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We propose a universal method to detect the specular Andreev reflection taking the simple two-dimensional
Weyl nodal-line semimetal-superconductor double-junction structure as an example. The quasiclassical quanti-
zation conditions are established for the energy levels of bound states formed in the middle semimetal along a
closed path. The establishment of the conditions is completely based on the intrinsic character of the specularly
reflected hole which has the same sign relation of its wave vector and group velocity as the incident electron. This
brings about the periodic oscillation of conductance with the length of the middle semimetal, which is lacking
for the retro-Andreev reflected hole with the opposite sign relation as the incident electron. The positions of
the conductance peaks and the oscillation period can be precisely predicted by the quantization conditions. Our
detection method is irrespective of the details of the materials, which may promote the experimental detection of
and further research on the specular Andreev reflection as well as its applications in superconducting electronics.
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I. INTRODUCTION

Andreev reflection is the fundamental scattering process
in metal-superconductor (SC) heterojunctions, in which an
incident electron from the metal is reflected as a hole at the
metal-SC interface and a Cooper pair forms in the SC [1].
When bias is less than the superconducting gap, the Andreev
reflection dominates the conductance of the metal-SC hetero-
junction [2–4]. Furthermore, the Andreev reflection is also
responsible for various basic physical phenomena such as
the Josephson effects [5], the proximity effects [6], and the
odd-frequency pairings [7,8]. For a conventional metal (CM)
attached to a SC, the reflected hole moves back along the
trajectory of the incident electron. This type of Andreev reflec-
tion is called the retro-Andreev reflection (RAR). Recently,
with the rise of quantum materials, the so-called specular
Andreev reflection (SAR) was predicted in graphene [9]. In
the SAR process, an incident electron will be specularly
reflected as a hole. To date, the SAR was discovered and
studied extensively in monolayer graphene [10–17], bilayer
graphene [18–20], topological insulators [21], Weyl semimet-
als [22–24], nodal-line semimetals [25], etc.

The scattering processes of RAR and SAR are distinct,
but it is difficult to distinguish them from the conductance of
the metal-SC junction. For example, the conductance spectra
for the three-dimensional nodal-line semimetal-SC junction
possess the same characteristics as those for the graphene-SC
junction [25], although both RAR and SAR are present in the
former junction, while only RAR or SAR is possible in the
latter junction. It has been reported that the shot noise and
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Fano factor [26] or the Aharonov-Bohm oscillation [27] can
be used to characterize the transition between RAR and SAR
in graphene-based SC structures in the presence of ferromag-
netic exchange or external field. However, a more universal
method of SAR detection irrespective of specific materials is
still lacking.

The essential difference between RAR and SAR lies in
whether the sign relation between the wave vector and the
group velocity of the reflected hole is the same as that of the
incident electron. We assume the wave vector and the group
velocity of the incident electron are of the same (opposite)
sign; then if the two quantities of the reflected hole also have
the same (opposite) sign, SAR will happen. On the other hand,
if the two quantities of the reflected hole have opposite (same)
signs, RAR will happen. This is because the wave vector
component along the junction interface is conserved in the
scattering process.

Here, we propose a simple double-junction structure
(the metal-metal-SC junction) to detect SAR without
the help of external fields or other interactions that is
completely based on the intrinsic nature of SAR itself. The
formation of bound states in the middle metal region of
the double junctions is sensitive to the sign relations of the
reflected hole. The quasiclassical quantization conditions
for energy levels of the bound states are established. The
conditions are strongly dependent on the length of the
middle metal region for SAR but not for RAR, which
leads to the periodic oscillations of conductance when
SAR happens. The positions of oscillation peaks and
their period can be predicted precisely by the quantization
conditions. The establishment of the conditions is irrespective
of specific materials and supported by the numerical
results. However, to carry out numerical calculations, we
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FIG. 1. (a) The energy band of the WNSM for electrons. The
red arrows denote spin. The product of the wave vector and the
group velocity (the orange arrow) is positive for the spin-up elec-
tron. (b) The energy band of the WNSM for holes. The product of
the wave vector and the group velocity (the orange arrow) is also
positive for the spin-down hole. (c) The scattering processes in the
WNSM-SC junction. The Andreev reflection is of the purely specular
type. (d) The energy band of CM for electrons. The product of the
wave vector and the group velocity (the orange arrow) is positive for
the spin-up electron. (e) The energy band of the CM for holes. The
product of the wave vector and the group velocity (the orange arrow)
is negative for the spin-down hole. (f) The scattering processes in the
CM-SC junction. The Andreev reflection is of the purely retro type.

construct the double junctions using the recently realized
two-dimensional Weyl nodal-line semimetal (WNSM)
[28–31] in which the Andreev reflection is of the purely
specular type.

