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Proposal for methods to measure the octupole susceptibility in certain cubic Pr compounds
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Direct means of measuring the susceptibility toward an octupole order parameter are proposed via a sixth-
rank tensor property. Equivalent derivatives of more conventionally measured tensor properties, including elastic
stiffness, magnetic susceptibility, and elastoresistivity, are written in full, as constrained by the symmetry of
the experimentally motivated O, point group. For simplicity, we consider the specific case of Pr** ions in a
cubic point symmetry with a I'; crystal-field ground state, but the ideas are somewhat general. The experimental
feasibility of measuring these various derivatives of tensor quantities is discussed.
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I. INTRODUCTION

Quantum states of localized electrons can have a variety
of well-defined electromagnetic multipole moments; indeed,
within higher angular-momentum states, particularly those
that often arise from f-orbitals, higher-order multipolar mo-
ments frequently have some nonzero expectation value in
the presence of simple magnetic (dipole) order. Of course,
multipolar moments are subject to higher-order interactions
among themselves, and they can thus order independently of
any dipole moment, but this is uncommon: the dipole typically
dominates in energy scale whenever a variety of multipoles
are present or allowed. This motivates the use of the associated
multipole susceptibility as a powerful tool for analyzing these
higher-order multipoles, as the strength and character of spe-
cific multipolar interactions can be probed without requiring a
simple ordered state of such a multipole. For higher-rank mul-
tipoles, however, it is a nontrivial task to relate the multipole
susceptibility to physically measurable quantities.

It is well established that a (¢ = 0) magnetic suscepti-
bility may be measured via an applied uniform magnetic
field. Specifically, a magnetic field couples bilinearly to the
magnetization (magnetic dipole moments per unit volume),
and hence it is an appropriate conjugate field. Similarly, an-
tisymmetric strain couples bilinearly to electric quadrupoles,
providing access to the quadrupole strain susceptibility [1].
Here, we focus on the magnetic octupole, the next in the
multipole series [2].

Magnetic octupole order has been proposed for many f-
orbital systems, but it is often hard to verify or probe directly
[3-5]. Given the time-reversal symmetry breaking inherent in
a magnetic moment (of any rank), a bilinear coupling of an
octupole to strain, like that of the electric quadrupole, is not
possible; similarly, a magnetic field will couple bilinearly only
to the magnetic dipole moments, with symmetry forbidding a
bilinear octupole coupling. As shown in the work of Patri et al.
[6], however, the combination of the two provides a conjugate

2469-9950/2021/103(15)/155106(11)

155106-1

field which, by symmetry, can couple directly to the octupole,
allowing one to define and measure a susceptibility. This
susceptibility most naturally manifests itself in a sixth-rank
tensor, in contrast to the second-rank (magnetic suscepti-
bility) tensor for dipoles and the various fourth-rank tensor
components representative of quadrupole susceptibilities; the
octupole susceptibility can thus be measured independently
of the behavior of the lower-order multipoles in the system, at
least under certain restrictions.

Measurement of an octupole susceptibility is then possible
whenever the specifics of the system render it finite, but it
may be quite difficult if lower-order multipoles are present.
In particular, lower-order terms in a material’s tensor proper-
ties invoking the strain or magnetic field individually could
potentially drown out any higher-order effects associated with
the octupolar degrees of freedom. Thus, the use of Neumann’s
principle [7] to significantly constrain the symmetry-allowed
tensor terms is motivated, as terms can potentially be identi-
fied that have fewer lower-order components or other possible
experimental impediments.

Furthermore, we choose to restrict our focus to intermetal-
lic compounds with Pr’* jons in a cubic point symmetry,
and for which the crystalline electric field ground state is a
I'; doublet. The specific symmetries of this system forbid all
magnetic dipoles and three of the five electric quadrupoles,
allowing the octupole’s conjugate field to be applied without
inducing any lower-order multipoles. This system has been
theoretically shown to allow and potentially favor an octupole
order parameter [6], and it has been experimentally shown to
order in a manner suggestive of an octupole order parameter
[6,8]. Further compounds with the same crystalline electric
field ground state have various exotic behaviors [9,10]; these
may not have explicit octupole phases, but they may have
relevant octupolar fluctuations that could be probed via a
susceptibility. A measurement of the octupole susceptibility
is then of interest and almost certainly feasible for a variety of
compounds with this I'; doublet ground state.

©2021 American Physical Society
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TABLE I. Effects of various mirror planes (o) and rotations (C)
contained in O, on a generic second-rank tensor.

Symmetry Effect(s) Implied equality
Oi = —i Fj=—-F;=0)
Oizxj i—>Fj—>i F;=Fj
Cu i—> j——i Fij = —Fj
C3(111) l—)]—)k—)l Fiszjk

Thus, herein we propose and elucidate the measurement
of various tensor components to identify the associated
susceptibility of a given octupole, separating it from the
susceptibilities of other multipoles and probing interaction
strengths of the octupole directly.

II. BACKGROUND
A. Introduction to the O, point group

While any cubic point group can give rise to a I'; doublet
ground state, the most prominent experimentally realized case
for an octupole order parameter has an Oy, point group [8,11].
The O, point group, being the most highly symmetric cubic
point group, contains 48 symmetry elements, many of which
are redundant in constraining the various tensor properties
(see Appendix A for a full list of symmetries via a character
table). A convenient, less redundant basis to work in is then
shown in Table I, where o; represents a mirror plane defined
by the i axis, C,; represents an x-fold rotation about the i axis,
and F;; represents some generic second-rank material property
tensor.

