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Fermiology and electron-phonon coupling in the 2H and 3R polytypes of NbS2
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We investigate the electronic structure of the 2H and 3R polytypes of NbS2. The Fermi surfaces measured
by angle-resolved photoemission spectroscopy show a remarkable difference in size, reflecting a significantly
increased band filling in 3R-Nb1+xS2 compared to 2H-NbS2, which we attribute to the presence of additional
interstitial Nb, which act as electron donors. Thus, we find that the stoichiometry, rather than the stacking
arrangement, is the most important factor in the difference in electronic and physical properties of the two
phases. Our high resolution data on the 2H phase shows kinks in the spectral function that are fingerprints of the
electron-phonon coupling. However, the strength of the coupling is found to be much larger for the the sections
of bands with Nb 4dx2−y2,xy character than for the Nb 4d3z2−r2 . Our results provide an experimental framework
for interpreting the two-gap superconductivity and latent charge density wave in 2H-NbS2.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDs) are well-known
for hosting a variety of instabilities arising from the in-
terplay of electron-electron and electron-phonon coupling.
Particularly rich phenomena are found in the metal-
lic (V, Nb, Ta)(S, Se, Te)2 family, including Mott-insulating
phases, superconductivity, and numerous charge density
waves (CDWs) [1–4]. As a well-known example, 2H-NbSe2

exhibits a ∼3 × 3 CDW and also superconducts at 7.2 K
[5–8]. Several of these layered van der Waals materials favor
the trigonal prismatic coordination of the transition metal,
but there is an additional degree of freedom in the interlayer
stacking pattern (e.g., 2H, 4H, 3R polytypes [9]), leading to
further variety of the novel electronic ground states.

Unlike most other members of the (V, Nb, Ta)(S, Se, Te)2

family, 2H-NbS2 does not undergo any structural instability
[10]. Nevertheless, a phonon mode exhibits significant soft-
ening with temperature [11], and 2H-NbS2 can be viewed as
being close to a lattice instability. This presents an interest-
ing theoretical challenge, as naïve density functional theory
(DFT) calculations would predict a lattice instability [12], and
the absence of any CDW phase is attributed to the anharmonic
phononic effects [11,13]. 2H-NbS2 is also a prototypical
two-gap superconductor below Tc = 6.2 K, as evidenced by
tunneling spectroscopy [14], Andreev reflections [15], and
heat capacity measurements [16]. Despite this, the experi-
mental electronic structure of bulk 2H-NbS2 has hardly been
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explored [17]. Meanwhile, an alternative stacking structure,
the noncentrosymmetric 3R phase, has been reported for some
time [18,19] but little is known about its electronic structure
or how and why its properties differ from the 2H phase.

Here, we examine the low-energy electronic structure of
2H-NbS2 and 3R-Nb1+xS2 combining angle-resolved photoe-
mission spectroscopy (ARPES) and DFT calculations. The
measured Fermi surfaces reveal a striking difference in size,
implying a significantly greater band filling in the 3R phase.
We attribute this difference to additional Nb interstitials in
the 3R phase, which act as electron donors. This difference
is likely to move the 3R phase away from any latent insta-
bilities and may explain the absence of superconductivity in
this phase. Finally, the high-resolution data on the 2H phase
reveals that the electron-phonon coupling is highly dependent
on the orbital character of the bands, which naturally links to
the two-gap superconductivity.

II. METHODS

Single crystals were obtained commercially (HQ
Graphene, Groningen) and cleaved in situ. ARPES
measurements were performed at the I05 beamline of
Diamond Light Source [20], using photon energies in the
range 30–240 eV, at sample temperatures below 10 K. DFT
calculations were performed within the WIEN2K package
[21], using the modified Becke-Johnson functional [22] and
accounting for spin-orbit coupling, as further detailed in the
Supplemental Material (SM) [23].

