic TIs
characterized by a nontrivial topological invariant and long-
range magnetic order are promising candidates for application
in dissipationless quantum transport, low-energy consumption
spintronics, and topological quantum computation [1]. The
recent realization of MnBi2Te4 as the first antiferromagnetic
TI has been a key advance in the field of magnetic TIs [2–6].

The experimental achievements in creation of artificial
gauge fields [7,8] and in detection of magnetic order [9,10]
suggest ultracold atoms trapped in optical lattices [11] as a
unique system for simulating magnetic topological quantum
states with a high degree of control and tunability of pa-
rameters. The Harper-Hofstadter model is realized in optical
lattices using laser-assisted tunneling [12,13]. The Haldane
model is implemented using the lattice-shaking technique
[14]. Further developments are measuring the Chern number
of the Hofstadter bands [15] and the Berry curvature of the
Bloch bands [16].

Feshbach resonances can be used to tune the interaction
between ultracold atoms [17]. The effect of interaction on
topological systems has become an interesting problem in

*ebrahimkhas@iau-mahabad.ac.ir
†mohsen.hafez@tu-dortmund.de
‡hofstett@physik.uni-frankfurt.de

recent years [18]. In the spinless Haldane model the nearest-
neighbor (NN) interaction induces a transition from a Chern
insulator to a charge ordered Mott insulator (MI) [19]. In
spinful systems the Hubbard interaction can drive a normal
insulator (NI) into a quantum Hall [20–23] or quantum spin
Hall insulator [24–27]. Interaction-driven topological transi-
tions are studied also in three-dimensional systems [28,29].
In SU(3) systems, topological transitions from a magnetic
insulator into a quantum Hall insulator (QHI) are reported
which have no counterparts in the SU(2) case [30].

In the strong-coupling limit the Hubbard interaction favors
long-range magnetic order, unless quantum fluctuations are
strong enough to stabilize a quantum spin liquid or a valence
bond crystal state [31]. This can lead to novel magnetic or-
ders when artificial gauge fields or spin-orbit coupling are
present in the system [24,32–34]. In addition, the competition
between the band insulator at weak interaction and the Mott
insulator at strong interaction can stabilize novel intermediate
phases such as antiferromagnetic QHI (AFQHI) with Chern
number C = 1 as suggested for the Haldane-Hubbard model
[20–22]. In this phase, one of the spin components is in the
quantum Hall state and the other is in the normal state.

In this paper we investigate whether the C = 1 AFQHI is
a phase specific to the Haldane-Hubbard model or whether
it can occur in other interacting topological systems. With
this aim we consider the spinful Harper-Hofstadter model
in the presence of the Hubbard interaction U , i.e., the
Harper-Hofstadter-Hubbard model, at half filling with the pla-
quette magnetic flux 1/2 in units of magnetic flux quantum
h/e. The flux is the same for both spin components. The
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Harper-Hofstadter model at half filling is gapless and hence
we add a next-nearest-neighbor (NNN) hopping to the system
to open a gap and realize a QHI [35]. The QHI has the
Chern number C = 2. The C = 1 AFQHI in the Haldane-
Hubbard model appears as a result of competition between
the staggered potential and the Hubbard interaction [20–22].
We include in our model also a staggered potential � which
favors a NI phase.

II. MODEL AND MAIN RESULTS

The Hamiltonian of the system reads

H = Ht + �
∑

�r,σ
(−1)xn�r,σ + U

∑

�r
n�r,↓n�r,↑ (1)

with the hopping term

Ht = −
∑

�r,σ

(
tc†

�r+x̂,σ c�r,σ + te2π iϕxc†
�r+ŷ,σ c�r,σ + t ′

× e2π iϕ(x+1/2)(c†
�r+x̂+ŷ,σ c�r,σ + c†

�r+ŷ,σ c�r+x̂,σ ) + H.c.
)

(2)

where t and t ′ are the NN and the NNN hoppings, respectively.
The fermionic operator c†

�r,σ (c�r,σ ) creates (annihilates) a par-
ticle at position �r = xx̂ + yŷ = (x, y) with spin component
σ =↑,↓. The position �r runs over the square lattice and the
lattice constant is considered as the unit of length. We define
the occupation number operator n�r,σ = c†

�r,σ c�r,σ . The parame-
ter ϕ is the magnetic flux entering each square, in units of the
magnetic flux quantum. We fix ϕ = 1/2, which is the simplest
flux in the Harper-Hofstadter model to achieve topological
bands. We would like to point out that other fluxes such as 1/4
can stabilize quantum Hall states with higher Chern numbers
[35] and are also interesting to investigate.