These symmetry elements of the point group place con-
straints on tensor properties of the material via Neumann’s
principle: the tensor properties must be invariant under the
symmetry operations of the point group. In the absence of
perturbative fields, these are calculated trivially by applying
the symmetries to a given tensor element and observing how
they affect the various indices; for example, under Cs(i11)
rotation, x — y, SO

Fo = Guinkx = Fy,
F;rx = Lyy. (1)

Additional examples are shown in Table I. The presence of
additional perturbative fields, such as a magnetic field in the
elastic tensors or elastic strains in the magnetic susceptibility,
breaks the symmetries of the material and allows otherwise
forbidden terms. This can be accounted for by simply in-
corporating the symmetry transformations of the perturbative
fields [12]. The symmetries of the strain tensor and magnetic
field are then relevant to all other tensors, and worth some
brief discussion. The strain tensor is defined in a manifestly
symmetric manner,

o, By
3)Cj axi ’

€ij = ()
where w; represents the displacement of an atom along the i
axis from the unstrained position x;. The inherent symmetry
of the strain tensor then requires €;; = €;;, but otherwise ele-
ments of the strain tensor will transform similarly to any other

tensor, via applications of the symmetry operations to their
indices [13]. Magnetic field, on the other hand, is a pseudovec-
tor, invariant under inversion; thus, it transforms as expected
under the various rotations, but under mirror planes, which
can be considered as a combined rotation and inversion, it ef-
fectively experiences only the rotation. Hence, oy (H,, Hy, H;)
yields (H, —H,, —H.), for example, in contrast to an arbitrary
normal vector o,(A,, Ay, A;) = (—Ay, Ay, A;). One can see
the effect of these external fields with a brief example: without
a magnetic field, for instance, one sees

Fyy = Gy Fyy = —Fy,

ny = _Fyx,
Ox:yF;cy = Oxzy(_F;'x) = _F;cya
ny = _ny =0, 3

i.e., Xxy (and, by similar symmetries, all x;; terms for i # j)
is constrained to be 0. However, introducing a magnetic-field
dependency to these terms yields

C4Zny(Hz) = _F;fx(Hz)v
Ux:y[_FSJx(HZ)] = _ny(_HZ)7
Ox:yc4zny(Hz) = Ecy(Hz) = _F;ry(_Hz) 4)

Thus, F,, is no longer constrained to be zero, but merely
constrained to be odd in H, the external field that breaks
the symmetry (oy—,) that constrained it to be zero. Terms
constrained to be equal in the absence of perturbative fields
can have dependencies in fields with a slight variation in sign
and ordering, but they will maintain identical sets of coef-
ficients; for example, while F,, = F;; without field, F;.(H,)
need not be identical to F,(H,), but it must instead be
identical to Fy,(H;) (via C3(111)), leaving the two terms with
identical, if differently ordered, sets of coefficients. Similarly,
using the above example, Fy,(H,) = —F(H;), implying Fy,
and F,, will have the same linear H, coefficients, but with
opposite sign. These symmetry principles will be used in
Sec. III to determine allowed terms in several higher rank
tensors. Complete descriptions of how these symmetries apply
to the various tensors examined in the text can be found in
Appendix B.

B. The I'; doublet

While strong spin-orbit coupling among local 4 f electrons
often makes J a good quantum number, the crystalline electric
field (CEF) splitting in 4 f materials can substantially reduce
the number of available states within a given J multiplet, at
least in a low-temperature regime. One of these CEF eigen-
states, the I'; doublet, is generally present in cubic systems,
but is rarely the ground state, meaning it cannot often be
experimentally isolated. However, calculations have shown
that in the special case J = 4, associated with the Pr*t ion
(with the 4f 2 orbital) [14], the doublet is a potential ground
state [15].

The Pr’** ions in the most prominent octupole case exist
on a diamond lattice [11], so the symmetry of the CEF eigen-
states is determined by the 7, point group, as this is the local
symmetry an individual ion experiences. The I'; doublet, with
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basis states (in J = 4), is then given by

1 7 5 7
I?)=5<J;M>—J;w»+/é—®>,

r® = L2 +1-2)). 5
3 70 12) +1-2) &)
As a two-state space, this can be treated as a pseudospin
[6], and analogously three operators can potentially split the
doublet and create a finite order parameter. Group theory
decomposition of the doublet in 7; suggests the symmetry of
the allowed operators:

=@ HLeTl. (6)

Thus, of the three operators that would act as Pauli matrices in
this pseudo-half-spin two-state space, two have the symmetry
of I'3 (E) and one has I'; (A;) symmetry. One might thus
expect one of these operators to break time-reversal symmetry
analogously to the Pauli S, matrix, and indeed the lowest-
order multipole of I'; symmetry is then time-reversal odd.
Thus, from the angular-momentum operators J,, J,, J; and
their various products (the Stevens operators), the allowed
order parameters are represented by two time-reversal-even
quadrupole operators of I'; symmetry

0t =L@ -7),
0= (@121~ 1), )

and one time-reversal-odd octupole operator of A, symmetry

V15
Txyz = T*]x-[yjz’ (®)

where J,J,J; denotes all permutations of the indices x, y, z,
i.e., a six-term object. In typical pseudospin fashion, one
can note the eigenstates of the three operators in the afore-
mentioned basis: Fé” and F;z) for 0(2’, F;l) + 1"_%2) for O%,
and Fgl) =+ iFéz) for 7. It can then be noted that none
of these three operators represents and/or commutes with
a magnetic dipole operator. Indeed, in 7; and other cubic
point groups, magnetic dipoles belong to a triply degenerate
I'y (T7) irreducible representation, an object that, as seen in
the group theory decomposition, one cannot construct from
the two I's (E) basis states. More intuitively, this can be
explained by the I'; doublet basis states F;l) and F§2) both
having three (primary-axis) C, rotational symmetries, which
are universally broken by a dipole order parameter. Thus,
cubic praseodymium compounds are of particular interest
in the study of higher-order multipoles, as they provide the
opportunity to directly probe time-reversal-odd octupolar sig-
natures without (magnetic) dipole signatures; dipole moments
are forbidden, to the extent that the energy separation between
the I'; CEF ground state and any triplet excited states is large
relative to the temperature and/or magnetic field.

C. Defining an octupole susceptibility

Given the presence of a potential octupolar moment, the
natural question is how best to access it experimentally. As

was noted by Patri er al. [6], an octupolar susceptibility can
easily be defined for a variety of potential order parameters.
Here we choose to focus on a ¢ =0 order parameter, as
this presents the most experimentally accessible possibility.
It is also, however, of interest for a broader set of potential
order parameters; analogously to the magnetic case, finite-g
octupole order parameters would likely appear via a sharp
feature of some kind in the ¢ = 0 octupole susceptibility at
or near the relevant ordering temperature.

