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Quantum quasi Monte Carlo algorithm for out-of-equilibrium Green functions at long times
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We extend the recently developed quantum quasi Monte Carlo (QQMC) approach to obtain the full frequency
dependence of Green functions in a single calculation. QQMC is a general approach for calculating high-order
perturbative expansions in power of the electron-electron interaction strength. In contrast to conventional Markov
chain Monte Carlo sampling, QQMC uses low-discrepancy sequences for a more uniform sampling of the
multidimensional integrals involved and can potentially outperform Monte Carlo by several orders of magnitude.
A core concept of QQMC is the a priori construction of a “model function” that approximates the integrand
and is used to optimize the sampling distribution. In this paper, we show that the model function concept
extends to a kernel approach for the computation of Green functions. We illustrate the approach on the Anderson
impurity model and show that the scaling of the error with the number of integrand evaluations N is ∼1/N0.86

in the best cases and comparable to Monte Carlo scaling ∼1/N0.5 in the worst cases. We find a systematic
improvement over Monte Carlo sampling by at least two orders of magnitude while using a basic form of
model function. Finally, we compare QQMC results with calculations performed with the fork tensor product
state (FTPS) method, a recently developed tensor network approach for solving impurity problems. Applying a
simple Padé approximant for the series resummation, we find that QQMC matches the FTPS results beyond the
perturbative regime.
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I. INTRODUCTION

Despite considerable advances in numerical approaches
to condensed matter systems, many algorithms still lack the
control or precision necessary to study strongly correlated
phenomena. At the same time, recent experimental develop-
ments have allowed unprecedented precision in characterizing
quantum many-body states—in systems as varied as atomic
gases [1], trapped Rydberg atoms [2], trapped ions [3], and
nanoelectronic devices [4–7]—where quantitative numerical
predictions can provide valuable comparisons and give in-
sights into new physics. To overcome limitations in precision,
studying interacting quantum many-body systems by numeri-
cally evaluating high-order perturbation series and applying
resummation techniques has recently seen unexpected re-
newed interest [8–20].

Among the various regimes of strongly correlated sys-
tems, calculating dynamical properties at long times or low
frequencies has been particularly challenging for numerical
approaches. This applies both to calculating real-frequency
correlation functions of equilibrium systems and to out-of-
equilibrium systems—such as ones subjected to strong driving
fields or external currents. Imaginary time algorithms require
ill-conditioned analytical continuations to extract real-time
properties. Real-time algorithms face intrinsic limitations to
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reaching long-time behavior, such as the dynamical sign prob-
lem for Monte Carlo methods or prohibitive entanglement
growth for tensor network methods [21]. To address the
challenging long-time regime, we have recently developed a
new approach [12,16,17,20] based on high order real-time
Schwinger-Keldysh perturbation theory.

In Ref. [20], we most recently introduced the “quantum
quasi Monte Carlo” (QQMC) method. This is based on cal-
culating the integrals in perturbation series coefficients by
using low-discrepancy sequences rather than conventional
Monte Carlo sampling. We demonstrated a dramatic increase
in performance due to improved algorithmic scaling of this
method, with convergence as fast as ∼1/N in the number
of samples N . We applied QQMC to compute observables
for the Anderson impurity model both in and out of equi-
librium and were able to quickly sweep a large range of
parameters. While the approach of Ref. [20] is general, it
relies on the concept of a “model function,” which serves the
role analogous to importance sampling in traditional Monte
Carlo methods and incorporates a priori knowledge of the
integrand. Unlike Monte Carlo sampling, however, in QQMC,
the rate of convergence with N itself depends on the choice of
model function and can be improved with additional a priori
knowledge. This raises the question: How well can QQMC
be applied to more complex observables than the previously
studied local densities and currents?

In this paper, we address this question by adapting QQMC
to the problem of calculating the full frequency-dependent
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Green function of the Anderson impurity model. We use the
kernel approach of Ref. [17], which computes the frequency
dependence by integrating with a single sampling for each
perturbative coefficient. We develop an automated way to ob-
tain simple effective model functions for these integrals, in the
form of a product of one-dimensional functions. We compare
the efficiency of applying QQMC in a kernel approach to
performing separate calculations at individual frequencies and
remarkably find no advantage in separating frequencies. In
spite of its simplicity, a single model function with a single
sequence of points can compute a continuum of integrals with
convergence rates that are systematically better than 1/

√
N

(standard Monte Carlo sampling) and as high as ∼1/N0.86. In
practice, applying QQMC to compute coefficients up to order
10 is 2–3 orders of magnitude faster than the Monte Carlo
approach of Ref. [17].

From the perturbation series coefficients, we compute the
Green function at large interaction strengths, by using Padé
approximants for series resummation [22]. We compare the
QQMC result with calculations using the fork tensor product
state (FTPS) solver [23]. This solver uses a particular “fork”
tensor network (TN) to represent quantum states of impurity
models and performs the real-time evolution of such states.
It provides a nonperturbative way to obtain real-time Green
functions which is fundamentally different from QQMC. We
find excellent agreement between the two methods. Through-
out, we will discuss technical developments and show how
algorithmic choices affect the computational performance.

This paper is organized as follows. Section II presents
the Anderson impurity model used in this paper. Section III
focuses on the QQMC algorithm. We introduce the kernel
formalism (Sec. III A), describe the QQMC method, and pro-
vide two algorithms which adapts QQMC into computing
Green functions (Sec. III B). After explaining how to obtain
a model function (Sec. III C), we discuss the performance and
convergence rates of the new QQMC methods (Sec. III D).
Next, we focus on comparing our results to FTPS. We detail
the resummation by Padé approximant in Sec. IV. Technical
aspects of FTPS are given in Sec. V. Finally, the results of the
comparison are discussed in Sec. VI.

II. MODEL

Although QQMC is applicable to a general—potentially
nonequilibrium—system, we will focus the discussion on
the equilibrium single band Anderson impurity model [24]
for simplicity. We consider an impurity experiencing onsite
Coulomb repulsion, symmetrically coupled to two identical
leads with semicircular density of states. It can be represented
by a one-dimensional infinite chain of electronic sites with
Hamiltonian

H (t ) = H0 + Hintθ (t ), (1)

where

H0 =
∑
x,σ

(
γxc†

x,σ cx+1,σ + H.c.
) + Ed

∑
σ

c†
0σ c0σ , (2)

Hint = U (c†
0↑c0↑ − α)(c†

0↓c0↓ − α), (3)

and θ (t ) is the Heaviside step function. This Hamiltonian
describes an interacting impurity at site x = 0 coupled to
two noninteracting leads, corresponding to sites x < 0 and
x > 0. Here σ =↑,↓ denotes the electronic spin. The electron
hopping term between the impurity and the last site of each
lead is γ0 = γ−1 = γ . Within each lead, the hopping term
between sites is constant γx = D/2, so that the leads have a
semicircular density of states with half-bandwidth D.

As is standard, the effects of the leads on the impurity
are encoded in a hybridization function �(ω). For Eq. (2),
the retarded noninteracting Green function of the impurity is
gR(ω) = 1/(ω − Ed − �R(ω)), with

�R(ω) = �

D
·

⎧⎪⎨⎪⎩
(ω + √

ω2 − D2), ω < −D,

(ω − i
√

D2 − ω2), −D � ω � D,

(ω − √
ω2 − D2), ω > D.

(4)

Here we have defined the tunneling rate from the impurity to
the leads at the equilibrium Fermi level � = 4γ 2/D. The leads
are half filled and at zero temperature. We use units such that
h̄ = 1.

