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Spatial locality of electronic correlations in LiFeAs
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We address the question of the degree of spatial nonlocality of the self-energy in the iron-based super-
conductors, a subject which is receiving considerable attention. Using LiFeAs as a prototypical example, we
extract the self-energy from angular-resolved photoemission spectroscopy data. We use two distinct electronic
structure references: density functional theory in the local density approximation and linearized quasiparticle
self-consistent GW (LQSGW). We find that with the LQSGW reference, spatially local dynamical correlations
provide a consistent description of the experimental data, and account for some surprising aspects of the data
such as the substantial out-of-plane dispersion of the electron Fermi surface having dominant xz/yz character.
Hence, correlations effects can be separated into static nonlocal contributions well described by LQSGW and
dynamical local contributions. Hall effect and resistivity data are shown to be consistent with this description.
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I. INTRODUCTION

The origin of superconductivity in the iron pnictides and
chalcogenides is an outstanding open problem in condensed
matter physics [1]. Two opposite points of view have been pre-
sented. In the first one, superconductivity originates from the
exchange of spatially nonlocal antiferromagnetic (AFM) spin
fluctuations [2–4] and nonlocal correlations are also essential
in the normal state [5–8]. The second one posits a more local
pairing due to Hund’s coupling [9–13], which in turn requires
a rather local picture of the normal state.

Answering this question requires a proper understanding
of the degree of spatial locality of electronic correlations in
the normal state. This has been addressed previously by a
comparison of theoretical calculations to experiments. Some
results favor the local picture [14–22] while others support the
nonlocal view [5,6,23–25].

Here, we take a different approach and address this ques-
tion by a direct examination of experimental data from
angle-resolved photoemission spectroscopy (ARPES), fol-
lowing the approach which was successful for Sr2RuO4 [26].
We consider LiFeAs [27], a prototypical iron-based supercon-
ductor which is free from magnetic and nematic instabilities
and which has been intensively studied for more than a decade
[7,14,18], and use the experimentally measured quasiparti-
cle dispersions for the different Fermi surface (FS) sheets
to determine the self-energy and assess its degree of spatial
locality.

*garix.minjae.kim@gmail.com

Our results offer a solution to the local vs nonlocal
conundrum [28]. We find that the electronic self-energy
can be separated, to a good approximation, into a nonlo-
cal part which is frequency independent, and a dynamical
(frequency-dependent) part which is spatially local to a good
approximation. The nonlocal part can be incorporated in the
reference Hamiltonian with respect to which the dynamical
self-energy is defined, and we show that the quasiparticle
GW approximation [29–31] provides a good starting point to
that effect. These findings are in line with previous work by
Tomczak et al. [22,29], but we emphasize that our conclusions
are established directly from experimental observations, once
the proper reference Hamiltonian to define self-energies is
used. This finding rationalizes the success of dynamical mean-
field theory (DMFT) [32,33] for these materials [14,34,35],
and emphasizes GW+DMFT as a method of choice in this
context [22,29,36].

II. METHOD

Ignoring photoemission matrix elements, extrinsic and sur-
face effects, we relate the measured photoemission spectra to
the spectral function associated with the one-particle Green’s
function:

G(k, ω) = [ω · I − H (k) − �(k, ω)]−1
mσ,m′σ ′ . (1)

In this expression, H (k) is a reference Hamiltonian matrix
expressed in a localized basis of orbitals m, σ (σ is the spin
index), ω is the frequency, and k is the wave vector in the
Brillouin zone. �(k, ω) is the self-energy matrix for the given
reference Hamiltonian H (k). The chemical potential is in-
cluded in H (k).
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FIG. 1. (a) Fermi surfaces of LDA (black) and LQSGW (red)
in the �-M-A-Z plane. (b) Same as (a) for the LDA+nonlocal �

Ansatz with kz = 0.00 for the hole bands fit and kz = 0.35 for the
electron bands fit. (c) Same as (a) for the LDA+local � Ansatz
with kz = 0.00 for the hole bands fit and kz = 0.35 for the electron
bands fit. (d) Same as (a) for the LQSGW+nonlocal � Ansatz with
kz = 0.00 for the hole bands fit and kz = 0.55 for the electron bands
fit. Red and blue dots are the δ and γ Fermi surfaces measured with
ARPES in Ref. [44]. The ARPES data for fitting (b)–(d) is taken from
Refs. [20,45]. See Table I for Fermi surface volumes.