Based on the symmetry properties of the t,,, octupole,
one can quickly note that a time-reversal-odd conjugate field
would be necessary to couple to it. Utilizing two experimen-
tally common external fields, strain and magnetic field, it can
couple bilinearly to two objects, Hye,, + Hye,, + H €., and
H.H,H, [16] (here these are considered uniform, but a finite-q
order parameter could be coupled to via similar but staggered
fields). Choosing to focus on the former for the moment, one
might then expect that application of this field

He = Hcey, + Hye o + Ho ey, )

could induce a finite octupolar moment in an originally un-
ordered state,

0= (Txyz>: (10)
and one could thus define a susceptibility
200
= . 11
Xo =3 Ho) (11)

Here it is worth noting that the octupole has thus far
been examined in the 7; point group corresponding to the
local symmetry of the 4 f ion, while discussion on material
properties has centered on the O, point group of the specific
material (wherein the Pr sites sit on a diamond lattice [11]),
which defines the symmetries of the material’s tensor proper-
ties. Given that the chosen coupling field will only induce a
ferro-octupolar order parameter, one can note that, while an
individual octupole has I'; symmetry in 7y, a pair of aligned
octupoles on the two independent ion sites in the greater Oy
unit cell correspond to a F; symmetry [17]. Thus, for O, and
for a susceptibility as has been described, the order parameter
and conjugate field can be more specifically defined as being
F;r . More broadly, it can be seen that, given the basis states
are invariant under inversion (to within an overall phase), and
all three operators are similarly invariant, any ferroaligned
I'3 order parameter in 7; will couple as I'y in the larger Oy,
unit cell [18] (I';” objects can couple bilinearly only to non-
ferro-aligned I'; order parameters, which break the inversion
symmetry of the larger Oy, cell).

D. Basic Landau theory

With this He-type conjugate field, a motivational, simpli-
fied model can be established by looking purely at a potential
octupolar order parameter. This choice of longitudinal field
does leave the aforementioned issues: strain, a second-rank
tensor, can couple to a quadrupole moment, while a magnetic
field can couple to a magnetic dipole, leaving any octupole
interactions potentially masked. Here we again take advan-
tage of the I'; doublet: the two I'; quadrupole moments
couple bilinearly only to the two I'3 strains, €, — €,, and
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2€,, — €y — €y, While the ¢;; strains present in the octupole
conjugate field are of I'Y type; they can couple to quadrupoles,
but only to the I' -type quadrupoles, which are, like the afore-
mentioned magnetic dipoles, forbidden to the extent that the
CEF gap is large relative to temperature and strain. Thus, no
CEF-allowed multipoles will couple with any of the objects
within the octupole conjugate field, allowing one to safely
write a lowest-order free energy for just the octupole moment
without ignoring any cross-coupling terms not already “for-
bidden” by the CEF splitting:

a Cz(t)4 2 2 2
F=20"—iHe)O + T(GX), te.+e), (12

where a is then assumed to be of the standard form ay(T — 6),
so as to allow for a continuous octupole phase transition, and
C3, is the unrenormalized elastic stiffness.

Assuming the case of a controlled conjugate field [19], one
can then note that minimizing free energy requires a finite
order parameter,

MHe
0=

a

, (13)

thus allowing one to solve for the octupole susceptibility

do A

= =— (14)
d(HeE) |y ao(T —0)

Xo

Presuming a temperature-independent coupling of the mo-
ment and the field A, the octupole susceptibility may then
follow a simple Curie-Weiss functional form, particularly in
systems with a tendency toward an explicit octupole order-
ing. More generally (i.e., beyond just I'; doublet cases), this
can be taken as the primary proof-of-existence of a measur-
able octupole susceptibility: more complicated temperature
dependencies will naturally arise from higher-order terms, but
they can do so both in systems with and without an inde-
pendent octupole, given other allowed terms invoking other
(biquadratic) multipole couplings. Any free-energy term of
the form H?e? (after minimization with respect to the vari-
ous order parameters) must either invoke the octupole or a
product of order parameters (a biquadratic dipole-quadrupole
coupling, for instance), and thus will have a more complicated
lowest-order temperature dependence, except for coincidental
cancellations. The I'; case is, of course, already simplified
by the necessary components of such a composite term,
the three magnetic dipoles and the xy/yz/zx quadrupoles,
requiring excited CEF states. A simple 1/(T —6) depen-
dence in the relevant free-energy term is then a reliable
indicator of an independent octupolar order parameter, or
one with a tendency to order in the absence of competing
phases.

One can then note that the octupole susceptibility, to within
some proportionality constant, can be extracted by taking
appropriate derivatives of the free energy:

9’F 22
=——. (15)
a(H 6)2 He—0 a

This presents the octupolar susceptibility as being pro-
portional to a term in a sixth-rank magnetoelastic tensor. Of

course, simpler and similar quantities also present themselves;
one can quickly note that a similar quantity (off by a factor
of 2) could be found by taking the derivatives separately,
and that %sz corresponds to the elastic stiffness tensor, while
g% corresponds to a magnetic susceptibility. We therefore
propose measuring the relevant sixth-rank tensor term, and
thus the (¢ = 0) octupole susceptibility, via field and/or strain
derivatives of more commonly measured tensor quantities; in
doing so, the more complicated sixth-rank tensor term can
be accessed by well-established and understood experimental
methods designed for various second- and fourth-rank tensor
quantities.

III. THERMODYNAMIC TENSORS

Thermodynamic quantities, i.e., quantities explicitly repre-
sentative of derivatives of the free energy, are the most direct
potential measurements to capture the octupolar susceptibil-
ity. Thus, the most obvious tensor quantities involving strain
and magnetic field, elastic stiffness, and magnetic susceptibil-
ity are herein enumerated.

It should be noted that all tensors herein are general for
the O, point group; while a given term within a tensor may
be of specific interest for the octupole here, the allowed and
disallowed terms, and their equalities, are a function solely of
the point group (and the definitions of the tensors), and not
the details of any given system. The symmetric constraints
which allow and/or disallow various terms are detailed in
Appendix B. Additionally, it should be noted that none of
the coefficients are implied to be equal across tensors, with
the exception of a handful of identically labeled coefficients
between the elastic stiffness and (strain-dependent) magnetic
susceptibility tensors.