In the system described by Eq. (1), the local Coulomb
repulsion on the impurity U is quenched on at t = 0. We have
introduced a quadratic shift in Hint parameterized by α. This
shift is compensated by the Ed term in H0, so that the energy of
the impurity charged with a single electron is Ed − αU after
the quench. Performing calculations at nonzero α changes the
expansion point of the perturbation series and can be useful
in improving series convergence [12,13,25]. In this work we
use � = 1/2, D = 11.476� (the value was chosen to facilitate
bath discretization in FTPS), and α = 1/2. We will consider
two models: Ed = 0 which is particle-hole symmetric at all U
and Ed = � which breaks this symmetry.

III. GREEN FUNCTION CALCULATION WITH QQMC

A. Summary of diagrammatic expansions
and the kernel approach

Our algorithms are based on real-time perturbation theory
and the kernel approach of Ref. [17]. Here, we briefly recall
the relevant previous result but refer to Ref. [17] for a more
comprehensive description. While the kernel approach was
formulated for general models and interactions, in this paper
we directly specialize our discussion to the Anderson impurity
model Eq. (1).

Our method is based on performing a perturbative expan-
sion of the real-time Green function Gab(t, t ′). Here a, b ∈
{0, 1} are the Keldysh contour indices, so that

Gab(t, t ′) =
(

GT (t, t ′) G<(t, t ′)

G>(t, t ′) GT̃ (t, t ′)

)
ab

, (5)

where GT (t, t ′), G<(t, t ′), G>(t, t ′) and GT̃ (t, t ′) are, re-
spectively, the time ordered, lesser, greater, and antitime
ordered impurity Green functions. We denote the nonin-
teracting impurity Green function gab(t, t ′). For notational
simplicity, we also define combined indices X = (t, a), Y =
(t ′, b) to write expressions such as g(X,Y ) = gab(t, t ′) or
δ(X,Y ) = δ(t − t ′)δab. The interacting system Eq. (1) is spin
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symmetric and we suppress the Green function spin indices
σ, σ ′ throughout, noting that G↑↑(X,Y ) = G↓↓(X,Y ) and
G↑↓(X,Y ) = G↓↑(X,Y ) = 0. Additionally, we will only con-
sider the impurity Green function itself, although the approach

is straightforward to generalize to multiple electron sites or
orbitals.

The Schwinger-Keldysh perturbation series for the Green
function in powers of U is [26]

Gab(t, t ′) =
∞∑

n=0

inU n

n!

∫ tM

0
du1 . . . dun

{∑
{ak}

(−1)
∑

k ak ·
[[

(t, a),U1, . . . ,Un

(t ′, b),U1, . . . ,Un

]][[
U1, . . . ,Un

U1, . . . ,Un

]]}
. (6)

Here Uk = (uk, ak ) are the coordinates of the interaction vertices located on the impurity, at time uk and with Keldysh index
ak ∈ {0, 1}. The times uk are integrated from t = 0, when interaction is quenched on, to the time of measurement tM � t, t ′. We
have also adopted the notation of Ref. [17] for Wick determinants[[

A1, . . . , Am

B1, . . . , Bm

]]
=

∣∣∣∣∣∣
g(A1, B1) . . . g(A1, Bm)

...
. . .

...

g(Am, B1) . . . g(Am, Bm)

∣∣∣∣∣∣, (7)

where Ai and Bj are combined indices of a time and a Keldysh index. In Eq. (6), the first Wick determinant corresponds to one
species of spin, while the second corresponds to the other.

There are two technical aspects in the perturbative expansion that are suppressed in the notation of Eq. (7). First, the Green
functions g(Uk,Uk ) which are on the diagonal of the determinant and correspond to interaction vertices Uk are replaced by
g<(uk, uk ) − iα. The choice of g< reflects the operator ordering in the interaction Hamiltonian Eq. (3), while the α term reflects
the quadratic shift [12]. Second, Green functions gT and gT̃ have a discontinuity at equal times. Their value here should respect
the convention taken when defining the time-ordering operator (see Appendix A).

A direct evaluation of Eq. (6) would give the Green function only at a single pair of fixed times t, t ′. In order to compute the
entire time dependence at once, Ref. [17] defined a kernel Kcb(u, t ′) = K (Z,Y ), with Z = (u, c), such that

G(X,Y ) = g(X,Y ) +
∑

Z

(−1)cg(X, Z )K (Z,Y ), (8)

where
∑

Z = ∫
du

∑
c. The explicit expression for K (Z,Y ) is found by expanding the first determinant in Eq. (6) by minors

along the first row

K (Z,Y ) =
∞∑

n=1

U n
∫

du1 . . . dun fn(Z,Y, u), (9)

fn(Z,Y, u) = (−1)c
n∑

p=1

∑
ap

(−1)apδ(Z,Up)W n
p (Y, u, ap), (10)

W n
p (Y, u, ap) = in

n!

∑
{ak }
k 	=p

(−1)
∑

k 	=p ak · (−1)p

[[
U1 , . . . . . . . . . . .,Un

(t ′, b), . . . ,��Up, . . . ,Un

]][[
U1, . . . ,Un

U1, . . . ,Un

]]
. (11)

The expression��Up denotes excluding the column correspond-
ing to this index from the determinant. It will also be useful
to define the kernel at each order Kn(Z,Y ), so that K (Z,Y ) =∑∞

n=1 Kn(Z,Y )U n.
In this paper, we focus on the retarded Green function

GR(t, t ′) = −iθ (t − t ′)〈{c0,↑(t ), c†
0,↑(t ′)}〉, (12)

where 〈. . .〉 represents the quantum average and {A, B} the
anticommutator between A and B. We aim to compute the
perturbation series

GR(t, t ′) =
+∞∑
n=0

GR
n (t, t ′)U n. (13)

As a consequence, we only need to consider 0 � t � t ′ = tM .
Throughout, we fix tM = 200/�.

B. Quasi Monte Carlo integration: Two algorithms

In this section, we discuss how to use low-discrepancy
sequences to compute the integrals in Eq. (9), which define
the kernel. We build on the work of Ref. [20] where QQMC
was used to compute single quantities, such as the charge on
the impurity or the current flowing through it, and we start
by briefly summarizing the approach. For a more detailed
explanation of QQMC, we refer to Ref. [20].

QQMC is a deterministic method which evaluates the
perturbation theory integrals such as in Eq. (6) at a given
expansion order n. Let us write such integrals schematically as

In =
∫

[0,tM ]n

dnuφn(u), (14)

where φn is a generic scalar function. We wish to evaluate
this expression using points in a low-discrepancy sequence
xi ∈ [0, 1]n. To modulate the density of samples with the
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amplitude of the integrand, the integral is warped [20], i.e.,
a change of variable u → x is applied to the integral. The
warped integral takes the form

In =
∫

[0,1]n

dnxφn[u(x)]

∣∣∣∣∂u
∂x

∣∣∣∣. (15)

This operation is meant to make the integrand as flat and
smooth as possible in the new variables, while allowing the
transformation of the sampling sequence xi → u(xi ) at low
computational cost. The motivation is that, unlike Monte
Carlo, the rate of convergence of quasi Monte Carlo improves
with the smoothness of the integrand. The change of variable
is derived from a model function pn(u) that approximates the
integrand amplitude |φn(u)| and is similar to a re-weighting
function in Monte Carlo methods. The change of variable is
defined implicitly by the model function [20], such that∣∣∣∣∂u

∂x

∣∣∣∣ = Cn

pn(u)
, Cn =

∫
dnxpn(u). (16)

Therefore, the integral reads

In = Cn

∫
dnx

φn[u(x)]

pn[u(x)]
, (17)

which is evaluated using the first M elements of a
low-discrepancy sequence {xi}

In ≈ Cn

M

M∑
i=1

φn[u(xi )]

pn[u(xi )]
. (18)

For fast convergence, the model function must capture both
the overall structure and asymptotic decay of the integrand
[20]. Consequently, the choice of the model function depends
on the parameters of the model, the perturbation order, and
the quantity to compute. This choice is made automatically
by a projection algorithm outlined in Ref. [20], related to
the VEGAS algorithms [27,28]. We refine this procedure
in the present work, as described in detail in Sec. III C. In
this work we use a Sobol’ sequence as the low-discrepancy
sequence. For error estimation, we use the standard technique
of randomized quasi Monte Carlo [29–32]: We compute
separate results from 10 randomized Sobol’ sequences and
take the standard deviation as an error estimate. We developed
two algorithms to compute the kernel with a low-discrepancy
sequence, which we now describe.