We consider two different choices for the reference Hamil-
tonian H (k). The first is the Kohn-Sham Hamiltonian obtained
from density-functional theory in the local density approx-
imation (DFT-LDA) using the WIEN2K software package
[37,38]. The second is the quasiparticle Hamiltonian obtained
from the linearized quasiparticle self-consistent GW method
(LQSGW) using the FLAPWMBPT code [30,31]. For the lo-
calized basis set (mσ ), we calculate maximally localized
Wannier functions [39,40] in a wide energy window includ-
ing Fe(d) and As(p) orbitals, using the WANNIER90 [41],
WIEN2WANNIER [42], and COMDMFT [36] packages [see the
Supplemental Material (SM) [43]]. We take the spin-orbit
coupling (SOC) to be local and present only on iron atoms
(see SM [43]).

We first discuss the electronic structure associated with
H (k), i.e., in the absence of the self-energy. In Fig. 1(a), we
compare the FS of DFT-LDA to that of LQSGW. The LQSGW
FS clearly displays a significant shrinking of the xz/yz domi-
nated hole/electron pockets, α′, α, and δ sheets in comparison
to LDA, as pointed out in previous work [5,22,29]. This is
because nonlocal electronic interactions are more prominently
taken into account in the LQSGW, resulting in a repulsion of
the bands between α (α′) and δ. The shrinking of these FS
pockets from LDA to LQSGW is also apparent from Table I,
in which we compare the volumes of the different FS sheets
between the two methods. The net difference between all
electron and hole FS volumes is also indicated and, for both
methods, adds up to zero within error bars as required by the
Luttinger theorem.

The procedure for extracting the self-energy from ARPES
data follows Ref. [26] for Sr2RuO4. From a theoretical
viewpoint, the dispersions of the different branches of quasi-
particles are the solutions of det[ω − H (k) − Re�(k, ω)] = 0
(neglecting the lifetime effects associated with Im�). We

TABLE I. The net Fermi surface volumes, V electron
FS,total -V hole

FS,total, and
Fermi surface volumes of each sheet (electrons/unit cell) in (a) the
LDA, (b) the LDA+nonlocal � Ansatz (kz = 0.00 for fitting of hole
bands and kz = 0.35 for fitting of electron bands), (c) the LDA+local
� Ansatz (kz = 0.00 for fitting of hole bands and kz = 0.35 for fitting
of electron bands), (d) the LQSGW, and (e) the LQSGW+nonlocal
� Ansatz (kz = 0.00 for fitting of hole bands and kz = 0.55 for fitting
of electron bands). 0.02–0.03 (electrons/unit cell) in the net Fermi
surface volume is the numerical uncertainty.

α′ α β γ δ Net

LDA 0.01 0.14 0.33 0.18 0.28 −0.02
LDA+nonlocal � 0.00 0.08 0.37 0.23 0.39 +0.17
LDA+local � 0.00 0.06 0.36 0.19 0.35 +0.12
LQSGW 0.00 0.08 0.35 0.20 0.21 −0.03
LQSGW+nonlocal � 0.00 0.05 0.36 0.20 0.26 +0.04

use the measured positions of the maximum of the mo-
mentum distribution curves (MDCs) associated with several
quasiparticle bands, for a given binding energy ω, as an in-
put to this equation which is then solved by a numerical
root-finding procedure for the real part of the self-energy
(for details of the procedure, see SM [43]).

To facilitate the determination of �, we restrict its func-
tional form as follows. We assume that, in the local orbital
basis, it is independent of the out-of-plane momentum kz

and that the off-diagonal (interorbital) matrix elements are
absorbed into the renormalization of the SOC [46–48]. Two
different Ansätze are made for the in-plane momentum depen-
dence. (i) The self-energy components are simply assumed to
be independent of momentum—we refer to this as the “local
� Ansatz.” (ii) The Brillouin zone is divided into two patches,
centered around the � and M points, respectively, as illus-
trated in Fig. 2, and a more flexible momentum dependence
is allowed which is piecewise constant in each patch. We refer