A. Elastic stiffness tensor

The elastic stiffness tensor, defined by C;; i = %, rep-
resents the stress (i.e., force) necessary to produce a given set
of strains in a material. It inherits several symmetries from
its definition and that of the strain tensor, ¢;; = ‘;% + %’
Namely, the definition of the strain tensor requires that ¢;;,
and thus C;; 4, is invariant under exchange of i and j (or k and
1), while the definition of C;; x; requires it to be invariant under
exchange of ij and kl. These taken together motivate the use
of compactified Voigt notation rather than a full 9 x 9 matrix,
as many terms are exactly identical to their neighbors in such
a full construct (e.g., Cxyxy = Cryyx = Cyxxy = Cyx ).

Taking two field derivatives then reconstructs the de-
sired xo = 3(3[?6) %, and thus the field dependence
of the tensor is the primary point of interest. The afore-
mentioned inherent symmetries combined with those of
the point group leave three independent nonzero terms in
the absence of a magnetic field, with arbitrary magnetic
fields breaking the point-group symmetries and allowing
10 additional independent coefficients (to second order in
field), as can be seen in Table II. The As (yellow, diag-
onal boxes) and D3 (blue, off-diagonal boxes) coefficients
would then represent the desired direct probe of octupolar
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TABLE II. The full elastic stiffness tensor in Oy, in compactified Voigt notation and to second order in magnetic field, color-coded to

indicate which terms are identical.

XX yy b4 vz x Xy
XX
yy
2z
yz C44 + A5sz +
As(H} + H7)
x C +AsH}+
Ag(H? + H?)
Xy Cy +AsH +
A(H? 4 H})
susceptibility: couplings to field would be to H? — H;} and 2H? — H} — H}).
92F Thus, the remaining coefficients would correspond to CEF-
As = PHeD X X0, (16) forbidden multipoles, and would likely be small. In contrast,
( z‘efk) a field aligned along a single principal axis would have a
D; O°F X X0 (17) symmetry-allowed coupling to an allowed quadrupole, though

 O(Hiej)d(Hjex)

Practical considerations

A number of considerations present themselves in potential
measurements of the relevant coefficients. First, it should be
noted that while As is unconstrained in its sign by symmetry,
the octupole contribution to As would necessarily be negative,
or correspond to a softening of the lattice:

AM(He?  CY o, 2 2
T, T T(G’W tenten)
2 2772
°F 0 A2H]
— = .
0€; 7

F =

Cu =

(18)
a
In short, a finite field allows a finite octupole moment, and
thus a finite shear strain, to reduce the free energy, reducing
the energy cost associated with strain via the C, term and thus
making the lattice more susceptible to said strain, or softer.
As far as conducting the measurement, a [111]-oriented
field could be used to measure a combination of As and
D5 via intermixing the nine terms in the lower-right quad-
rant. The Ag coefficient would be induced, but is likely
small, as it corresponds to the lowest-order interaction of
CEF-forbidden octupoles, or a higher-order interaction invok-
ing CEF-forbidden quadrupoles and dipoles. Alternatively, a
[001] aligned magnetic field could be used for measuring a
specific elastic constant for the orthogonal shear plane. This,
however, would break the degeneracy typical of these three
coefficients, inducing the As term within only one (Cy,, for
H;), meaning the measurement may need to distinguish a
newly differentiated C;j;; from the still-equal Cjy jx and Cig..
Generally, associated changes in sound velocities/resonant
frequencies would likely invoke nearly all C and D coef-
ficients from Table II. However, assuming a [111]-oriented
magnetic field, all (field-dependent) contributions associated
with the allowed I's quadrupoles would cancel (the allowed

the coupling of this quadrupole and the field to shear strains
specifically would be higher order and not likely to be sig-
nificant. Field-independent effects from the I'; quadrupoles
would naturally remain, which would manifest via C;; — Cj,
or CY — C\9 using coefficients from Table II.

Lastly, it should be noted that the B; coefficients are con-
strained to be time-reversal odd/imaginary, and thus linear
contaminants would likely be either absent or out-of-phase
(and thus easily filtered).

B. Magnetic susceptibility tensor

Magnetic susceptibility, herein defined (in slight contrast
to convention, and for para-/diamagnetic states) via
*F aM;

M,
= X —
OH:dH, |, .,  0H,

0H;’

Xij (19)
is a frequently measured quantity, characterizing the linear
response of induced magnetic moment to external magnetic
field. While the octupole would not produce the simple dipole
response typically dominant in susceptibility, the dependence
of magnetic susceptibility (quadratically) on strain would give
an effective He conjugate field and recover xo = % «
3(82_5)2’ similarly to the aforementioned tensors.

For O;, symmetry, there is a single independent (nonzero)
term in the susceptibility tensor in the absence of strain, .
Externally induced strains introduce 12 additional indepen-

dent coefficients (to second order in strain). Thus, for i # j,
Xi = Xy + Eeii + F(ej; + ) + Are;
+A2(6]2~j + é,fk) + As€ii(€j; + €x)
+A4Ejj€kk + Ag (Glzj + Elzk) +A5€]2'k7 (20)

Xij = Geij + Da€jveji + Di€jjep + Daeij(ei +€55),  (21)

155106-5



M. E. SORENSEN AND I. R. FISHER

PHYSICAL REVIEW B 103, 155106 (2021)

where As and D3 again represent the desired coefficients
proportional to the octupole susceptibility, and

m respectively. As implied by the labeling, many

coefficients here are constrained by the definition of the
tensors (as derivatives of free energy) to be identical to coun-
terparts in the elastic stiffness tensor.

@°F
d(Hje i )*

Practical considerations

Two experimental configurations are suggested. First, to
recover the As coefficient, susceptibility could be measured
along any principal axis, while a shear strain is applied in a
plane perpendicular to said axis. The likely application of a
net compressive or tensile strain, as opposed to pure shear
strain, would induce several other coefficients. The E and
F' coefficients, in particular, would correspond to allowed
bilinear couplings of the I'; quadrupoles, but they are eas-
ily experimentally distinguished by their representing linear
strain dependencies (as opposed to quadratic). The rest are
unlikely to be large, given that they do not represent the
lowest-order allowed coupling to either allowed quadrupole.