1. Single frequency algorithm

One way to apply QQMC to calculate the kernel is to com-
pute one frequency ω at a time. The retarded Green function
in the stationary regime reads [17]

GR(ω) = gR(ω) + KA(ω)†gR(ω), (19)

where the advanced kernel in the stationary limit is

KA(t ) = lim
t ′→+∞

[K00(t + t ′, t ′) − K10(t + t ′, t ′)]. (20)

Using the definition of K , Eq. (9), the perturbation series for
KA(ω) at order n reads

KA
n (ω) = lim

t ′→+∞

∫
du1 . . . dun

×
n∑

p=1

∑
ap

(−1)apW n
p (Y, u, ap)eiω(up−t ′ ). (21)

The integral is taken on the [0, t ′]n hypercube, and a large
value of t ′ approximates the stationary regime. Equation (21)
defines, for given ω and t ′, a standard n-dimensional integral.
It can be evaluated using any high-dimensional integration
technique, in particular QQMC. We will refer to this algo-
rithm, using QQMC, as the single frequency method.

2. Full kernel algorithm

In the single frequency technique, computation has to be
repeated for different frequencies. This may become a draw-
back if one is interested in a high resolution spectrum or a
large range of frequencies. This is why we consider a sec-
ond algorithm, referred to as full kernel method, where the
whole time-dependent kernel is computed at once. The idea
is reminiscent of the original usage of the kernel in Ref. [17]
but using quasi Monte Carlo and the warping technique of
QQMC. We integrate Eq. (9) for many values of Z using
a single Sobol’ sequence of vectors u. Because of the delta
function δ(Z,Up), each vector u provides values of Kn for 2n
different points Z (both Keldysh indices at each up). There is
therefore no unique scalar integrand.

How does the notion of warping generalize to such in-
tegrals? Although the integrand is not a conventional scalar
integral, we still need to provide a unique model function. To
do so, we consider at each order n a weight function

Wn(u) =
n∑

p=1

∑
ap

∣∣W n
p (Y, u, ap)

∣∣, (22)

which is independent of Z (note that Y is fixed). We note
that Wn was already used as the weight function in the Monte
Carlo1 of Ref. [17]. Since Wn is computationally expensive,
the QQMC model function pn is built as a low-rank approxi-
mation to it. Because this is independent of Z , we expect it to
be less efficient than model functions optimized for each fixed
value of Z .

With this model function, the warped integral

Kn(Z,Y ) = Cn

∫
dnx

fn[Z,Y, u(x)]

pn[u(x)]
, (23)

can be efficiently evaluated using a low-discrepancy sequence.
As already mentioned, each sample xi provides contributions
to Kn to 2n different values of Z . In practice, these are binned
into a histogram on a fine time mesh [17] (we use 50 000 bins).

1The algorithm of Ref. [17] actually sampled different orders n in
a single Markov chain and used a more generalized weight.
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C. Projection-based model function

We now turn to the choice of a model function pn, which
is crucial to the quality of the warping and the success of the
quasi Monte Carlo approach. We advise readers who prefer to
see results before methodological details to jump directly to
Sec. III D and read this section later.

To obtain a good approximation of Wn at a reasonable
computing cost, we use the projection technique described
in Ref. [20] (Sec. IX B of Supplemental Material). Here we
have made improvements, which allow it to be more robust
and automatic. Among them is using the model function of
one order as a starting point for the next order, thus reducing
considerably the effort of building high order model functions.
Our procedure forms a good warping for each order with only
one manually fixed parameter. In the following we summa-
rize the projection technique, describe these improvements,
and finally compare the model function created to the weight
function it approximates.

The warping procedure is a succession of three changes of
variable [20]

u → v → w → l . (24)

The components of u can be assumed sorted so that 0 < un <

. . . < u1 < u0 = t ′. The first change of variable is defined
simply by vi = ui−1 − ui > 0. It maps the u hypercube [0, t ′]n

into a simplex included in the v hypercube [0, t ′]n. During
the integration the full v hypercube is sampled, but the con-
tribution of points that lie outside the simplex is set to zero
in order to respect the integration domain [20]. In practice,
only a few percents of points are rejected this way. Indeed, the
distribution of points in the v hypercube is not uniform but
defined by the two next changes of variable.

The second change of variable v → w is defined by a
model function [20]

ppre
n (v) =

n∏
i=1

hpre
i,n (vi ), (25)

which approximates roughly the weight function Wn in the v

space. The v hypercube [0, t ′]n is mapped onto the w hyper-
cube [0, 1]n via

wi =
∫ vi

0
dy hpre

i,n (y). (26)

This model function aims at roughly capturing the long
time tails of the weight function and acts as an importance
sampling method for the construction of the last change of
variable. For this reason we call it preliminary model function.
The actual choice of hpre

i,n is detailed later in this section.
The last change of variable w → l is defined by another

model function

pproj
n (w) =

n∏
i=1

hproj
i,n (wi), (27)

which approximates the weight function Wn in the w space.
This time, however, hproj

i,n are constructed by projecting Wn(w)
on each axis of the w space

hproj
i,n (y) =

∫
[0,1]n

dnwWn(w)δ(wi − y). (28)

This construction is done by sampling the w hypercube with
a Sobol’ sequence, propagating the samples in the u space
where Wn can be computed with Eq. (22) and projecting the
resulting values into n different histograms. Each histogram
is made of Nbin = 500 bins. Because of the forms of the two
model functions, Eqs. (25) and (27), the composed change of
variable v → l is described by a model function of the same
form [20]

pn(v) =
n∏

i=1

hi,n(vi), (29)

hi,n(vi ) = hpre
i,n (vi ) hproj

i,n (wi ). (30)

We are only interested in having a good approximation of
Wn(w) in the part of the w space which is ultimately used
in the integration. Nevertheless, the projection Eq. (28) takes
the whole w hypercube [0, 1]n into account, so the values
of Wn outside the integration domain have an effect on the
final warping. When building the warping, these points are
evaluated and not set to zero.

Given that high accuracy is not necessary in this step, and
that there is no sign problem, we use only a few 106 eval-
uations to perform the projection. Therefore, the histograms
in which the projections are stored approximate the hproj

i,n at
coordinates y j = ( j − 1/2)/Nbin ( j = 1, . . . , Nbin) with the
addition of noise. To reduce this noise, we smooth them using
a local linear regression. This is less biased than the kernel
smoothing used in Ref. [20], in particular near the bound-
aries where the majority of the u hypercube is mapped into.
However, it can yield negative values, even when the input is
strictly positive. We therefore do the linear regression in log
space, to ensure the result to be strictly positive. To be precise,
we apply:

hproj
i,n (y j0 ) → exp(a j0 y j0 + b j0 ), (31)

where a j0 and b j0 are the slope and intercept of the weighted
linear regression of values log (hproj

i,n (y j )) at coordinates y j

with weight exp(−(y j − y j0 )2/λ2), for j = 1, . . . , Nbin. We
use λ = 0.01. Empty bins are ignored in the linear regression,
although a proper choice of hpre

i,n and enough sampling should
reduce chances that it happens.