The rest of this paper is organized as follows. In Sec. II,
the SAR in WNSM-SC single junctions with different super-
conducting pairings and its dependences on the quasiparticle
energy, the incident angle, and the interfacial barrier are stud-
ied. The conductance spectra are presented and show the same
features as those for the RAR. Section III builds the quasi-
classical quantization conditions for different pairings in the
WNSM-WNSM-SC junctions. The oscillations of SAR and
conductance are presented and analyzed in detail, showing
the essential difference from those for the RAR. Section IV
gives some discussion on our proposed method, and Sec. V
concludes this paper.

II. SAR AND CONDUCTANCE IN THE WNSM-SC SINGLE
JUNCTION

We first study the two-dimensional WNSM-SC single
junction in the xy plane in order to demonstrate the behavior
of the SAR and its equivalent contribution to conductance as
the RAR. The junction consists of the semi-infinite WNSM
and SC, as well as an interface located at x = 0, as schemat-
ically shown in Fig. 1. The interfacial barrier is expressed as
U (x) = U0δ(x) by the Dirac delta function δ(x) and the barrier
magnitude U0.

A. Hamiltonian and wave functions for WNSM

The Hamiltonian in the spin space of electrons for WNSM
can be written as [31]

ĤW NSM (k) =
(

h̄2k2

2m − μW 0
0 − h̄2k2

2m + μW

)
. (1)

Here, m is the effective mass, μW is the material-dependent
parameter characterizing the size of the nodal line, and k =
(kx, ky) is the wave vector of electrons. Since the Hamiltonian
breaks the time-reversal symmetry, the spin degeneracy is
lifted. The dispersion for electrons is plotted in Fig. 1(a).

The Bogoliubov–de Gennes (BdG) Hamiltonian in the
particle-hole ⊗ spin space can be written as

ȞW NSM =
(

ĤW NSM (k) 0
0 −Ĥ∗

W NSM (−k)

)
. (2)

From the BdG Hamiltonian, it is easy to find that the spin-
down (spin-up) hole has the same sign relation of the wave
vector and the group velocity as the spin-up (spin-down) elec-
tron. For example, both the wave vector and group velocity of
the left-going (right-going) spin-down hole are negative (pos-
itive), and their product is positive regardless of the moving
direction, as shown in Fig. 1(b). For the spin-up electron, the
product of the wave vector and group velocity is also positive
[see Fig. 1(a)], which is the same as that of the spin-down
hole. Because the signs of the product for the spin-up electron
and spin-down hole are the same, the Andreev reflection in the
WNSM is the SAR, as shown in Fig. 1(c).

The sign relation for a CM is totally different. Consider a
CM with the BdG Hamiltonian

ȞCM (k) =
(

ĤCM (k) 0
0 −Ĥ∗

CM (−k)

)
, (3)

in which ĤCM (k) = ( h̄2k2

2m − μN )12×2, with 12×2 being the 2 ×
2 identity matrix. The product of the wave vector and group
velocity for the spin-up electron is positive [see Fig. 1(d)],
but the product for the spin-down hole is negative [Fig. 1(e)].
This sign difference leads to the Andreev reflection being the
RAR, as shown in Fig. 1(f). In fact, the same (opposite) sign
relation for the incident electron and the reflected hole is the
intrinsic character of the SAR (RAR), which is independent
of the specific material [9,10]. In this paper, we will propose
a method to detect the SAR and RAR based on the same and
opposite sign relations.

By solving the BdG equation ȞW NSM (−i ∂
∂x , ky)ψ (x) =

Eψ (x) with the substitution of −i ∂
∂x for kx, the wave functions

for electrons and holes can be obtained. Due to the translation
invariance of the junctions along the y axis, the component
ky is conserved in the scattering processes. When a spin-up
electron is injected from the WNSM to the interface, both the
spin-down hole and spin-up electron are specularly reflected.
The wave function in the WNSM with x < 0 is solved as

ψ1 =
(

1
0

)
eike↑

x x + a↓

(
0
1

)
e−ikh↓

x x + b↑

(
1
0

)
e−ike↑

x x, (4)

with the SAR coefficient a↓ and the normal reflection co-
efficient b↑. The wave vectors are given by ke↑

x (kh↓
x ) =√

2m
h̄2 (μW + E ) − k2

y , with ky =
√

2m
h̄2 (μW + E ) sin θ . The
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angle θ is the incident angle of the electron, as shown in
Fig. 1(c). The wave function ψ2 for the spin-down electron
incidence can be obtained in a similar way. We use a↑ and
b↓ to denote SAR and the normal reflection in this scattering
process, respectively.

B. Hamiltonian and wave functions for SC

For SC, we consider the s-wave, d-wave, and chiral p-wave
pairings. The BdG Hamiltonian for the SCs is given by

HSC =
(

ε̂(k) �̂(k)
−�̂∗(−k) −ε̂(−k),

)
, (5)

where the single-particle energy ε̂(k) = ( h̄2k2

2m − μS )1̂2×2, the
energy matrix �̂(k) = �0 f (k)iσ̂y for the s-wave or d-wave
SC, and �̂(k) = �0 f (k)σ̂x for the p-wave SC. Here, σ̂x and
σ̂y are Pauli matrices in spin space. For the s-, dx2−y2 -, and
dxy-wave pairings [32,33], f (k) = 1, k̂2

x − k̂2
y , and 2k̂xk̂y, re-

spectively, while for the p-wave pairing [33,34], f (k) = k̂x +
ik̂y. The effective mass for SCs has been taken to be the same
as that for the WNSM, and μS is the chemical potential.