Alternatively, the D3 coefficient could potentially be
measured by applying two simultaneous shear strains, and
measuring the transverse susceptibility using the two axes per-
pendicular to said shear strains. In practice, a simpler method
would be to use a [111]-aligned magnetic field and a [111]
uniaxial stress, inducing all three shear strains simultaneously
to measure a combination of As and D3. Unfortunately, this
would likely induce all the coefficients simultaneously, but
again they would likely be small compared to As and D3
given their connection to no multipoles and/or CEF-forbidden
multipoles (excepting potentially £ and F', which would again
distinguish themselves from the terms of interest by their
linearity in strain).

Many common measurements for magnetic susceptibility
involve centering a sample in a detection solenoid and varying
field (ac), or setting a field and moving a sample through a de-
tection solenoid (dc), to measure its moment via the response
in said solenoid. In either case, unexpected sample movement
relative to the detector would generate a spurious signal. Thus,
the use of dc strains is motivated, as effects of ac strains
would be very difficult to decouple from the effects of sample
movements (relative to a detector) that most strain-applying
techniques are likely to produce. Unfortunately, this means
the susceptibility would have to be measured as a function of
strain, with the zero-strain term presenting itself as a constant
background; measuring only the strain-dependent term, rather
than its sum with the zero-strain susceptibility, would require
ac strains. However, with the I'; doublet being nonmagnetic,
the strain-independent term should be both generally small
and not strongly enhanced by low temperatures, potentially
allowing easily realized strains to drive the octupolar contri-
bution to dominance over any background. An experimental
apparatus capable of measuring magnetic moments while
compensating for the effects of sample movement, via care-
ful strain application or a detector with significant positional
tolerance (perhaps an optical probe or a detector mounted on
the strain cell, for instance), may then further apply ac strain
and ac magnetic field; an octupole susceptibility could then

be isolated from much of the background by measuring the
component of the magnetic moment varying with the sum or
difference frequency of the strain and magnetic field frequen-
cies.

Lastly, it should be noted that controlling strain would be
a potential difficulty, as a measurable octupole susceptibil-
ity would lead to a softening of the shear mode with field.
Thus, application of constant stress would lead to increasing
strain with increasing field. Careful and direct measurement
of strain, or the use of a fairly small ac magnetic field for sus-
ceptibility measurements, could help mitigate this softening.

C. Nonlinear magnetic susceptibility

While not the primary focus of this paper, the aforemen-
tioned He product is not the unique lowest-order object the
octupole can couple to within the limits of strain and mag-
netic field; an object of identical symmetry can be constructed
simply with a cubic magnetic field term, H.H,H, [20]. Thus,
higher-order magnetization effects can often capture the same
information as strain dependencies. Using the same sus-
ceptibility definition (albeit without the H — 0 limit), but
expanding in magnetic field rather than in strain, five new
independent terms to fourth order are introduced for i # j,

X +AH? + B(H; + H}) + CH! + D(H} + H}')
+6DH} (H; + H}) + EH; Hf, (22)
Xij = 2BHH; + 2EH;H;H] + 4DH;H;(H} + H}), (23)
3°F
o (H H,H.)? "

of these coefficients are implied by symmetry to be identical
to any from the previous tensors.

where the E coefficient represents the desired None

Practical considerations

Experimentally, the obvious complication is that the high
fields potentially necessary to accurately fit a quartic or higher
function could render the higher CEF states relevant to the
result. Magnetic energy would become comparable to the
gap for fields of ~15-30 T depending on the material (likely
~0.42 T/K for a given CEF gap, which is in the 40-60 K
range [8]).

Two methods present themselves: a simple magnetization-
versus-field measurement for a [111]-aligned field and thus
[111]-aligned magnetization, and a simple [100] suscepti-
bility measurement with a secondary transverse field along
an [011]-type axis. In the [111] case, magnetization would
be expected to be ocH>, or Z—’g o H*. Thus, magnetization
would have to be sensitively plotted against a fairly wide field
range, with a background from the simple dipolar suscepti-
bility being present (but again, likely small for appropriately
low field strengths and temperatures, given the CEF splitting).
Alternatively, this method would also potentially lend itself
to an ac measurement scheme; an ac magnetic field could be
applied, and the magnetization measured at the fifth harmonic,
potentially providing a dramatic improvement in signal-to-
background ratio for the octupolar signal.

The alternative [100] case may represent a simpler mea-
surement with a more complicated apparatus. If a strong field

155106-6



PROPOSAL FOR METHODS TO MEASURE THE OCTUPOLE ...

PHYSICAL REVIEW B 103, 155106 (2021)

could be applied along the [011] axis, a traditional magnetic
susceptibility measurement could then be performed along
the [100] axis, with the results plotted against Hy;; and fit
to a quartic function. Using an ac technique for the [100]
susceptibility measurement would eliminate much of the
contamination from field misalignment, though background
susceptibility from nonoctupolar sources would remain a po-
tential issue; in particular, a quadratic dependence on field
could potentially arise from a coupling to the O% quadrupole,
forbidden with the previous alignment scheme but potentially
induced here.

IV. RESISTIVITY

Resistivity is not a thermodynamic quantity, but terms
in the resistivity tensor can nevertheless contain information
about the onset of order parameters. Appropriate derivatives
of resistivity tensor elements can then sometimes capture
information similar to that in derivatives of the free energy,
i.e., thermodynamic probes [12]. In particular, perturbations
that break symmetries of the crystallographic point group can
induce changes in resistivity tensor terms, should the perturba-
tion(s) or some product thereof belong to the same irreducible
representation as a given resistivity tensor term. Should the
applied perturbation also then match the irreducible represen-
tation of the order parameter, a term in the change in resistivity
will then be linearly proportional to the order parameter, al-
lowing the change in the resistivity to reflect the associated
susceptibility to within some proportionality constant.