FIG. 2. (a) Patching of the Brillouin zone for the nonlocal �

Ansatz of LiFeAs. The solid line delimits the principal Brillouin
zone (two irons in a unit cell), and the dashed lines indicate the
patching used in the nonlocal � Ansatz. The patch centered on
K = � (respectively, K = M) is colored in red (respectively, blue).
Schematic Fermi surfaces are represented by colored solid lines.
Hole pockets are in blue: α (inner) and β (outer). Electron pockets
are in red: δ (outer) and γ (inner). (b) Two-dimensional unit cell and
the momentum qAFM ≈ M associated with AFM correlations [50].
The AFM-correlated Fe moments are schematized by the blue and
red arrows, with Fe+ and Fe− denoting the two Fe atoms in the unit
cell.
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to this Ansatz as the “nonlocal � Ansatz” It corresponds to a
two-site dynamical cluster approximation which is a cluster
extension of the DMFT [49]. These two Ansätze thus read
(see SM for details [43])

local � Ansatz: �m(k, ω) = �m(ω), (2)

nonlocal � Ansatz: �m(k, ω) = �m(�,ω) if k ∈ �

= �m(M, ω) if k ∈ M. (3)

The components of the self-energy within the nonlocal �

Ansatz are obtained by fitting the experimental hole bands
at K = � and electron bands at K = M separately. We also
note that this Ansatz is physically motivated by the AFM
wave vector of spin fluctuations and corresponding Brillouin
zone folding [Fig. 2(b)] [50]. We emphasize that these Ansätze
are made for the components of the self-energy expressed in
the basis of local orbitals. The transformation to the quasi-
particle (band) basis is momentum dependent and leads to
significant momentum dependence of the self-energy in that
basis even if a DMFT Ansatz is made (see also Ref. [26]).

The assignment of kz from ARPES has uncertainties [51].
In our case, experiment constraints kz around the electron
pockets are in the interval [0.3,0.7] while for the hole pock-
ets, there is little uncertainty that the data arise from kz = 0
[45] (see SM [43]). For the electron pockets, we considered
two different ways to infer kz. (i) The first is to require that
the Fermi surface volume satisfies Luttinger’s theorem, as
obtained by a full Brillouin zone integration and assuming
that the self-energy does not depend on kz. As it turns out,
for electron pockets, a unique value of kz � 0.55 satisfies this
constraint for both Ansätze. (ii) The second one determines
kz by requesting that the resulting self-energy is as local as
possible. This leads to kz = 0.35 for the LDA+nonlocal �

Ansatz and kz = 0.55 for the LQSGW+nonlocal � Ansatz
(see SM [43]). Note that in that case, Luttinger’s theorem is
violated within the LDA+nonlocal � Ansatz, while the value
kz = 0.55 ensures both Luttinger’s theorem and maximal lo-
cality when using the LQSGW reference.

III. RESULTS

Our main results are summarized in Figs. 1(b)–1(d), 3,
and Tables I and II. The full frequency dependence of the
self-energies extracted from the procedure described above is
displayed in Fig. S5 in the SM [43]. All results were obtained
using the ARPES data of Refs. [20,45], and are displayed in
Fig. 3 [52]. The low-energy behavior of the fitted self-energies
is characterized by the zero-frequency (static) values �m(0),

as well as the quasiparticle weights Zm = [1 − ∂�m
∂ω

|ω=0]
−1

,
displayed in Table II. Comparing the values obtained within
the nonlocal � Ansatz for the � and M BZ patches, we
see that, when starting from LDA, the static components of
the self-energy are spatially local to a good approximation
for the xz/yz orbitals, while a higher degree of momen-
tum dependence holds for the xy orbital. The quasiparticle
weight associated with the xy orbital is found to be weakly
momentum dependent, while stronger momentum depen-
dence is found for the xz/yz orbital. This strong momentum
dependence of the dynamical self-energy of the xz/yz orbitals

FIG. 3. Comparison between the ARPES data of Refs. [20,45]
for LiFeAs (color intensity map) with different polarizations (π
and σ ) and the quasiparticle dispersions obtained with the differ-
ent Ansätze discussed in the text. The results of LDA+local �,
LDA+nonlocal �, and LQSGW+nonlocal � Ansätze are shown
in panels (a), (d), and (g), (b), (e), and (h), and (c), (f), and (i),
respectively. The hole pocket data are taken at kz = 0.00 and the
electron pockets data are taken at a value of kz within the range of
[0.3, 0.7] [20,45]. The blue ellipses are theoretical error estimates
arising from the width of the MDC peak and the uncertainty in kz. For
the electron bands, kz = 0.55 has been used in the fit using LQSGW
as a reference, while kz = 0.35 when using LDA as a reference (see
main text).

has been discussed in Refs. [5,6,19,25] in relation to the strong
coupling of the quasiparticles of the xz/yz driven α and α′
holelike FS sheets to the existing AFM correlation in LiFeAs
[50]. Indeed, these FS sheets are close to the AFM zone
boundary. The values of the quasiparticle weights obtained
here [0.15 (�), 0.12 (M) for xy and 0.25 (�), 0.16 (M) for
xz/yz], are smaller than that of the computed LDA+DMFT
values reported in Refs. [14,16,20] (Zxy = 0.26 and Zxz/yz =
0.34). They are, however, close to the values (0.17–0.19)
reported by de Haas–van Alphen experiments [53].