Finally, it remains to define the hpre
i,n . These should be fast to

compute and capture roughly the long time tails of the weight
function, which take the largest part of the integration space.
As we generally compute order by order, we choose to reuse
the model function of order n − 1 to define the preliminary
model function of order n. Namely, we use:

hpre
1,1(v) = 1

(1 + v)
, (32)

hpre
i,n (v) = hi,n−1(v) for 1 � i < n, (33)

hpre
n,n(v) = hpre

n−1,n(v). (34)

We justify Eq. (33) by the observation that the projections of
the weight function on a given axis i are similar between adja-
cent orders. To complete the model, we duplicate the function
at i = n − 1 for i = n [Eq. (34)]. Indeed, we observed that at
any order the projection onto the last axes look very similar.
As the starting point of this recursive definition, hpre

1,1, we
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FIG. 1. The weight function Wn at order n = 4 (plain lines) com-
pared to its model function p4 built by the projection technique
(dashed lines), in the Ed = � case. These functions are shown along
several lines in the v space, parameterized by v and starting at
the point d = (2, 2, 2, 2). Despite the simplistic form of the model
function Eq. (29), it gives a good approximation in the low v region
and captures precisely the power law scaling of the long time tails.

chose an arbitrary analytic function—here an inverse function
[Eq. (32)].

The model function obtained with this method at order n =
4 is compared to the weight function in Fig. 1, in the Ed = �

case. Values along different lines in v space are displayed in
different colors. Values close to v = 0 are well approximated,
but a large difference appears in the large ‖v‖ tails. However,
it is remarkable, and very important for long time calculations,
that the model function captures the correct power law scaling
of these tails. The difference can be explained from the sim-
plicity of the model function Eq. (29), which does not capture
the full complexity of the weight function.

D. Results

Let us now apply QQMC to calculate the coefficients of
the retarded Green function GR

n (ω) of Eq. (1) in the per-
turbative expansion. Figure 2 shows the convergence of the
coefficients at order n = 5, 8 for three different frequencies
ω/� = 0.1, 0.8, and 5.0. Specifically, we show the evolution
of the absolute error with the number of function evaluations
N . Each panel shows the two different methods outlined in the
previous section—fixed single frequencies (blue curves) and
full kernel method (red curves). The errors are estimated by
taking the deviation of the value obtained for GR

n (ω) after N
samples (GN

n in the figure) from the final value at N = 108.
The final value Gfinal

n is taken to be the average of the last 106

values. To improve readability, we show an upper bound to the
error consisting of the maximum of a moving window around
N of fixed relative size (4% of N).

We focus first on the full kernel method. We observe that
the convergence is systematically better than 1/

√
N (dotted

line). It shows the best convergence in the top left panels

FIG. 2. Convergence of the absolute error of the coefficients GR
n (ω) calculated by QQMC with increasing number of function evaluations N .

The full kernel calculation (red lines) is compared to the single frequency integration Eq. (21) (blue lines). Three frequencies ω/� = 0.1, 0.8,
and 5.0 (columns) are shown at order n = 5 (top row) and n = 8 (bottom row). The model is the asymmetric one Ed = �. The scaling of
the error is systematically better than or similar to 1/

√
N (dotted black lines) and is close to 1/N (dashed black lines) at small frequencies,

reaching 1/N0.86 in the best case (black plain line in top left panel). For readability we show an upper bound to the error, see main text for
details, and for the error estimation method.
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FIG. 3. Self-energy series coefficients and absolute error, using
the full kernel method on the Ed = 0 impurity model. Top panels:
self energy coefficient at order 6 (left) and 10 (right), blue is the real
part, orange the imaginary part. Error bars are shown as a shaded
area. Bottom panel: absolute error at different orders n. We used 10
shifted Sobol’ sequences of 108 samples, and the error is the standard
deviation between their results.

(ω/� = 0.1 and 0.8, n = 5), where we observe convergence
with a clear power law 1/N0.86 (black line). In the other
panels (n = 8 or ω/� = 5), the convergence is slower but
never worse than 1/

√
N (dotted lines). The slowdown at large

order is expected, as it is more difficult for the model function
to capture the details of the integrand at high dimension.
Notice that at order n = 8, the convergence is characterized
by a slower rate for N < 3 × 106 than for N > 3 × 106. This
separation in two regimes was already observed in Ref. [20].

As the single frequency method computes a single integral,
it could be expected that the distribution of samples chosen
by the projection technique is more adapted than the distri-
bution used in the full kernel calculation. However, we see
no significant improvement in using the single frequency in-
tegration: Scalings are similar as well as absolute error values.
The similarity between both methods convergences show that
the weight function Eq. (22) is an efficient distribution for
computing all frequencies at once, given that we approximate
all distributions by a projection-based model function.

We now study the error as a function of frequency for
different orders. The lower panel of Fig. 3 shows the abso-
lute error in the self-energy coefficients n(ω) using the full

kernel method and N = 109 samples in the Ed = 0 case. The
self-energy is computed from the Green function series using
Dyson’s equation (ω) = gR(ω)−1 − GR(ω)−1. The error is
estimated here by taking the standard deviation of the results
of 10 randomized Sobol’ sequences. We see that the error is
frequency dependent, with a minimum at ω = 0 reaching as
low as a few 10−10 at large orders. The full kernel method
is therefore well suited for low frequencies. The error does
not change significantly as the order increases until n = 8, but
the coefficients decrease in absolute value by about an order
of magnitude each 1–2 perturbation order (see Appendix B).
Indeed, as the integration dimension increases, the relative
error of the integral deteriorates. The top panels show some
self-energy coefficients, with the error indicated as a shaded
area. Order 6 (left) is well resolved for all frequencies with
a significant signal. Order 10 (right) sees some deterioration
due to the higher integration dimension, but accuracy is still
good on a large range of frequencies. Only at high frequencies
(ω > 2�) does the relative error become too large.

In brief, Ref. [20] showed that evaluating at a low dis-
crepancy sequence of points makes it possible to compute
single observables with an error decreasing faster than 1/

√
N .

Here, we establish that this also holds for dynamical quantities
on a large range of frequencies, computed altogether with a
single sampling. We also show that the kernel technique is
well suited for that task, in particular at low frequencies.

IV. RESUMMATION WITH PADÉ APPROXIMANTS

In the previous section, we described how to compute the
frequency-dependent perturbation series coefficients GR

n (ω)
of the Green function. We showed that applying QQMC is
efficient in a large frequency range, and we observed con-
vergence scalings that outperform the 1/

√
N of conventional

Monte Carlo. This was enabled by the automatic construction
of a simple and computationally cheap—yet robust—model
function. We can now resum these series to obtain physical
quantities of interest. These can be compared with other nu-
merical methods, and we will perform a detailed comparison
between QQMC and FTPS in later sections. In this section, we
will discuss the series resummation of the Green function at
values of the interaction U beyond the radius of convergence.

There are several ways to perform resummation, with
different performance characteristics. In Ref. [16], some
of us designed a robust and general-purpose resummation
technique based on conformal transforms; these were bench-
marked on the Green function for an Anderson impurity
system similar to the model of Sec. II. Instead of repeating that
approach, we will perform resummation using Padé approx-
imants, which are a well-established method for analytical
continuation [19,33–35]. Here, we only provide a summary of
relevant aspects and refer to the literature [22] for a detailed
exposition. In our analysis, we resum the perturbation series of
the Green function GR(ω) at each frequency ω independently.