The effect of the NNN hopping on the Harper-Hofstadter
model is studied in a number of previous works [35–37]. It
is included in the Hamiltonian Eq. (1) to open a gap at half
filling and realize a QHI [35]. The ratio of the NNN hopping
to the NN hopping in optical lattices can be tuned from weak
to strong using the lattice shaking technique [38,39].

The second term in Eq. (1) is a staggered potential along
the x̂ direction, with sublattices A and B acquiring, respec-
tively, the onsite energies +� and −�. Such a staggered
potential allows a NI to appear in the phase diagram. It can be
easily created in optical lattices and is present in the suggested
experimental setups [40,41]. Another possibility would be the
checkerboard potential which yields an energy offset between
the lattice sites with x + y even and the lattice sites with x + y
odd. The last term is the Hubbard interaction.

Our proposed model Eq. (1) is the minimal extension of
the Harper-Hofstadter-Hubbard model which allows one to
examine the existence of a C = 1 AFQHI beyond the Haldane-
Hubbard model. One notes that we are considering artificial
gauge fields [7,8], which is why no Zeeman term exists in the
Hamiltonian Eq. (1).

The Hamiltonian is schematically depicted in Fig. 1(a).
For U = 0 the Hamiltonian reduces to a two-level problem in
momentum space and for finite t ′ leads to a transition between
the QHI and the NI at � = 2t [42]. If there is no flux and
no NNN hopping the Hamiltonian recalls the ionic Hubbard

FIG. 1. (a) Schematic representation of the Hamiltonian Eq. (1).
Schematic representation of the Néel (b) and the stripe (c) antiferro-
magnet with the gray box specifying the unit cell.

model with a NI for weak U and a Néel AF for strong U .
There are suggestions for intermediate phases [43–49].

We study the phase diagram of the model Eq. (1) in the
U -� plane both for small and for large NNN hopping, in units
of NN hopping t . The results are summarized in Fig. 2. For
small NNN hopping there is a transition from the QHI to the
Néel antiferromagnet (AF) upon increasing U for � < 2t as
can be seen in Fig. 2(a). For � > 2t the QHI separates the NI
at weak U from the Néel AF at strong U . For the large NNN
hopping in Fig. 2(b) we find that the MI is a stripe AF. An
even more interesting difference compared to the small NNN
hopping case is the emergence of a C = 1 stripe AFQHI in the
limit U ∼2� � t . We discuss how the compensation of the
spin-flip transformation by a lattice translation prevents a C =
1 Néel AFQHI to appear at small NNN hopping. We present
results for the spectral function in the bulk and at the edges.
We identify gapless edge states for both spin components in
the QHI, and gapless edge states for only one spin component
in the C=1 stripe AFQHI.

FIG. 2. The phase diagram of the Hamiltonian Eq. (1) for ϕ =
1/2 with next-nearest-neighbor hopping t ′ = 0.25t (a) and t ′ = t
(b). One can identify normal insulator (NI), C = 2 quantum Hall
insulator (QHI), Néel and stripe antiferromagnet (AF), and a C = 1
stripe antiferromagnetic QHI (AFQHI) in the phase diagram.
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III. METHOD

Dynamical mean-field theory (DMFT) is a highly success-
ful approach to the problem of strongly correlated systems
and is exact in the limit of infinite coordination number. For
a finite coordination number it is an approximation neglecting
the momentum dependence of the self-energy, or the nonlo-
cal quantum fluctuations [50–52]. The C = 1 AFQHI phase
predicted by DMFT in the Haldane-Hubbard model [21] is
confirmed by exact diagonalization of finite clusters [21] as
well as by bold diagrammatic quantum Monte Carlo analysis
[22]. A systematic study of nonlocal quantum fluctuations in
the Haldane-Hubbard model [23] indicates that a local self-
energy can provide an appropriate qualitative description of
the topological phase diagram; the momentum dependence of
the self-energy is only needed to map out the precise location
of the phase boundaries.