Table II also displays the results obtained by using a local
Ansatz for the self-energies. As seen there, the values of the
quasiparticle weights are intermediate between the values at
the � and M points obtained within the nonlocal Ansatz.

Figures 1(b) and 1(c) display how the FS is modified by
self-energy effects when using LDA as a starting point. Table I
reports the corresponding volume of each FS sheet. We see
that both the local and nonlocal Ansätze lead to a violation of
the Luttinger theorem, when the value kz = 0.35 is used for
the fitting of electron bands. This is mostly due to the large
volume obtained for the δ sheet, which crosses the γ sheet at
a low value of kz ≈ 0.05 leading to a too large electronlike
contribution.
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TABLE II. Zero-frequency self-energy [�m(K, 0)] and quasipar-
ticle residue [Zm(K )] extracted from ARPES data of LiFeAs [20,45],
with the LDA+nonlocal � Ansatz, the LQSGW+nonlocal � Ansatz,
and the LDA+local � Ansatz. We use kz = 0.00 for K = � (hole
sheets) for both the LDA and the LQSGW references, kz = 0.35
for K = M (electron sheets) for the LDA reference, and kz = 0.55
for K = M (electron sheets), for the LQSGW reference. Error bars
(total) are computed from the peak width of both in-plane k and
out-of-plane kz. (See SM for the details on the definition of the error
bars [43].)

LDA+nonlocal � Ansatz

�m(�, 0) (eV) Zm(�) �m(M, 0) (eV) Zm(M)
xy 0.029±0.025 0.15±0.01 −0.130 ± 0.062 0.12±0.01
xz/yz −0.083 ± 0.040 0.25±0.13 −0.113 ± 0.026 0.16±0.03

LDA+local � Ansatz

�m(0) (eV) Zm

xy 0.023 0.14
xz/yz −0.112 0.17

LQSGW+nonlocal � Ansatz

�m(�, 0) (eV) Zm(�) �m(M, 0) (eV) Zm(M)
xy 0.002±0.014 0.21±0.01 0.044±0.036 0.18±0.01
xz/yz −0.027 ± 0.003 0.38±0.01 −0.051 ± 0.114 0.30±0.04

We now turn to the results of the self-energy obtained by
using LQSGW for the reference Hamiltonian, using kz = 0.55
in this case when fitting the electron bands around M. The
results in Table II clearly show that the fitted values of both
�m(0) and Zm are quite momentum independent (spatially
local) within the determined error bars. Some slight momen-
tum dependence of Zxz/yz is found, however (∼0.38 at the
� point vs ∼0.30 at the M point), close to the limit set by
error bars (see Fig. S5 of the SM [43] for the full frequency
dependence of the extracted self-energies). Furthermore the
Luttinger theorem is now well obeyed (Table I). This is due in
particular to the much smaller inflation of the volume of the γ

and δ sheets by self-energy effects, in comparison to the LDA
starting point. Correspondingly, the crossing point between
the γ and δ sheets occurs at a larger value of kz [Fig. 1(d)].

Comparing to available experimental data, we see that the
LQSGW reference combined with a quasilocal self-energy
provides (i) a good description of the kz-dependent hole band
(α′, α, and β) dispersions in comparison to the ARPES data
of Refs. [20,54] (see SM [43] for comparison), (ii) a good de-
scription of the kz-dependent γ FS in ARPES of Refs. [44,55],
and (iii) a qualitative description of the kz-dependent δ FS in
ARPES with correct kz for the crossing of the δ and γ FSs and
somewhat larger curvature of the δ FS near the momentum of
A of Refs. [44,45]. Figure 1(d) implies that for electron bands,
the overall amplitude of kz-dependent variation of the δ and γ

FSs in the LQSGW+ fit is consistent with the ARPES data of
Ref. [44].