The Padé approximant of type [l/m] of a series is the
unique rational function P/Q, with P of degree at most l and
Q of degree at most m, whose Taylor expansion at the origin
matches the series up to the highest order possible [22]. When
the series represents a function f (U ), such an approximant
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FIG. 4. Depiction of the MPS used for an impurity model with a
small bath consisting of two sites. Note that the main idea of FTPS is
to separate the spin degrees of freedom (orbital degrees of freedom
in the multiorbital case). Note that the sites on the left and on the
right of the impurity do not correspond to the left or right lead as in
Eq. (2) but represent the two different spin degrees of freedom of the
equilibrium bath.

respects

P(U ) − f (U )Q(U ) = O(U l+m+1) (35)

and generalizes the truncated Taylor series as an approxima-
tion of f in the U complex plane. However, unlike Taylor
series, Padé approximants can capture the locations of poles
and can be accurate beyond the convergence radius [22].
The choice of l and m is important for obtaining a good
approximant. As the infinite U limit is known GR(ω) → 0, for
ω 	= 0, we impose the restriction m � l . For the purposes of
this paper, we choose the simplest Padé that was sufficiently
well matched with FTPS results presented below. Trying to
find this Padé in a way that is independent of FTPS results
is an involved process which we did not pursue here. The
convergence of approximants with increasing orders l and m
is discussed in Appendix D.

A recurrent issue with rational approximants is the oc-
currence of so-called defects or Froissart doublets [22,36].
They manifest as spurious poles, which destroy the reliabil-
ity of the approximant in a limited region of the complex
plane (see Appendix C 1 for an example), and should be
eliminated. We systematically employ a statistical treatment
allowing us to erase all defects that were an issue, described in
Appendix C 2.

V. FTPS

In recent years, tensor network (TN) methods—especially
those based on matrix product states (MPS)—have been
extensively applied to impurity problems [23,37–43]. They
allow for a systematically improvable representation of the
impurity problem at all energy scales as well as well-
developed approaches for real-time and imaginary time
evolution. Here, we benchmark our QQMC results with those
obtained from the fork tensor product states (FTPS) impurity
solver [23]. FTPS is a TN that is especially suited for multi-
orbital impurity problems and it can be used to compute the
impurity Green function on the real-frequency axis. This is
achieved by a density matrix renormalization group (DMRG)
[44,45] calculation for the ground state followed by a time
evolution in real time. For the single orbital model studied
in this work, FTPS reduces to a matrix product state (MPS)
as shown in Fig. 4, but we keep the term FTPS since certain
details of the algorithm used to solve the impurity problem
differ from standard MPS algorithms (see Appendix E).

A comparison of QQMC with FTPS is a fruitful endeavor
since the approximations made in the two algorithms are

drastically different. FTPS is nonperturbative and its accuracy
can be systematically improved. However, it is wave-function
based and therefore solves a discretized version of the An-
derson impurity model: A large but finite bath which consists
of Nb sites is used to represent the hybridization �R(ω) on
a regular energy grid. The effect of such a discretization is
that there exists a time tFTPS

max = πNb/D after which the Green
function shows finite size effects. Before that (t < tFTPS

max ),
finite size effects are very small and the result behaves like
the Green function of a model with the continuous bath. In
this work we use Nb = 409, so that tFTPS

max ≈ 112/� in our
parameters.

FTPS performs the computation in the so-called star
geometry representation of the bath [24,40,46,47]. In this rep-
resentation, each bath degree of freedom is coupled directly
to the impurity. Although this introduces long-range hopping
terms in the Hamiltonian, this representation is superior for
TN methods as it turns out [40].

We use FTPS to calculate the equilibrium
zero-temperature retarded Green function GR(t ) =
−iθ (t )〈ψ0|{c0,↑(t ), c†

0,↑}|ψ0〉 in real time. To compute GR(t ),
FTPS first computes the ground state |ψ0〉 using the density
matrix renormalization group (DMRG) and time evolves the
states with an additional impurity electron/hole using the
time dependent variational principle (TDVP) technique [48]
in its two-site variant. TDVP can be considered as a set of
coupled differential equations which are usually integrated in
a certain order to obtain an algorithm very similar to DMRG
[48]. FTPS uses a different integration order as discussed in
Appendix E.

Using this approach, we perform the time evolution up to
t = 40/� using a time step of �t = 0.05/�. To account for
the finite maximum time we Fourier transform with a modified
kernel eiωt−η|t |, which generates a Lorentzian broadening of
width η in energy space. For the models studied in this work,
the broadening is set to 0 for spectral functions, since the
Green functions in time decay rapidly enough (see Fig. 6).
For the impurity self-energy, on the other hand, broadening
is necessary because it is calculated from Dyson’s equation,
which requires the noninteracting Green function calculated
from the finite sized bath. This means that the noninteracting
Green function consists of Dirac deltas with energy difference
�ε = 2D

Nb
which turns out to be rather large in our parameters:

�ε ≈ 0.06� making some form of extrapolation necessary.
To obtain the η → 0 self-energy, we calculate it for var-

ious broadenings η and extrapolate each frequency point
towards η → 0 using a fourth order polynomial regression.2

We checked that this approach is consistent with the self
energy obtained from the η = 0 interacting Green function
and the continuous noninteracting Green function. The latter
yields worse self energies though, because Friedel oscillations
that are barely visible in the interacting Green function are
enhanced by the inversion in the Dyson equation.

2For this, every term in the Dyson equation needs to be evaluated
with the same value of η including the interacting Green function. To
actually perform the extrapolation, the η values we use are ten values
between 0.05 and 0.15.
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FIG. 5. Comparison between QQMC result after resummation
(plain line) and FTPS (dashed line), at U = 8� in the symmetric
case Ed = 0. Top panel: spectral function on the dot. Middle and
bottom panels: real and imaginary parts of the associated self-energy.
Shaded areas represent QQMC integration error estimate only (see
main text). QQMC used N = 109 function evaluations at each order.

The tensor network approximation used a truncated weight
of 10−12 (sum of all squared discarded Schmidt values) and
the maximal bond-dimensions were restricted to 300 for the
link connecting the two impurity degrees of freedom and 200
for all other links. We checked that the results are converged
with respect to larger bond dimensions and that they are con-
verged in the time step �t .

VI. COMPARING QQMC WITH FTPS

We now compare the results from the full kernel QQMC
with those from FTPS on the Anderson impurity model in the
Kondo regime. In this section, we show that the Green func-
tion perturbation series—calculated by QQMC—can produce
results that match FTPS when resummed with a simple Padé
approximant.

For each of the two cases, Ed = 0 and Ed = �, the re-
tarded Green function has been computed up to order n = 12,
and resummed in the frequency domain, as discussed above.
We use N = 109 function evaluations at each order; previous
calculations some of the authors made using a Markov chain

100 101

Γt

−0.20

−0.15

−0.10

−0.05

0.00

0.05

0.10
−iGR(t)

U/Γ = 8.0
Ed = 0

FTPS
QQMC

FIG. 6. Retarded Green function in time domain, in the Ed = 0
model at U/� = 8. FTPS (dashed line and symbols) yields valid
result only for a limited time, after which finite bath size effects
occur. Symbols are shown only at small times for readability. QQMC
(plain line) works directly in the thermodynamic limit, but may be
less accurate at short times (high frequencies). Due to particle-hole
symmetry, GR(t ) is pure imaginary.

Monte Carlo [16] obtained less accurate results with 30 times
more samples.

A. Symmetric model in frequency

Figure 5 shows results for the symmetric model (Ed = 0)
at U = 8�, deep in the Kondo regime. In this model, due to
particle-hole symmetry, the retarded Green function depends
on U 2 instead of U . Its series is resummed using the [2/4]
Padé approximant (in the U 2 variable) at low frequencies
|ω| < 2� and [2/3] at high frequencies. The high frequencies
series decreases faster with order, so that high order coeffi-
cients are not resolved, and an approximant of lower rank
is more accurate. The transition between the two Padés is
progressive over a range 0.25�.