Thus, higher rank tensors describing derivatives of resistiv-
ity often contain information regarding susceptibility toward
symmetry-breaking instabilities, to within some coupling con-
stant. This constant can potentially depend on temperature,
or allow certain order parameters to more strongly influence
resistivity than others. These complications are generally not
insurmountable in extracting the dependence of the under-
lying order parameter on strain/field. This, combined with
the fact that resistivity is, generally, more easily accessed
experimentally than many thermodynamic quantities, partic-
ularly when trying to measure in a symmetry-selective way,
motivates a thorough evaluation.

In the specific context of the T, octupole allowed in the I';
doublet, the cyclic permutations of H_e,, can couple bilinearly
to the octupole, but both of these objects are of F;r symme-
try in Oy, a symmetry that cannot be constructed purely via
elements of the resistivity tensor (I';” has no quadratic basis
functions in Oy). However, expanding a ['s-type term in the
resistivity tensor p,,, one can note that two objects already
present, H, and t,,,, together form an object of appropriate I's
symmetry. The symmetry-allowed dependency is therefore

Apxy(Hz’ Exy) 08 HzfxyZa

Apxy(HZv 6)cy) & sz‘?xyXOv (24)

and thus the object of relevance is a first derivative with re-
spect to strain and a second derivative with respect to magnetic
field of a resistivity tensor term, i.e., a term in a sixth-rank
tensor. This object is most easily approached by considering
either the second field derivative of the fourth-rank elastore-
sistivity tensor, or the first strain derivative of the fourth-rank

second-order magnetoresistance tensor. We focus here primar-
ily on the former.

A. Elastoresistivity tensor

Elastoresistivity is defined via [12]

8(%);’,‘

25
den (25)

mjj el =
Herein the normalized resistivity tensor is defined in
a manifestly symmetric manner for convenience, (%) =

p~12(Ap)p~'/? [12], enabling the use of the symmetry
(%)ij(H) = (%)ji(—H). Thus, the overall tensor is similar,
but not identical to, the elastic stiffness tensor; for example,
it is not symmetric under exchange of ij and kI, and purely
dynamic contaminants such as the simple Hall effect appear in
several terms. The full tensor is shown in Table III, to second
order in magnetic field; there are only three allowed unique
field-independent terms, with an additional 15 being induced
by applied field. The use of compactified Voigt notation is
motivated by this high level of symmetry; excluded terms
have identical coefficients to those included in the table, but
they may have some sign differences, which can be calculated
trivially via the symmetries of p;; (switching coefficients adds
a sign change to each H term) and ¢;; (switching coefficients
changes nothing); e.g., via the symmetry of p;;, m.,y, would
be —B,H, + D,H,H., in slight contrast to m,.,, = +BH, +
D,H,H,. The Ag (yellow boxes) and Ds (blue boxes) coeffi-
cients then represent the desired susceptibility:

%m::
Ag = ——22 o« xo, 26
6 oH? Xo (26)
mi; i
Ds = — 22 . 27
5= SHOH, X X0 27

It should be further noted that similar notation to previous
tensors was chosen for convenience, but that none of these
coefficients are constrained by symmetry to have any relation-
ship with those in any of the thermodynamic tensors.

Practical considerations

The tensor presents several obvious experimental opportu-
nities and challenges. First, inspection of the yellow boxes in
Table III makes it clear that the my,,, elastoresistivity coef-
ficient is even in H, and hence that measurement of the Ag
coefficient is possible without a linear-in-field contaminant,
meaning that it could potentially be extracted as the sole fit
parameter of elastoresistivity versus field data. This, in turn,
would mean that the coefficient could potentially be extracted
with a fairly limited field range, limiting issues arising from
high fields (i.e., non-negligible mixing of CEF states).

Most experimental methods of probing elastoresistivity,
however, do not apply pure shear strains, but they also induce
normal strains €, €,,, and €,,. The associated symmetry-
preserving strain component couples directly to a simple
Hall effect via changing the carrier density; with small
strains, charge carrier count would remain constant against an
increasing/decreasing volume. Thus, even without a linear-
in-field term in the desired m;;; elastoresistivity term, a
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TABLE III. The full elastoresistivity tensor in O, in compactified Voigt notation, color-coded to indicate which terms have identical or

differing coefficients.

XX yy z

o N A

Yy

2z

yz

X

Xy

yz X Xy
DZHsz DszHy
D,H,H,

D, H, H.

my) + AgH2+
A,(H} 4+ H)

my, + AcH) +
A7(H22 + H?)

my) + AsH>+
Aq(H? + Hyz)

successful measurement would likely still show a strain-
dependent Hall effect that would need to be accounted for
via the traditional methods (this would correspond to an ad-
mixture of the B; and B, coefficients in the table). For fields
aligned precisely along one of the crystal axes k, measurement
of p;j in positive and negative fields would, in principle, allow
cancellation of this linear contaminant. Contact misalignment,
which can result in admixture of p; in an attempt to mea-
sure p;;, can be subtracted using ideas developed earlier in
Ref. [21].

Perhaps more importantly, elastoresistivity requires
controlling/measuring the strain experienced by a crystal.
If an experiment failed to hold strain constant as a function
of field, the octupole susceptibility would not be faithfully
measured. An example would be the case where stress is
held fixed, i.e., a piezoresistance measurement. Given that the
octupole susceptibility can manifest in the elastic stiffness
(see Sec. III A), the very application of field would change
the stiffness independently of temperature, thus changing the
strain under conditions of constant stress. Such an effect can
be minimized via the use of a strain-applying apparatus that
is very stiff relative to the sample, or nearly eliminated by
directly measuring and controlling for strain. An appropriate
experimental apparatus for such a task has been developed
[22].

It should be further noted that Table III represents a general
compilation of terms allowed in an expansion of resistivity in
terms of strain and magnetic field (to first order in strain, sec-
ond order in field); the order of derivatives is not particularly
relevant, and thus strain dependencies of the magnetoresis-
tance would draw from the same set of allowed terms, though
high fields (or high strains) would potentially render relevant
higher terms than those contemplated here.