We compare in Figs. 3(a)–3(c) the experimental ARPES
intensity to the fitted hole bands of LiFeAs using the different
starting points H (k) and Ansatz for �. For the xy dominant
β band, all schemes compare well with ARPES. In contrast,
we observe some differences between the different Ansätze
(comparable to error bars) for the position of the top of the

α band with dominant xz/yz character. The LDA+local �

Ansatz leads to a lower energy than the LDA+nonlocal �

Ansatz and the LQSGW+nonlocal � Ansatz. The splitting of
the states with xz/yz character at the � point is controlled by
the SOC and given by λZxz/yz [46]. Its experimental value is
9.5–11.4 meV [56,57]. The values of λ in LDA and LQSGW
are 50 and 25 meV, respectively, which when multiplied by
the extracted Z’s from Table II, indeed leads to values close to
10 meV in both cases (see SM for details on the effect of SOC
in LiFeAs [43]).

We now turn to the electron bands in Figs. 3(d)–3(i). Along
the �-M direction, the γ band has almost pure xy character,
and is seen in σ polarized ARPES. This γ band is well
described by both the nonlocal Ansatz and the local Ansatz
within both references (LDA and LQSGW) [see Figs. 3(g)–
3(i)]. For the xz/yz dominant δ band, the LDA+nonlocal �

Ansatz and the LQSGW+nonlocal � Ansatz yield quasipar-
ticle spectra which are consistent with ARPES within error
bars as shown in Figs. 3(e) and 3(f). However, differences
between the fits are seen for the xz/yz driven δ band with the
LDA+local � Ansatz having a steeper dispersion and a lower
bottom than the nonlocal � Ansatz, as seen in Figs. 3(d)–3(f).
Also, as noted in Table I and Figs. 1(b) and 1(c), this fit
violates the Luttinger theorem.

In summary, our analysis demonstrates that an LQSGW
reference [29,36,58] in combination with quite local self-
energies provides a description of the quasiparticle disper-
sions of LiFeAs in good agreement with experiments. The
strong dispersion along kz of the α and δ FS sheets, unique to
the 111 compounds, is also well described, although the latter
is slightly overestimated. Hence, correlation effects can be de-
composed into nonlocal, frequency-independent contributions
captured by the LQSGW and dynamical frequency-dependent
contributions that are spatially local to a good approximation.
In contrast, when using LDA as a reference, the extracted
self-energy is spatially nonlocal and, when taken to be kz

independent, leads to an overestimation of the volume of the
FS δ sheet and a corresponding violation of the Luttinger
theorem. We emphasize that, in contrast to theories attributing
nonlocality to AFM spin fluctuations, the nonlocality in the
LQSGW approach originates from the charge sector.

We finally turn to transport measurements, as reported in
Ref. [59], and investigate whether our LQSGW+local � anal-
ysis is consistent with those data. Using the occupancies of the
different FS sheets obtained above, we use the experimental
data for the resistivity and Hall effect to obtain the scattering
rates associated with each orbital component, as a function
of temperature, under the assumption that they are spatially
local. The conclusion of this analysis (see details in SM [43])
is that the xy orbital is found to have a larger scattering rate
than the xz/yz one, and that it undergoes a clear crossover at
T ∼ 150 K between a high-T incoherent regime to a low-T
coherent one. This is consistent with the LQSGW+local �

finding that the xy orbital is the more correlated one. At low
T both scattering rates are found to have a Fermi liquid T 2

behavior. As a consistency check, we also obtain satisfactory
agreement with the magnetoresistance data. Let us emphasize
that, in contrast, studies emphasizing nonlocality due to low-
energy AFM fluctuations yield a non-Fermi-liquid scattering
rate of the xz/yz orbital which is larger than that of xy [5,6].
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Several authors have pointed at some discrepancies be-
tween experimental data and the predictions of LDA+DMFT,
which is usually interpreted as a failure of the DMFT to
take into account nonlocal effects [5,6,24,25,60]. Here, based
on a direct analysis of ARPES experimental data, we pre-
sented a very different picture, consistent with the electronic
structure+DMFT conceptual framework. We have shown that
when we start from the LQSGW reference Hamiltonian,
the low-energy self-energy is spatially local, satisfies Lut-
tinger’s theorem, describes available experimental data well,
and therefore is an attractive platform to study how supercon-
ductivity emerges at lower temperatures [9,11–13,15,18].

Note added in proof. We became aware of a related work by
T. Gorni et al. [61], which shows that the approximation of the
electronic correlations, separated into static nonlocal contribu-
tions and dynamical local contributions, has a validity in the
description of the electronic structure of another iron-based
superconductor, FeSe, supporting the general conclusion of
this paper.
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