The calculation of the coefficients GR
n (ω) is subject to an

error caused by the QQMC integration method, estimated as
explained in Sec. III D. In addition, the resummation of the
series produces another error, which is difficult to estimate as
it is linked to several factors (choice of Padé rank, finite pertur-
bation series, defects). The error bars in Fig. 5 (shaded area)
reflects the first error, propagated through the resummation,
as explained in Appendix C 2. Note that, as detailed in that
section, these error bars reflect not only the precision of the
series coefficients but also the extreme sensitivity of the Padé
approximant in these coefficients in the presence of a defect.

The density of states (top panel) displays the usual Kondo
effect features: a thin Kondo peak at the Fermi level and lower
and upper Hubbard bands centered around ω = ±U/2. The
agreement between the two methods is very good, except at
the tip of the Kondo peak. The Friedel sum rule [49] imposes
that in the Kondo regime −Im[GR(ω = 0)] = 1/�. It is re-
spected by QQMC (plain line) but not by FTPS (dashed line)
which lacks resolution at very low frequencies due to its finite
time limit.

The middle and lower panels show, respectively, the real
and imaginary parts of the self-energy, where the agreement
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is also good. Deviations around ω = ±3� are attributed, by
elimination of other possibilities, to the resummation error.
We expect this to improve by increasing the number of orders.
At larger frequencies |ω| > 5�, inaccuracies in the QQMC
integration are the cause of the disagreement, as can be seen
by the larger error bars. Although FTPS does not capture the
low energy Green function perfectly, it still captures the Fermi
liquid features, as it is much more precise in the low energy
self-energy. Indeed, in our experience the η extrapolation
works better in the self-energy than in the spectral function.
We speculate that this might be because the Kondo peak is
sharper than the low-frequency self-energy and therefore more
difficult to extrapolate.

B. Symmetric model in time

It is instructive to compare the Green function for the
symmetric model in the time domain, as shown in Fig. 6. The
Fourier transform of FTPS data suffer from an additional error
due to its finite time extent. Hence, we show here the FTPS
data before η extrapolation (dashed line and symbols, symbols
are shown only at small times for readability). The QQMC
data (plain orange line) is the same as in Fig. 5 after Fourier
transformation. Error bars have not been propagated through
this Fourier transform, as it would require knowledge of noise
correlations between frequencies, which has been lost during
the Padé resummation.

The QQMC result shows good agreement with FTPS, con-
cerning the large oscillations and the long time decay rate,
and out-range FTPS at long times (note the logarithmic time
scale). However, discrepancies can be seen in the high fre-
quency features. The difference in the two first oscillations is
linked to the mismatch in Fig. 5 around ω ≈ ±3�, already
discussed above. The small mismatch in the long time oscilla-
tions (�t > 3) is connected to frequencies near the bandwidth
ω ≈ ±D, where QQMC has lower resolution when calculat-
ing coefficients (see Fig. 3).

C. Asymmetric model

Finally, we consider the asymmetric model (Ed = �) at
U = 6�, for which the comparison in the frequency domain
is shown in Fig. 7. The resummation was done with the [6/6]
Padé approximant at low frequencies |ω| < 4� and [4/4] at
high frequencies. The same progressive transition has been
used as in the symmetric model.

In spite of the lower interaction, we still recognize the main
features of the Kondo regime in the density of states (upper
panel): the Kondo peak at the Fermi level and upper and
lower Hubbard bands at ω ≈ Ed ± U/2. As the Kondo peak
is broader than in Fig. 5, it is expected to be better captured
by FTPS than in the particle-hole symmetric case. The real
and imaginary parts of the self-energy (middle and lower
panels) show an overall good agreement. As in the particle-
hole symmetric case, large frequencies are more noisy in the
QQMC result, due to larger relative errors when calculating
coefficients.

VII. CONCLUSION

Using the recently developed QQMC method based on
low-discrepancy integration of Ref. [20], we computed a full

0.0

0.5

1.0

−I
m

[G
R
(ω

)]
Γ

U = 6.0Γ
Ed = Γ

FTPS
QQMC

1

2

3

4

R
e[

Σ
R
(ω

)]
/
Γ

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

ω/Γ

−2

0
Im

[Σ
R
(ω

)]
/Γ

FIG. 7. Comparison between QQMC result after resummation
(plain line) and FTPS (dashed line) at U = 6� in the asymmetric
case. Top panel: spectral function on the dot. Middle and bottom
panels: real and imaginary parts of the associated self-energy. Shaded
areas represent QQMC integration error estimation.

real-time Green function perturbation series in an interacting
quantum system. We compared two different algorithms that
adapt the kernel-based technique of Ref. [17], originally de-
signed with a Markov chain Monte Carlo integration. The first
one computes the kernel at a given frequency as a single in-
tegral, while the second computes its whole time dependence
at once using the same sampling of the integration space. We
optimize the QQMC integration by using a warping technique
which introduces information on the integrand in a problem-
independent way.

For both methods, switching from traditional Monte Carlo
to the novel QQMC brought an important speedup in the
calculation of the Green function perturbation series. This
is caused by an improved convergence, the error scaling in
the best cases as 1/N0.86, with N the number of samples.
In practice, we typically gain 2–3 orders of magnitude in
precision. More importantly, the switch to quasi Monte Carlo
opened up the possibility to further improve the convergence
rate. Indeed, unlike with Monte Carlo, this rate depends on
the smoothness of the integrand, which could be improved by
more advanced warpings.
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The full kernel method turns out to be superior to the
single frequency method, strengthening the idea that a single
sampling distribution can be used efficiently to compute a
continuum of correlators. Nevertheless, more advanced warp-
ings could change the ratio of performance in the future.

Applying this technique to a zero-temperature Anderson
impurity model, and after resummation of the Green function
series using Padé approximants, we compared the full kernel
QQMC result to the nonperturbative FTPS technique. This
comparison brought an overall very good agreement between
the two very different methods. The observed discrepancies
can be linked to limitations in both algorithms: The low fre-
quencies are better resolved by the kernel method due to the
long time limitation of FTPS, but the high frequencies are
more accurate in the FTPS results, probably due to biases
introduced by the resummation and integration noise. From
the FTPS viewpoint, this comparison showed that long time
Green functions results (up to t = 40/�) using only time
evolution, as well as low frequency self-energies are reliable.

The QQMC technique is versatile and can easily be
adapted to more complex systems such as multiband or
multiorbital impurity models, or lattice models, although per-
formance is still an open question. In addition, the integration
algorithm is highly automatic, thanks to the projection-based
technique for building tailormade warpings.

Further developments can be made to improve the current
algorithm for computing the Green function perturbation se-
ries. First, high frequency noise could be reduced by adapting
QQMC to computing the L kernel, as defined in Ref. [17].
Finally, as with the calculation of a single quantity, building
warpings that capture more features of the integrand would al-
low faster convergence, potentially allowing access to higher
perturbation orders.
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APPENDIX A: EQUAL-TIME GREEN FUNCTION: A TIME
SPLITTING IMPLEMENTATION

As mentioned in Sec. III A, care needs to be taken when
evaluating the Wick determinant, since the Green functions
gT (t, t ′), gT̃ (t, t ′) have a discontinuity at t = t ′. Here we elab-
orate on how to correctly address this problem.

First, the Green functions g(Uk,Uk ) along the diagonal of
the determinant correspond to Wick contraction of fermion
operators within the interacting Hamiltonian HI . These Green
functions are replaced by g<(uk, uk ) − iα. The choice g< re-
flects the correct operator ordering ∼c†c for each spin block
of HI ; the −iα term accounts for the quadratic shift.