V. CONCLUSION

The I'; doublet ground state for local 4 f orbitals in a cubic
point symmetry was motivated as an ideal system to study
octupole order parameters and their associated susceptibility,
given the allowed t,,, octupole and the energetic disfavoring
of magnetic dipoles. Considering the allowed couplings of

such an order parameter, several commonly measured tensor
quantities in which it might appear were discussed. These
were fully elucidated in the O;, point group, the point group
of experimental realizations of an octupolar order parameter
[8,11]. Specific terms within external-field-dependent elastic
stiffness, elastoresistivity, and magnetic susceptibility tensors
which would be linearly proportional to a potential t,,, oc-
tupole susceptibility were identified. Potential measurements,
and complications arising from contaminant terms, were
discussed for each individual tensor, with several octupole-
isolating experiments ultimately proposed.

More broadly, similar ideas could be used to isolate con-
tributions of a variety of higher-order local multipoles and
in any number of material systems. The chosen system was
convenient for both being relatively simple (a doublet ground
state) and having no overlap in conjugate fields (the strain
component of the octupole conjugate field coupled to no
other order parameters allowed by the CEF ground state).
Nonetheless, the core idea of isolating specific multipolar con-
tributions to potentially rich phase diagrams via higher-rank
tensor properties is broadly applicable to a variety of localized
4f systems.
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APPENDIX A: CHARACTER TABLE

See Table IV. For convenience, a series of symmetrized
cubic rotation products have been added. These have the same
spatial symmetries as the magnetic octupole, and thus indicate
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TABLE IV. Oy, character table.
Linear functions Cubic functions and
o E 8C; 6C, 6C; 3(Cs)> i 6Ss 8S¢ 30, 60, androtations Quadratic functions cubic rotation products

T A +1 41 41 +1 41 41 41 +1 41 +1
T Ay 41 41 =1 =1 41 41 —1 +1 +1 -1
2 -1 0 0 +2 42 0 -1 42 0

Iy T, 43 0 —1 +1 -1 43 —1 0 —1 —I

r:r o, +3 0 +1 -1 -1 +3 -1 0 -1 +1

rr A, +1 +1 +1 +1 +1 -1 -1 -1 -1 -1
ry A, +1 +1 -1 -1 +1 -1 +1 -1 -1 +lI
ry e, +2 -1 0 0 +2 -2 0 +1 -2 0
ry w, +3 0 -1 41 -1 -3 -1 0 +1 +I

Iy Ty 43 0 +1 —1 —1 =3 41 0 +1 -1

X4y + 722

R.R\R,
(272 —x* — )%,
X2 — yz)
(R.. Ry, R.) (R}, R}, RY)
(RXRE + Rngv R}R)% + RYR?’
R.R} +R.R?)
(R.R? —R.R?,R,R? — R,R?,

vz, zx, xy)

xyz

o,y
(2% + xy?, yx2 4+ 22, 2y* + 2x%)

(x, ¥, 2)

(xz% — xy?, yx2 — y22, 2% — 2x%)

the irreducible representations of the various possible mag-
netic octupole moments.

APPENDIX B: TABLE SYMMETRIES

Herein, terms are defined by “types,” where a given type
is defined by having a unique index composition (i.e., ii, ii
versus ii, jj), and i # j # k holds for all types. A type then
constitutes a term, and all terms that can be generated from
that (arbitrary) original term by various symmetries, which
can be simplified to include only the symmetries of a given
tensor, the threefold rotational symmetry, and the various
fourfold rotations. For example, type II for the elastic stiffness
tensor, Cj; j;, includes Cyy yy, Cyy «r (due to the symmetry of the
tensor; see the relevant section below), C,, ., etc. The wording
“sign change” is used to indicate the operation (x) — (—x)
for a given variable a tensor depends on, such as magnetic
field.

1. Elastic stiffness

Here the C symmetry is defined as that which exchanges
the two subsets of indices (i.e., Cgp.cq¢ = Ceq.ap), While the €
symmetry is defined as that which switches indices within a
subset (Cab,cd - Cba,cd)-

Type I Cj; ;i (red boxes in Table II)

1. Invariant under simultaneous sign change of any two
field components (o;/0;/o})

2. Invariant under simultaneous exchange of H; and H and
sign change of H; (0j—¢)

Final form: CY, + A H? + AZ(HJ.Z + H})

Type II: C;; ;; (green boxes in Table II)

1. Invariant under simultaneous sign change of any two
field components (o;/0; /o)

2. Invariant under simultaneous exchange of H; and H; and
sign change of Hy (0i—j, C)

Final form: C?2 + Az (Hi2 + Hj2) + A4(Hk2)

Type III: C;; ;; (yellow boxes in Table II)

1. Invariant under simultaneous sign change of any two
field components (o;/0;/o})

2. Invariant under simultaneous exchange of H; and H; and
sign change of Hy (o;—;, €)

Final form: C, + Ag(H? + sz) + As(H})

Type 1V: C;; ;; (orange boxes in Table II)

1. Zero in the absence of symmetry-breaking field, mag-
netic or otherwise (o; or o;)

2. Antisymmetric under simultaneous sign change of Hj
and Hj/Hi (O'i/O'j)

Final form: B{H; + D,H;H;

Type V: C;j u (purple boxes in Table II)

1. Zero in the absence of symmetry-breaking field, mag-
netic or otherwise (o; or o)

2. Invariant under simultaneous exchange of H; and H; and
sign change of Hy (0, €)

3. Antisymmetric under exchange of H; and H; followed
by sign change of H; (Cy, €)

Final form: DH;H,

Type VI: Cjj jx (blue boxes in Table II)

1. Zero in the absence of symmetry-breaking field, mag-
netic or otherwise (o; or oy)

2. Invariant under simultaneous exchange of H; and H; and
sign change of H; (0,—, C, €)

3. Antisymmetric under exchange of H; and H; followed
by sign change of H; (C4;, C)

Final form: D3H;H,

2. Strain-dependent magnetic susceptibility

The magnetic susceptibility tensor, again defined by

O°F M,
= X —— =
0= b, |, ., o8,

M,
oH;

B

has one obvious symmetry. This symmetry, herein defined as
“x” symmetry, implies invariance under simple exchange of
indices, i.e., xij = Xji-

Bype I: xii
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1. Invariant under sign-change of i/ j/k indices (0;/0;/0y)
2. Symmetric under exchange of j and k indices (0j—_)