III. RESULTS

A. Comparison of the 2H and 3R phases

In the 2H phase (space group 194, P63/mmc), each NbS2

layer is rotated by 180◦ with respect to the layer below it
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FIG. 1. Crystalline and electronic structure of 2H-NbS2 and 3R-NbS2. (a), (e) Crystal structures, showing the different stacking modes.
(b), (f) DFT calculations with orbital character projection of the valence and conduction bands for 2H-NbS2 (b) and 3R-NbS2 (f). (c), (g) kz

projection of the DFT band structure along the experimentally relevant M-K-�-K-M (L-H-A-H-L) direction for 2H-NbS2 (c) and 3R-NbS2 (g).
(d), (h) Overview ARPES spectra showing valence band dispersions. Data measured along �-K direction at hν = 79 eV and hν = 68 eV for
2H-NbS2 (d) and 3R-NbS2 (h), respectively, using LH (p) polarized light.

[Fig. 1(a)]. Due to the trigonal prismatic coordination of the
Nb, a single layer would not possess inversion symmetry,
however, in the 2H phase a center of inversion symmetry
exists between the layers [24–26]. Contrastingly, in the 3R
phase (space group 160, R3m) shown in Fig. 1(e), there is
no rotation but rather each layer is translated by a third of
a lattice constant in the b direction, with respect to the layer
below. This stacking structure does not contain any points of
inversion.

In our DFT calculations in Figs. 1(b) and 1(f), we find
twice as many bands in the 2H phase compared to the 3R
phase, since the 2H unit cell contains two formula units, while
the 3R phase contains one (in the primitive unit cell). The
height of the Brillouin zone (i.e., �-A) in the 2H phase is
half that of the 3R phase. Around the K point, in the 2H
phase the bands near EF with Nb 4dx2−y2,xy character (red) are
split due to combination of interlayer hopping and the spin-
orbit coupling, as discussed in numerous studies of 2H-MoS2

[27–29], 2H-WSe2 [26,30], and 2H-NbSe2 [31]. However, the
Nb 4d3z2−r2 orbital (green) is more significantly affected by
interlayer hopping terms, leading to a large band splitting of
∼1 eV at the � point above EF in Fig. 1(b). For the in-plane
S 3px,y valence bands (yellow), we find a small splitting of
the band dispersions in the 2H phase compared to the 3R,
since for these orbitals the interlayer hopping terms are rel-
atively weak compared to the in-plane hoppings. In contrast,
the S pz orbitals (blue) disperse strongly in the out-of-plane
directions, and are most strongly sensitive to the stacking
sequence.

In both phases, therefore, there are both quasi-2D and
rather 3D valence bands, as highlighted in the kz projection
of the band structure [Figs. 1(c) and 1(g)]. This is a helpful
representation of the DFT band structure for comparison with
ARPES measurements due to the nonconservation of kz in the
photoemission process, which leads to an effective integration
over a range of kz values [26,32–34]. In the overview ARPES
spectra of the 2H phase in Fig. 1(d), the valence bands closely
resemble the kz-projected calculations, including sharp fea-
tures from quasi-2D states, and broad features from 3D bands.
In the case of the 3R phase, however, the agreement is notably
worse. First, the data quality in Fig. 1(h) is lower; none of the
features are as sharp as in the 2H phase, with a significantly
higher background signal. Second, there is evidence for a
flat state at EB = −1.2 eV, not present in the calculations,
which is indicative of some form of localized impuritylike
state. Third, the Nb 4d-derived bands at the Fermi level have
a substantially larger filling than in the calculations.