Secondly, we encounter the situation where times u = v in
Green functions, which correspond to Wick contractions be-

tween operators between two Hamiltonians HI (u)HI (v). The
u → v limit is on the edge of the integration region in the
time ordered perturbative expansion and has measure zero.
For numerical evaluation of the integral, however, we want to
include this boundary and define it such that the u → v limit
is smooth.

A simple way to implement this smooth limit is to impose a
“time-splitting” procedure. Specifically, each time appearing
in Eq. (6) is associated with an additional splitting index,3

which can be appended to the combined index

X = (t, a) → (t, a, 0), (A1)

X ′ = (t ′, b) → (t ′, b, 0), (A2)

Uk = (uk, ak ) → (uk, ak, k). (A3)

The definition of the noninteracting Green function g is ad-
justed so that for any A = (u, a, s) and B = (v, b, r),

g(A, B) = lim
ε→0

gab(u + sε, v + rε). (A4)

In practice, the order of A and B on the Keldysh contour
is determined: first, by the Keldysh indices a, b; second, if
a = b, by the times u, v; third, if a = b and u = v, by the
splittings s, r. Thus, A = B if and only if Keldysh indices,
times, and splittings are equal. The Green function is then
unambiguously

g(A, B) =
{

g<(u, v), if A � B,

g>(u, v), otherwise. (A5)

APPENDIX B: PERTURBATION SERIES OF THE
SELF-ENERGY

The perturbation series for the self-energy in the symmetric
model (Ed = 0) is shown up to order 12 in Fig. 8. The real
part is in blue, the imaginary in orange. The estimated error
is shown as a shaded area. In this model, even orders are zero
due to the particle-hole symmetry.

The self-energy coefficients lose about one order of mag-
nitude in amplitude every 1–2 perturbation orders, providing
good convergence properties. To benefit from this, we need
to compute coefficients with an amplitude as low as 10−9 at
order 12.

APPENDIX C: DEFECTS IN PADÉ APPROXIMANTS

Froissart doublets or defects are known features of Padé
approximants [22,36]. They are produced when the approxi-
mant P/Q is close to a singular Padé approximant, in which a
root of P equals one of Q. The defect manifests as a localized
zero-pole pair, separated by a small distance δ. They pro-
duce dramatic variations when the approximant is evaluated
close by but has vanishing influence ∼δ/L at long distance L.
The location of defects can be very sensitive to accuracy on
the coefficients of the series. This can be a problem, if such
defects appear close to a region of interest.

3Note that t and t ′ don’t need to be distinguished, as gab(t, t ′)
appears only in disconnected diagrams at order >0.
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In our case, this causes extreme variance in the resumma-
tion of the series GR

n as ω varies and as the noise is changed.
Such instabilities are evidence of the presence of a defect and
should be eliminated. In this Appendix we start by illustrating
this sensitivity on a concrete example, then we present the
statistical treatment that we used to solve this problem.

1. Illustration of the susceptibility of Froissart doublets to noise

We look at the influence of uncertainty on the coefficients
GR

n (ω0), on the location of defects and the evaluation of
the Padé approximant. For in-depth mathematical studies of
the phenomenon on simpler series, we refer to the literature
[52,53].

We consider the asymmetric model (Ed = �) and the [5/5]
Padé approximant for a given frequency ω0 = −2.58�. We
generate a Gaussian noise in the series GR

n (ω0) that is compat-
ible with the QQMC error bars, ignoring correlations between
coefficients.

The location of the poles and zeros of the [5/5] Padé
approximant using 200 realizations of this noise are displayed
in Fig. 9 (lower panel). Poles are shown as orange triangles
pointing up and zeros as green triangles pointing down. Poles
and zeros that are suspected to be part of a defect are displayed
differently. If a pole and a zero of the same Padé are close
enough so that their symbols overlap (δ < 0.2�); they are
drawn in purple. Otherwise, if their separation is δ < �, they
are linked together by a black line.

A [5/5] Padé approximant has five poles and five zeros in
the complex plane. We can locate them in Fig. 9. We notice
immediately two poles (U/� ≈ 6 − 4i and U/� ≈ 1 + 5.5i)

and a zero (U/� ≈ 1.5 + 8i) that are stable. In addition, two
other stable structures (at U/� ≈ 2 − 5i and U/� ≈ −2.5 +
4i) are formed of pole-zero pairs and are probably defects.
These are far from the real axis so they do not affect strongly
the evaluation of the Padé approximant there. More interesting
is the last pair that spans a large region of the complex plane,
in particular many occurrences (but not all) have a modulus
<3/�. This defect is problematic as it may appear very close
to the real axis. Finally, a last zero spreads mostly out of the
shown area, at very large moduli.

The top panel of Fig. 9 shows the spectral function (beam
of blue lines), evaluated on the real U axis from the above-
mentioned Padé approximants, for each realization of noise.
Notice the stability of the evaluation for |Re[U ]/�| < 4, even
though several defects appear close to the real axis in this
range. However, these defects have an extremely small separa-
tion δ ∼ 10−5� compared to their distance from the real axis
L ∼ 10−1�. As U increases, the beam of lines spread further
but stay consistent with FTPS calculations (red crosses). How-
ever, a dozen among all 200 lines have dramatic variations,
inconsistent with the other lines or with FTPS. These are
caused by the defects observed close to the real axis in the
range 4 < Re[U ]/� < 8. These defects have a larger separa-
tion δ ∼ � and therefore a higher probability to be within a
few δ from the real axis.

As one can see, the defect causing wild variations of the
density of states has a strong probability to lie within a dis-
tance <3� of the origin, where it is observed not to affect
evaluation on the real axis. With the correct statistical treat-
ment, we can use this probability to our advantage to eliminate
the effect of this defect.
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FIG. 9. Distribution of poles, zeros, and pole-zero pairs of the
[5/5] Padé approximant of a noisy series (bottom panel) and corre-
sponding evaluation of the approximant on the real axis (top panel).
The series is GR

n (ω0) for the asymmetric model (Ed = �) with the
addition of different realizations of a Gaussian noise compatible with
QQMC error bars, with ω0 = −2.58�. Poles are orange triangles
pointing up; zeros are green triangles pointing down. Within each re-
alization of noise, pole-zero pairs which are close (separation δ < �)
are shown with a black line joining them. Purple symbols shows
pairs with a very small separation (δ < 0.2�, overlapping symbols),
a clear indication of a defect. These are spread out in a large region
of the complex plane. Occurrences near the real axis are not rare but
affect much more the evaluation of the approximant (blue lines in top
panel) in the range Re[U ]/� > 4 than Re[U ]/� < 4.

2. Statistical elimination of Froissart doublets

As we just saw, some defects—but not all of them—are
sensitive to the noise introduced by the integration method
in both QQMC and traditional Monte Carlo. These may be
statistically removed by averaging over this noise. If each
coefficient GR

n is known within an error bar δGR
n , we assume

it can be represented by a random variable following a normal
probability law centered on GR

n and of standard deviation δGR
n ;

we ignore potential correlations between orders. By sampling
the series coefficients from this distribution (in practice we
take 100 samples), we obtain as many Padé approximants,
which we evaluate at the target U . This gives a population
of resummed values at U , from which we take the median
of the real or imaginary part as the final resummed result.
The 15th and 85th percentiles are taken as the propagation

8 −6 −4 −2 0 2 4 6 8

ω/Γ
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Im[ΣR(ω)]/Γ

U/Γ = 6.0

[2/2]

[3/3]

[4/4]

[5/5]

FTPS

FIG. 10. Convergence of the self-energy (imaginary part) using
[m/m] Padé resummation of the Green function with increasing
m = 2, . . . , 5 (plain lines). The model is the Ed = � one at U = 6�.
Notwithstanding abrupt variations caused by defects in Padé approx-
imants, the sequence converges toward a result consistent with the
FTPS computation (dashed line). For clarity, only the error bar of
m = 5 is shown (pale red area). m = 2 and 3 errors are smaller than
the line width; m = 4 error is of the same magnitude as m = 5.

of the coefficients error bar (these percentiles correspond to
one sigma in the normal distribution). Note that these do not
contain the error made by the resummation itself.