We employ the real-space DMFT (RDMFT) approach
to qualitatively analyze the phase diagram of the Hamilto-
nian Eq. (1). The RDMFT was first used to study thin-film
geometries [53], and since then has been extended, for exam-
ple, to address disordered systems [42,54], exotic magnetism
[34,55–58], and topological insulators [24,30,59,60]. The lo-
cal self-energy in the DMFT method [51] becomes position
dependent in the real-space extension, allowing for an equal-
footing treatment of translationally ordered and disordered
systems.

We use the RDMFT implementation introduced in
Ref. [61]. We consider 40 × 40 lattice sizes with periodic
boundary conditions (PBC) in both directions unless men-
tioned otherwise. For selected points close to the phase
transitions we have checked that increasing the systems size to
60 × 60 does not change the results. The temperature is fixed
to T = t/50, which is much smaller than the energy scales
in the system, and we expect to represent the ground-state
properties of the model. We use exact diagonalization (ED)
as the impurity solver [51,62]. Five bath sites are used for the
results that we present unless mentioned otherwise. We have
checked that the results for different selected points close to
the phase transitions are the same as the results obtained using
six and seven bath sites.

The Chern number of the interacting system is determined
using the topological Hamiltonian method [63], which relates
the Chern number of an interacting system to the Chern
number of an effective noninteracting model. The method
relies on the adiabatic deformation of the Green’s func-
tion such that the single-particle gap never closes, leaving
the Chern number of the system unchanged. The effective
model, called the topological Hamiltonian, in the Bloch form
reads

htop(�k) = h0(�k) + �(�k, ω = 0), (3)

where h0(�k) describes the noninteracting part of the model
and �(�k, ω) is the self-energy. In the DMFT the self-energy
is local and hence its role in the topological Hamiltonian
Eq. (3) is just to modify the onsite energies [64]. One notices
that although the topological Hamiltonian method has some
limitations and should be used with care [65], it has been
applied successfully to similar models [21].

FIG. 3. (a), (b) The local magnetic moment M and the double
occupancy DB on sublattice B plotted vs the Hubbard interaction U
for different values of the staggered potential �. (c) The evolution
of the effective potentials �̃ and δσ upon increasing U for � = 7t
and 10t . Here the color indicates the value of U (see the colorbar).
The shaded area indicates a quantum Hall insulator (QHI) and the
white area indicates a normal insulator (NI). The inset shows �̃ vs
U in the paramagnetic region where δσ = 0. The results are for the
next-nearest-neighbor hopping t ′ = 0.25t .

IV. RESULTS

We present results first for the small t ′ = 0.25t and then
for the large t ′ = t NNN hopping. We avoid the intermediate
values 0.6t � t ′ � 0.8t where in the large-U limit a quantum
spin liquid [66–68] or a valence bond crystal [68–71] is ex-
pected, which cannot be captured within our local self-energy
approximation. One notices that the Hamiltonian Eq. (1) in the
large-U limit is equivalent, up to a weak spatial anisotropy, to
the frustrated Heisenberg model with NN and NNN interac-
tion. For t ′ = 0.25t in Figs. 3(a) and 3(b) we have plotted the
local magnetic moment M�r = |〈n�r,↑ − n�r,↓〉|/2 and the double
occupancy D�r = 〈n�r,↑n�r,↓〉 versus the Hubbard U for different
values of the staggered potential �. The local moment is po-
sition independent, M�r =: M, and we have plotted the double
occupancy on sublattice B, shown as DB. One can identify
a transition between a paramagnetic and a magnetic phase,
which is shifted to larger values of U as � is increased. The
paramagnetic phase can be a NI or a QHI, depending on the
value of the Chern number C. The magnetic phase is a Néel
AF denoted schematically in Fig. 1(b).