To further understand the difference between the two
phases, in Fig. 2 we consider the Fermi surfaces. The DFT
calculations of the Fermi surfaces in the two cases are broadly
similar, as in both cases quasi-2D barrels appear, centered
around the � and K points [Figs. 2(a) and 2(e)]. The interlayer
hopping in the 2H phase plays an important role in creating a
splitting of inner and outer barrels around K. However there
is no such splitting term in the 3R phase and the splitting
is a spin splitting, allowed due to the absence of inversion
symmetry [23]. In Figs. 2(b) and 2(f), we present simulations
of the in-plane Fermi surfaces after averaging over the entire
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FIG. 2. Fermiology of 2H-NbS2 and 3R-NbS2. (a), (e) Calculated 3D Fermi surface of (a) 2H-NbS2 and (e) 3R-NbS2. (b), (f) Simulated
Fermi surfaces obtained by averaging over the whole Brillouin zone width in the kz direction for 2H-NbS2 (b) and 3R-NbS2 (f). In the latter, a
section is simulated at 250 meV above the natural Fermi level. (c), (g) Fermi surface measured at a photon energy hν = 79 eV (inset, 42 eV)
for 2H-NbS2 (c), and hν = 120 eV for 3R-NbS2 (g). (d) Photon energy-dependent ARPES of 2H-NbS2 from 50 to 130 eV, plotting MDCs at
EF along K-�-K (H-A-H) direction as a function of photon energy, showing the quasi-2D nature of electronic states with a consistently resolved
splitting of the K barrel bands. (h) S 2p core levels of 2H-NbS2 (red) and 3R-NbS2 (blue) using a photon energy hν = 240 eV, showing clearly
additional satellites in the 3R phase. Inset shows microscope images of the single crystals used in this work.

kz axis [35]. The measured Fermi surface in the 2H phase,
Fig. 2(c), is broadly comparable with the calculations. No-
tably, the band splitting around the K barrels is reproduced,
and we can also resolve the two separate bands forming the
� barrel, with the inner displaying a strong hexagonal warp-
ing. The most noticeable difference is that, experimentally, the
triangular barrels around K form closed pockets (similar to
2H-NbSe2 [7,31]), while in our calculation the outer K barrels
connect near the M points. We attribute this to a limit to the
accuracy of the functional, rather than any off-stoichiometry
of the 2H sample. The more advanced GW calculations of
Ref. [36] similarly found smaller, closed, K barrels, along with
slightly expanded � barrels (see SM for detailed comparison
[23]). Experimentally, we find that the observed Fermi surface
appears highly two-dimensional, with very little variation ob-
served in the photon energy dependence in Fig. 2(d).

However, in the measured Fermi map of 3R-NbS2

[Fig. 2(g)], the � and K barrels of the Fermi surface are found
to be both significantly smaller compared to the calculations
[Fig. 2(f), kx < 0]. This is consistent with the increased filling
of the band in Fig. 1(h), and is indicative of a large shift in
the chemical potential. Instead, the data closely resembles the
simulation in Fig. 2(f), kx > 0, where the Fermi level is set
250 meV above the natural Fermi level of the calculation. This
implies a significant amount of extra charge in the system; in
the calculation, a rigid shift of 250 meV as shown corresponds
to 0.483 extra electrons per unit cell.

The experimental data therefore point toward an impor-
tant role for the stoichiometry in determining the electronic
structure differences between the two polytypes. While the 2H

phase is reported to exist only as stoichiometric NbS2, the 3R
phase is known to host additional Nb interstitials, resulting
in a stoichiometry of the form 3R-Nb(1+x)S2. According to
Ref. [18], the range of stability of the 3R phase is 0.07 <

x < 0.18; consistent with this, energy-dispersive x-ray spec-
troscopy measurements on our 3R samples indicate x ≈ 0.13
[37]. According to Ref. [19], interstitial atoms are more favor-
ably incorporated in the 3R phase due to the relatively longer
distance between these extra Nb atoms and the in-plane Nb
sites. Thus, the fact that there exists two polytypes at all is
intimately related to the stoichiometry. These Nb interstitials
act as electron donors, giving an increased overall filling of
the d shell of the Nb in the main layers. Taking the ratio
of the apparent extra electrons in the Fermi surface to x, we
can estimate that each interstitial Nb donates ∼ 3.7 electrons
on average. The interstitial sites also act as local impurity
potentials, explaining the broadening and extra background in
the ARPES data in, e.g., Fig. 1(h).