Final form: y; = xi(io) + Ae€ji + B(ejj + €x) + Ceizi +
D(ejz-j + €% + E€iiejj + €) + Fejjen + G(el-zj +ei)+

2
Lejk

Type II: x;;

1. Zero in the absence of symmetry-breaking field, strain
or otherwise (o; or o)

2. Antisymmetric under sign change of i/ (0;/0;)

3. Invariant under exchange of i and j coefficients
(Gi=—j- X)

Final form: ME,‘J' + NE[kEjk + Oeijékk + PG,‘j(G,’,‘ + ij)

It can then be noted that, given the definition of C and
the definition of x, each of these terms corresponds to some
allowed term in the free energy, and the terms which give rise
to many of the C tensor terms are identical to many that give
rise to the strain-dependent y tensor terms. Thus, the terms
can be rewritten as

Final form: y; = X;(io) + Eeii + F(ej; + €x) +A1€,~2i +
Ax(€7; + ) + Aseiilejj + €u) + Asejjen + As(e]; + €5) +
A56]2<k

Final form: GE,‘]‘ + D36,‘k€jk + D]Eijékk + Dzéij(fii + ij)

3. Nonlinear magnetic susceptibility

The inherent symmetry of the tensor here remains x;; —
Xji> as in the previous case.

Type I i

1. Invariant under simultaneous sign change of any two
field components (o;/0;/0%)

2. Invariant under simultaneous exchange of H;, H; and
sign change of H; (0j=—_¢)

Final form: x” + AH? + B(H? + H}) + CH} + D(H] +
H})+ EH}(H} 4+ HY) + FH H!

Type II: x;;

1. Zero in the absence of symmetry-breaking field, mag-
netic or otherwise (o; or o;)

2. Invariant under simultaneous sign change of H;, H; (ox)

2. Antisymmetric under simultaneous sign change of
Hj, Hy/Hy, H; (0i/0})

3. Invariant under simultaneous exchange of H;, H; and
sign change of Hy (oi——;, x)

Final form: Xij = GH;H; + LH;H;H? + NH;H;(H? +
H?)+ OHy(H? — H})

Furthermore, moving beyond Neumann’s principle, it can
be noted that the aforementioned definition of magnetic sus-
ceptibility implies each term derives from a corresponding
term in the free energy. Some of these x tensor terms are
then implied to derive from the same allowed term within
the free energy, and are thus constrained to be equal, to
within a numerical factor (given different derivative orders).
Additionally, one term allowed by Neumann’s principle in
Xijs OHk(Hi2 —H]Z), implies a term in x;;, H;H;Hy, that is
forbidden, and is thus not allowed (alternatively, the free-
energy term implied by OHi(H} — H}) is found to cancel
if the equivalent free-energy terms from x;;, xj, and x
are added together, yielding H;H;Hy(H? — sz + sz —H +
H? — H?).

Thus, the allowed terms can be further simplified to
X’ +AH? + B(H} + HY) + CH;' + D(H] + Hy)
+6DH? (H? + HY) + EHH i)
= 2BH;H; + 2EH;H;H] + 4DH;H;(H} + H?).

4. Elastoresistivity

Elastoresistivity, defined again by
2(5)

P 7ij

mjjrl = der,
does not admit the exchange of the index pairs, i.e., m;j; —
myy,;;- Thus, the symmetries of the constituent components are
the only major symmetries of the tensor itself. First, the in-
herent “€” symmetry implies invariance under m;; x; — m;; .
Next, the symmetry of the normalized resistivity tensor, de-
fined here (for the purposes of symmetry[12]) via

(22) = 2aampn, (B2)
0
implies invariance under the “p” symmetry operation,
m;jx —> —Mmj; k1, as noted in the relevant section above.

Type I m;; ;; (red boxes in Table III)

1. Evenin H;/H;/Hy (0i/0;/0%, p)

2. Invariant under exchange of H;, Hy (0, p)

Final form: m?l + AlHi2 + Az(sz + Hk2)

Type II: m;; j; (green boxes in Table I1I)

1.Evenin H;/H;/Hy (0;/0;/0%, p)

Final form: m?z + A3sz + A4Hi2 +A5Hj2

Type III: m;; ;; (yellow boxes in Table III)

1. Invariant under simultaneous sign change of any two
field components (o;/0; /o)

2. Invariant under exchange of H;, H; (0i=—j, p, €)

Final form: m24 + A6Hk2 + A7(Hi2 + sz)

Type IV: mj; ;; (peach boxes in Table I1I)

1. Zero in the absence of symmetry-breaking field, mag-
netic or otherwise (o; or o)

2. Antisymmetric under simultaneous sign change of
H;, Hy/Hy, H; (0i/0})

3. Invariant under simultaneous sign change of H;, H; (o)

4. Invariant under simultaneous sign change of H;, H;, H;
(0)

Final form: D,H;H;

Type V: m;j ;; (orange boxes in Table III)

1. Zero in the absence of symmetry-breaking field, mag-
netic or otherwise (o; or o;)

2. Antisymmetric under simultaneous sign change of
Hj, Hy/Hy, H; (0i/0})

3. Invariant under simultaneous sign change of H;, H; (o})

Final form: ByHy, + D4H;H;

Type VI: m;j ik (purple boxes in Table III)

1. Zero in the absence of symmetry-breaking field, mag-
netic or otherwise (o; or o)

2. Antisymmetric under simultaneous sign change of
Hj, Hy/Hy, H; (07/0})

3. Invariant under simultaneous sign change of H;, H; (o})

4. Invariant under exchange of H;, H; (0x=—y, p)

Final form: B H; + D3H;H;
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Type VII: m;; j; (violet boxes in Table III)

1. Zero in the absence of symmetry-breaking field, mag-
netic or otherwise (o or o)

2.0dd in Hj/Hk (O’j/(fk, ,0)

3. Even in H; (o;, p)

Final form:DH;Hy

Type VIII: m;j ji (blue boxes in Table III)

1. Zero in the absence of symmetry-breaking field, mag-
netic or otherwise (o; or oy)

2. Antisymmetric under simultaneous sign change of
Hj, Hy/H;, Hj (01/0)

3. Invariant under simultaneous sign change of H;, Hy (o)

Final form: B3H; + DsH}H;
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