There are four sites in the unit cell labeled as A1, A2,
B1, and B2 in Fig. 1(b). The topological Hamiltonian, in the
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second quantization form, up to an irrelevant constant can be
written as

Htop = Ht +
∑

�r,σ
[�̃(−1)x + δσ (−1)x+y]n�r,σ (4)

where Ht is the hopping term Eq. (2) and the effective poten-
tials �̃ and δσ , in the spirit of Refs. [26,30,72], are given by

�̃ = �+ 1
4

[
�σ

A1
(0)+�σ

A2
(0)−�σ

B1
(0)−�σ

B2
(0)

]
, (5a)

δσ = 1
4

[
�σ

A1
(0)−�σ

A2
(0)−�σ

B1
(0)+�σ

B2
(0)

]
, (5b)

where �σ
X (0) is the zero-frequency self-energy at the site X

with spin σ . �̃ is spin independent and δ↑ = −δ↓ (see Ap-
pendix A).

The evolution of the effective potentials �̃ and δσ upon
increasing U for � = 7t and 10t is displayed in Fig. 3(c).
The shaded area in this figure indicates a QHI and the white
area indicates a NI with �̃ and δσ treated as independent
parameters. Upon increasing U the effective potential �̃ is
renormalized [26,30] and the system enters the QHI for �̃ <

2t . This is evident from the inset in Fig. 3(c) displaying �̃

versus U in the paramagnetic region where δσ = 0. Upon
entering the magnetic phase the effective potential δσ becomes
finite and both spin components fall out of the QHI region
[73]. This demonstrates that the Néel AF is topologically
trivial.

It is apparent from Eq. (4) that the two spin components
are always in the same topological state due to δ↑ = −δ↓.
This makes the emergence of a C = 1 Néel AF impossible.
This can also be understood from the symmetry of the phase,
without considering the topological Hamiltonian Eq. (4). In
the Néel AF illustrated in Fig. 1(b) the effect of the spin-flip
transformation can be compensated by a lattice translation,
i.e., by a shift by one lattice site along the ŷ direction. This
suggests that spin-up and spin-down fermion dispersions will
differ at most by a shift in momentum space. This is confirmed
in Fig. 4(a), which shows an equal spectral function for up
and down spin. The spectral function is plotted for −6t �
ω � +6t . The spectral function in Fig. 4(a) is for � = 7t
and U = 20t in the Néel AF and is averaged over the sites
in the unit cell. The spectral function at position �r with spin
σ is defined from the local Green’s function as A�r,σ (ω) =
(−1/π )ImG�r,σ (ω + iη) where η is a broadening factor fixed
to 0.05t in our computations. The single-particle gap equal for
up and down spins prevents a C = 1 Néel AF from emerging.
The spectral function for � = 7t and U = 15t and different
values of x on a 41 × 40 lattice with open boundary conditions
along x̂ and PBC along ŷ is displayed in Fig. 4(b). The edges
are defined at x = 0 and 40 and the lattice is symmetric with
respect to the center x = 20. Six bath sites are used in the
impurity problem. There are gapless excitations at the edge
which quickly disappear upon approaching the bulk, consis-
tent with the topological Hamiltonian prediction on a QHI
phase.

We consider now the large NNN hopping t ′ = t . The MI
phase in this case is a stripe AF. The antiferromagnetic or-
dering is formed along x̂ and the ferromagnetic ordering is
formed along ŷ [see Fig. 1(c)], due to the spatial anisotropy
induced by the staggered potential �. There are two sites in
the unit cell and the topological Hamiltonian for t ′ = t can be
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FIG. 4. (a) The bulk spectral function averaged over the sites
in the unit cell for up and down spin in the Néel antiferromagnet
(AF) with � = 7t and U = 20t . (b) The spectral function plotted for
different values of x in the quantum Hall insulator (QHI) with � = 7t
and U = 15t obtained using a cylindrical geometry with edges at
x = 0 and 40. The results are for the next-nearest-neighbor hopping
t ′ = 0.25t .

expressed, up to an irrelevant constant, as

Htop = Ht +
∑

�r,σ
�̃σ (−1)xn�r,σ , (6)

with the effective potential

�̃σ = � + 1
2 [�σ

A (0)−�σ
B (0)]. (7)

The spin dependence of this effective potential allows differ-
ent spin components to fall in different topological regions
and consequently a C = 1 AFQHI to emerge. The spin com-
ponent σ is in the quantum Hall state if |�̃σ | < 2t and in the
normal state if |�̃σ | > 2t .