The presence of interstitial Nb can also be inferred from the
S 2p core level spectra in Fig. 2(h). In the case of the 2H phase,
a sharp doublet is observed, consistent with spin-orbit split
2p1/2 and 2p3/2 states from a single chemical site. However,
in the 3R phase, there are additional minority peaks, arising
from S atoms in a chemical environment with more than the
normal three nearest-neighbor Nb atoms, due to the interstitial
Nb occupancy. The main doublet is also broadened, reflecting
electronic inhomogeneity caused by the partial filling of the
interstitial sites. Moreover, the main doublet is shifted by
∼ 180 meV, a chemical shift related to the overall chemical
potential and average orbital fillings. It is worth remarking that
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FIG. 3. Electron-phonon coupling in 2H-NbS2. (a) Calculated band dispersion along �K direction, with orbital character projection. Inset:
Calculated 2D Fermi surface; the thick black line indicates the experimental cut analyzed in (c)–(f). (b) ARPES data of the valence band
dispersion along �K, measured at a photon energy hν = 30 eV, overlaid with DFT calculations for comparison. (c) Closer look at the data
near EF and (d) the curvature plot of the data, highlighting kinks in the spectral function. (e) Momentum distribution curve (MDC) fitting of
the data using a multi-Lorentzian peak function and (f) peak widths of the four bands.

the two polytypes also have different physical appearances; al-
though both black and metallic looking, the off-stoichiometric
3R phase forms as beautiful platelike single crystals with
clear crystal facets, while the 2H phase forms thin, flaky
samples usually without clear facets. Thus, NbS2 exemplifies
the mantra of not judging by appearances.

B. Electron-phonon coupling in the 2H phase

Although neither phase undergoes any structural phase
transition, 2H-NbS2 is considered to be on the brink of a
CDW-like transition [11–14,16,38–40], while a CDW does
stabilize in the closely related 2H-NbSe2 at 33.5 K. It is
generally acknowledged that the CDWs in this family of
materials cannot be explained by electronic nesting alone
and it is important to consider the momentum dependence
of the electron-phonon interaction, which itself is related to
the orbital character of the bands [5,7,8,41–44]. For the cal-
culated bands along �K in Fig. 3(a), there is a crossover in
orbital character between the doublets corresponding to the
� barrels (mainly Nb 4d3z2−r2 ) and the K barrels (mainly Nb
4dx2−y2,xy, see also Fig. S2 [23]). The experimental spectral
function in Fig. 3(b) shows a significantly different impact of
electron-phonon coupling at the two pairs of Fermi crossings,
with the second pair of crossings (corresponding to the K
barrels) exhibiting a clear kink structure, characteristic of a
strong electron-phonon interaction, whereas for the first pair
(� barrels) the effect is much less prominent.

For a more quantitative analysis, we performed a fitting
analysis to extract the band positions in Fig. 3(e). From this,
we identify a kink energy of −15 meV for the K barrels;
the deviation of the bands around this energy can also be
visualized in the curvature plot in Fig. 3(d). Meanwhile, the
inner bands have a change of slope around −20 meV, but this
is a more subtle effect. A quantitative measure of electron-
phonon coupling is the renormalization of the Fermi velocity,

λ = vF (bare)/vF (exp) − 1 [45]. If we assume the vF (bare)
values from DFT (see SM for discussion [23]), we find a clear
dichotomy between the innermost band 1, with λ ≈ 0.51, and
the outer crossings of the K barrel with λ ≈ 2.32 for band
3 and λ ≈ 2.59 for band 4. Additionally, in Fig. 3(f) we
show a dichotomy in the energy-dependent linewidths, as the
broadening of the K barrels increase much faster with binding
energy than the � barrels. The outermost band 4 shows the
fastest rise, consistent with having the strongest coupling, and
also shows a saturation of the linewidth coinciding with the
kink energy [45].

Taken together, this evidence strongly suggests that in
2H-NbS2, the electron-phonon coupling depends crucially on
the orbital character of the bands, and for the �K dispersion
analyzed here, the λ value is up to ∼ 4–5 times larger for the
section with Nb 4dx2−y2,xy character than for the Nb 4d3z2−r2 .
Our experiments are highly consistent with the calculations
of Ref. [13], who took the electron-phonon interaction into
consideration and also found a significantly larger interaction
strength on the sections of the K barrel closest to the K points,
correlating closely with the Nb 4dx2−y2,xy orbital character.
This has important implications for the superconductivity and
our data gives strong experimental support for the scenario of
Ref. [13], where the inner � sheets with weaker el-ph coupling
are cold areas corresponding to the smaller gap, while the
straight sections of the K barrels are hot regions developing
a larger gap, explaining the overall gap structure with two
characteristic energy scales [14,15].