The population of resummed values do not form a Gaus-
sian distribution, as would have been expected if using
conformal transforms. Padé resummation is a nonlinear pro-
cess and the presence of defects close to the target U brings
outliers. For these reasons, median and percentiles are pre-
ferred over average and standard deviation. Nonetheless, the
error bar obtained from percentiles still reflects the increased
sensitivity of the Padé approximant in the series coefficients,
in the presence of a defect near the target U .

Note that other defects may exist which are not susceptible
to variations of the coefficients within error margins. These
cannot be detected or eliminated statistically. Nevertheless, all
the results in this paper are resummed with a choice of l and
m which shows no sign of such a defect in the vicinity of the
target U .

Finally, we remark that by resampling the coefficients,
we neglected the correlations between them. This makes it
difficult to propagate error bars back in time domain after the
Padé resummation.

APPENDIX D: EMPIRICAL CONVERGENCE
OF PADÉ APPROXIMANTS

The convergence of a sequence of [l/m] Padé approx-
imants with increasing l and m is the subject of intense
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FIG. 11. Depiction of the TDVP sweeping order the time step to
time evolve from time t to t + �t . This picture is the equivalent of
Eq. (E3) and shows the terms that are being integrated on the left. The
steps shown start in the middle of the MPS (on the impurity site) and
move outwards the spin-up bath (see also Fig. 4). Yellow dots are the
sites that are updated in each step. As usual, two-site updates are in
the forward direction (negative exponent) while single-site updates
are in the backward direction (positive exponent). Note that this is
quite different from the usual TDVP given by Eq. (E3) which would
start with the middle term (P12) move upwards, but would do steps
(1–3) in a different order. See also Ref. [54] for more details.

mathematical research. No known result allows us to prove
that the approximants we consider in this work are part of a
uniformly converging sequence of functions.

However, we observe that several sequences of Padé ap-
proximants empirically converge, ignoring spurious peaks
caused by defects. Such a sequence is represented in Fig. 10.
The figure shows the imaginary part of the self-energy
at U = 6� obtained by resummation of the series GR

n (ω)

using [m/m] Padé approximants (plain lines). We show m =
2, . . . , 5; m = 6 is not displayed for clarity, as it is difficult to
distinguish from m = 5. The resummation follows the same
statistical treatment as described in Appendix C, to remove
the least stable defects. Some defects nevertheless survived,
as can be seen for instance around ω = −2.5� and ω = 0.8�,
in the [3/3] and [2/2] Padé approximants, respectively (strong
variations in the self-energy are correlated to strong variations
in the Green function). Ignoring these extreme variations, the
successive approximants seem to converge toward a result that
is consistent with the FTPS calculation (dashed line).

It is interesting to note that the [5/5] (as well as [6/6])
approximant seems free of defects, whereas lower order ap-
proximants are not. It is possible that the larger uncertainty
in the evaluation of large order GR

n (ω) make defects more
susceptible to our statistical treatment and as a result easier
to erase.

APPENDIX E: TDVP TIME EVOLUTION

The main idea behind the time dependent variational prin-
ciple (TDVP) is to find the best possible representation of
time evolved states represented as MPS. To do so it solves a
modified Schrödinger equation in which the right-hand side is
changed: H |ψ〉 → PH |ψ〉. The projection operator P projects
onto the so-called tangent space of the current MPS |ψ〉 and
keeps the time integration within the manifold spanned by |ψ〉
[48]. In the two-site variant of TDVP, P is given by [48]:

P =
N−1∑
i=1

Pi,i+1 −
N−1∑
i=2

Pi, (E1)

with so-called two-site projection operators Pi,i+1 and single-
site projectors Pi. The exact form of these operators is of
no relevance here and can be found in Ref. [48]. Their sole
purpose is to solve the Schrödinger equation only in the
subspace spanned by the MPS. The two-site projectors result
in the usual forward time propagation, while the single site
projectors stem from the gauge degree of freedom of the MPS
and make sure that entries are not time evolved twice. This is
achieved via a backwards time evolution with opposite sign
to the two-site projectors, see also Eq. (E2). Importantly this
means that the formal solution of the modified Schrödinger
equation is given by:

|ψ (t + �t )〉 = e−i(
∑N−1

i=1 Pi,i+1−
∑N−1

i=2 Pi )H�t |ψ (t )〉. (E2)

Every single term (e.g., e−iPi,i+1H�t or eiPi+1H�t ) can easily be
integrated nearly exactly using Krylov matrix exponentiation
but the whole sum is far too complicated to deal with at once.
Hence a second order Trotter decomposition is used to split
the whole exponential into manageable parts usually starting
with the two-site term containing P1,2 then P2, next P2,3, etc.:

e−i(
∑N−1

i=1 Pi,i+1−
∑N−1

i=2 Pi )H�t ≈ e−iP1,2H�t/2 · e−i(
∑N−1

i=2 Pi,i+1−
∑N−1

i=2 Pi )H�t · e−iP1,2H�t/2

≈ e−iP1,2H�t/2 · e+iP2H�t · e−i(
∑N−1

i=2 Pi,i+1−
∑N−1

i=3 Pi )H�t · e+iP2H�t · e−iP1,2H�t/2

≈ · · · ≈
(

N−2∏
i=1

e−iPi,i+1H�t/2 · e+iPi+1H�t/2

)
e−iPN−1,N H�t

(
1∏

i=N−2

e−iPi,i+1H�t/2 · e+iPi+1H�t/2

)
. (E3)
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Note that the indices of the products above are defined such
that the rightmost as well as the leftmost term is the one that
contains P1,2. Applying each operator in the order indicated
by Eq. (E3) results in the usual TDVP integration scheme
as proposed in Ref. [48]. It is worth noting that starting
the trotterization with the P1,2 term is a convenient choice
since it results in an algorithm very similar to DMRG, but
there is nothing preventing one from starting with any other
term.

In fact here, we use a different integration order as shown
in Fig. 11 which is the pictorial equivalent of Eq. (E3).
We start at one of the center sites which is the impurity
where the creation/annihilation operator is applied (sites 4
and 5 in Fig. 11), sweeping right, jumping back to the cen-
ter, and sweeping left. Again, since we use a second order
breakup, all steps have to be applied twice in an order result-
ing from repeated second order Trotter breakups similar to
Eq. (E3).

We choose this different integration order because a direct
application of Eq. (E3) would lead to large but unnecessary
errors, especially for large values of �t . If one were to use ex-
clusively Eq. (E3), the first few time steps would have to work
with an inadequate basis, because after the application of the
creation (annihilation) operator the remaining basis consists
only of states in which the impurity is completely full (empty).
It is known that TDVP is very susceptible to a too small num-
ber of basis states (bond dimension) [55] and therefore this in-
adequate basis leads to large errors in the first few time steps.
The scheme shown in Fig. 11 does not have this problem,
since it can produce the missing basis states in the very first
step (the P4,5 term in Fig. 11). We stress that the new scheme
is important only for the first few time steps. Equation (E3)
is perfectly adequate, although not better than the scheme of
Fig. 11, for larger times. Another reason for using this integra-
tion order is that it is easier to generalize to multiorbital prob-
lems which is the main purpose of the FTPS tensor network.
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