In Figs. 5(a) and 5(b) we have plotted the local mag-
netic moment M and the effective potential �̃σ versus U
for � = 10t (a) and 15t (b). The dashed lines at �̃σ = 2t
and �̃σ = −2t specify the borders of the topological re-
gion |�̃σ | < 2t . A shaded area indicates a phase with a
finite Chern number C. One can see from Fig. 5(a) that
upon increasing U the effective potential �̃σ drops below
2t at U 
 20t and a transition from a NI to a QHI takes
place. For U � 23t the local magnetic moment becomes
finite and �̃σ becomes spin dependent. One spin compo-
nent, spin down in the figure, almost immediately leaves
the topological region while the other spin component re-
mains topological up to U 
 26t [74]. This leads to a
C = 1 stripe AFQHI phase for 23t � U � 26t . Beyond U 

26t the system is a (topologically trivial) stripe AF. One can
see from Fig. 5(b) that upon increasing � to 15t the QHI phase
disappears and there is only the C = 1 stripe AFQHI between
the NI and the stripe AF.

In the stripe AF displayed in Fig. 1(c) the effect of
the spin-flip transformation, unlike the Néel AF, cannot be
compensated by a lattice translation. This leads to a spin-
dependent spectral function (see Appendix B). This allows
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FIG. 5. The local magnetic moment M and the effective potential
�̃σ plotted vs the Hubbard interaction U for � = 10t (a) and � =
15t (b). A shaded area indicates a phase with a finite Chern number
C. (c) The edge spectral functions for up and down spin in the C = 1
stripe antiferromagnetic quantum Hall insulator with � = 25t and
U = 53t , obtained using a cylindrical geometry with edges at x = 0
and 40. The shift of the spectral function along the vertical axis is for
clarity. The results are for the next-nearest-neighbor hopping t ′ = t .

up- and down-spin components to change their Chern num-
bers at different transition points and the C = 1 stripe AFQHI
to emerge.

In Fig. 5(c) we have plotted the spectral function near the
edge x = 0 of a 41×40 cylindrical geometry with � = 25t
and U = 53t , where the system is expected to be a C = 1
stripe AFQHI according to the topological Hamiltonian. The
shift of the spectral function along the vertical axis is for
clarity. Six bath sites are used in the impurity problem. There
are contributions out of the plotted region −5t �ω�+5t
which mainly belong to the spin-down spectral function. Edge
excitations in an interacting QHI have been discussed using
ED on finite clusters [19] and using RDMFT with ED [30] and
with the quantum Monte Carlo [24] impurity solver. We are
not aware of a study of edge excitations in an interacting C=1
AFQHI. Although our results in Fig. 5(c) are obtained using
a finite number of bath sites and indicate only the qualitative
shape of the spectral function, they can still capture the main
expected feature that edge excitations are gapless for one spin
component and gapped for the other. The edge excitations in
optical lattices can be investigated by introducing a Hofstadter
interface [59].

V. SUMMARY

To summarize, we compare in Fig. 2 the U -� phase dia-
gram of the model Eq. (1) for small t ′ = 0.25t (a) and large
t ′ = t (b) NNN hopping. Apart from the type of magnetic
order, there is a fundamental difference between the two phase
diagrams: In Fig. 2(b) there exists an intermediate C = 1 stripe
AFQHI while in Fig. 2(a) a C = 1 Néel AFQHI never appears.
The absence of the AFQHI in the latter case stems from
the fact that the effect of the spin-flip transformation can be
compensated by a space-group operation.