IV. DISCUSSION

Recapping the results on 3R-Nb(1+x)S2, we showed that
the prevalence of donor-type interstitials leads to a significant
chemical potential shift by approximately 250 meV, compared
to either the calculations for stoichiometric 3R-NbS2 or com-
pared to the 2H phase. This implies an extra population of the
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Nb 4d bands that dominate the Fermi surface, an increased
filling of ∼0.48 extra electrons per Nb. The resulting Fermi
surface pockets are still holelike but substantially smaller in
area, and calculations indicate a reduced electronic density of
states (DOS) at EF by a factor of ∼2 at this doping level (SM).
A reduced DOS in the 3R phase is, furthermore, consistent
with a magnetic susceptibility that is lower by a factor of 2–3
in the 3R phase compared with the 2H phase, in the Pauli para-
magnetic regime [18]. While a full treatment would also take
into account differences in phononic structure between the
two stacking sequences, the reduced electronic DOS alone is
already likely to move the doped 3R system further away from
the latent structural instabilities found in the 2H phase [11].
Similarly, in terms of superconductivity, the lower electronic
DOS in the 3R phase will be a factor in lowering Tc to the
point that no superconductivity has yet been reported in the 3R
phase. The calculations using Eliashberg theory in Ref. [46]
found a reduction of Tc by at least a factor of 3 for a positive
chemical potential shift of 150 meV in 2H-NbS2, while our 3R
phase sample is effectively shifted by 250 meV. The interstitial
Nb sites will also act as impurity scattering sites, explaining
the broader features observed by ARPES here. This is con-
sistent with the high density of atomic-scale imperfections
observed in STM measurements on 3R-Nb(1+x)S2 [47], com-
pared with the much cleaner surface of 2H-NbS2 [14] and
other TMDs. Correspondingly, in transport measurements the
residual resistivity ratio for 3R-Nb(1+x)S2 samples is vastly
inferior to the stoichiometric 2H-NbS2 [48]. Thus, taking our
results together with the literature, we argue that it is the pres-
ence of donor-type interstitials that principally distinguishes
the electronic and physical properties of 3R-Nb1+xS2 from
2H-Nb2 rather than the difference in stacking arrangement.

If a stoichiometric 3R-NbS2 existed, our DFT calculations
suggest it would have a similar Fermi surface to the 2H phase
and therefore could have similarly interesting properties,
potentially including noncentrosymmetric superconductivity.

Unfortunately, stoichiometric 3R-NbS2 is entirely hypotheti-
cal and the only thermodynamic bulk phases are 3R-Nb(1+x)S2

and 2H-NbS2 [18]. However, the monolayer limit provides a
third structural form of 1H-NbS2, which has been predicted
[12] and observed [49] to enter a CDW phase, although this
may be substrate dependent [50] and offers an interesting
playground to tune the structural and superconducting insta-
bilities [51].

V. CONCLUSION

In conclusion, the measured Fermi surfaces of 3R-
Nb(1+x)S2 are found to be much smaller than in 2H-NbS2,
consistent with a large rigid band shift caused by an ex-
tra charge from interstitial Nb. Thus it is the stoichiometry,
rather than the stacking sequence, that principally determines
the differences in electronic structure and physical proper-
ties between the two polytypes. Our high resolution data on
2H-NbS2 reveals kinks in the spectral function but the strength
of the coupling is found to be much larger for the the sections
of bands with Nb 4dx2−y2,xy character than for the Nb 4d3z2−r2 .
Our measurements provide an experimental framework for
interpreting the two-gap superconductivity and latent CDW in
2H-NbS2, while also giving insight into the absence of these
in the 3R-Nb(1+x)S2.
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