We notice that our conclusion on the possible existence of a
C = 1 AFQHI is based on the symmetry of the phase and not
the details of the model studied in this paper. For example,
replacing the staggered potential along x̂ in Eq. (1) with the
staggered potential H� = ∑

�r,σ �(−1)x+yn�r,σ changing along
both x̂ and ŷ directions would lead to the opposite situation,
i.e., would allow a C = 1 Néel and prevent a C = 1 stripe
AFQHI. Our conclusion is consistent with the realization of
the C = 1 AFQHI in the Haldane-Hubbard model [20,21].
Our results can be used as a guideline for future experiments,
especially in optical lattices, searching for AFQHI phases.
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APPENDIX A: TOPOLOGICAL HAMILTONIAN FOR
SMALL NEXT-NEAREST-NEIGHBOR HOPPINGS

In this section we derive the topological Hamiltonian
Eq. (4), which is valid for small NNN hoppings, i.e., for the
case that in the large-U limit the system exhibits a Néel AF.
In general, there are four sites in the unit cell as shown in
Fig. 1(b). A local self-energy in Eq. (3) leaves the hopping part
of the noninteracting Hamiltonian unchanged and modifies
only the onsite energies. One finds

εA1,σ
= +� + �σ

A1
(0), (A1a)

εA2,σ
= +� + �σ

A2
(0), (A1b)

εB1,σ
= −� + �σ

B1
(0), (A1c)

εB2,σ
= −� + �σ

B2
(0), (A1d)

where εX,σ represents the onsite energy of the topological
Hamiltonian at the position X for the spin component σ . As
one can see from Fig. 1(b) the Néel AF is invariant under a
spin-flip transformation followed by a one-site lattice transla-
tion along ŷ direction. This implies the symmetry relation

�σ
A1

(ω) = �σ̄
A2

(ω), �σ
B1

(ω) = �σ̄
B2

(ω), (A2a)
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FIG. 6. The spectral function in the stripe antiferromagnetic
phase for up and down spins plotted vs the frequency ω. The results
are for the staggered potential � = 15t , the Hubbard interaction
U = 40t , and the next-nearest-neighbor hopping t ′ = t .

where σ̄ indicates the opposite direction of σ . There is the
second symmetry relation

�σ
A1

(0) − �σ
A2

(0) = �σ
B2

(0) − �σ
B1

(0), (A2b)

which we found from our data and is valid only at zero
frequency. Equation (A1) can be rewritten as

εA1,σ
= +� + �A+ + �σ

A− , (A3a)

εA2,σ
= +� + �A+ − �σ

A− , (A3b)

εB1,σ
= −� + �B+ + �σ

B− , (A3c)

εB2,σ
= −� + �B+ − �σ

B− , (A3d)

where we have defined

�A+ := 1
2

[
�σ

A1
(0) + �σ

A2
(0)

]
, (A4a)

�σ
A− := 1

2

[
�σ

A1
(0) − �σ

A2
(0)

]
, (A4b)

and similarly for �B+ and �σ
B− . �A+ and �B+ are independent

from σ , and �σ
A− = −�σ̄

A− and �σ
B− = −�σ̄

B− due to the sym-
metry relation Eq. (A2a). The symmetry relation Eq. (A2b)
implies �σ

A− = −�σ
B− . By some straightforward manipulation

of Eq. (A3) we get

εA1,σ
= C + �̃ + δσ , (A5a)

εA2,σ
= C + �̃ − δσ , (A5b)

εB1,σ
= C − �̃ − δσ , (A5c)

εB2,σ
= C − �̃ + δσ , (A5d)

where we have defined the common constant C := (�A+ +
�B+ )/2 and the effective potentials

�̃ := � + 1
2 (�A+ − �B+ ), (A6a)

δσ := 1
2 (�σ

A− − �σ
B− ). (A6b)

One notices that �̃ is independent from σ and δσ = −δσ̄

due to the symmetry relations Eq. (A2). This completes the
derivation of Eq. (4) with the effective potentials Eq. (5).

APPENDIX B: SPECTRAL FUNCTION IN THE STRIPE
ANTIFERROMAGNETIC PHASE

In Fig. 6 we have plotted the bulk spectral function aver-
aged over the sites in the unit cell in the stripe AF for up
and down spins. The results are for the staggered potential
� = 15t , the Hubbard interaction U = 40t , and the next-
nearest-neighbor hopping t ′ = t . In contrast to the spectral
function in the Néel AF in Fig. 4(a), the spectral function in
the stripe AF depends on spin. This is due to the fact that the
effect of the spin-flip transformation cannot be compensated
by a space-group operation in the stripe AF [see Fig. 1(c)].
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