By solving the BdG equation, we can obtain the wave
functions in the SC region with x > 0. For the spin-up electron
incidence, the function is written as

	1 = c↑

(
u+eiφ+

v+

)
eikxx + d↓

(
v−eiφ−

u−

)
e−ikxx. (6)

Here, c↑ and d↓ represent the transmissions as an electron-
like quasiparticle and a holelike quasiparticle, respectively.
The wave vector is kx =

√
2m
h̄2 μS − k2

y under the Andreev
approximation [1]. For the s-wave and p-wave SCs, u+/− =√

E+�
2E , and v+/− =

√
E−�

2E , with � =
√

E2 − �2
0 . For the

d-wave SC, u± =
√

E+�±
2E , and v± =

√
E−�±

2E , with �± =√
E2 − �2

± . The direction-dependent energy gap �± =
�0 cos [2(θs ∓ β )], where θs is the transmission angle for
electronlike quasiparticles and β is the angle between the
interface normal and the crystallographic a axis of the d-wave
SC. The angle θs can be expressed by θ under the conservation
of ky. For the dx2−y2 -wave SC, β = 0, and for the dxy-wave SC,
β = π

4 . The internal phase factors eiφ± are 1, cos(2θs∓2β )
| cos(2θs∓2β )| , and

± cos θs+i sin θs
| cos θs+i sin θs| for the s-wave pairing, the d-wave pairing, and
the p-wave pairing, respectively. For the spin-down electron
incidence, the wave function 	2 for SC can be derived in a
similar way.

C. Boundary conditions and conductance

The boundary conditions which ensure the probability con-
servation for the WNSM-SC single junction are given by

ψ1(2)|x=0− = 	1(2)|x=0+ ,

	 ′
1|x=0+ − τ̂zψ

′
1|x=0− = 2mU

h̄2 ψ1|x=0,

	 ′
2|x=0+ + τ̂zψ

′
2|x=0− = 2mU

h̄2 ψ2|x=0,

(7)

with τ̂z being the Pauli matrix in the particle-hole space. Under
the boundary conditions, the reflection coefficients a↑, a↓, b↑,
and b↓ can be solved (see the Appendix).

We define the probabilities for SAR and the normal reflec-
tion as

A↑ = Re

[
kh↑

x

ke↓
x

]
|a↑|2, B↑ = |b↑|2, (8)

A↓ = Re

[
kh↓

x

ke↑
x

]
|a↓|2, B↓ = |b↓|2. (9)

According to the Blonder-Tinkham-Klapwijk theory [2], the
conductance can be expressed as

σ↑ = 1 + A↓ − B↑, (10)

σ↓ = 1 + A↑ − B↓, (11)

which are caused by the spin-up electron incidence and the
spin-down electron incidence, respectively. The total conduc-
tance normalized by the normal conductance is given by

σ (eV ) =
∫ π/2
−π/2(σ↑ + σ↓) cos θdθ∫ π/2

−π/2(σn↑ + σn↓) cos θdθ
, (12)

where σn↑ and σn↓ are the conductances when SCs are in
the normal state and V is the bias of the junction. Note that
the zero-temperature conductance is considered in this paper.
In this situation, we have the relations E = eV and σ (E ) =
σ (eV ), in accordance with the Blonder-Tinkham-Klapwijk
theory [2].

D. Numerical results

For simplicity, we set μW = μS = μ in our calculations.
The mismatch between μW and μS will suppress the conduc-
tance but will not fundamentally change our physical results.
Since the conductances are independent of the spin of the
incident electron, we show only the numerical results of prob-
ability A↓ for the spin-up electron incidence. We define the
effective interfacial barrier as z = 2mU0

h̄2kF
, with kF =

√
2mμ

h̄2 .
Now, we discuss the incident angle θ and the quasiparticle

energy E dependences of SAR. For the transparent junction
with z = 0, the subgap SAR probability A↓ for the s-wave
and p-wave SCs is always 1, irrespective of θ and E . This
will lead to a normalized conductance value of 2 in the whole
gap. However, for the d-wave SCs, the θ -independent SAR
with A↓ = 1 happens only at E = 0. As a result, the zero-bias
conductance (ZBC) is still 2, but the conductance for eV > 0
is suppressed.

For the nonzero interfacial barrier with z 	= 0, we present
the SAR probabilities for z = 1 in Fig. 2. For the s-wave
pairing in Fig. 2(a), it is found that the probability A↓ is
dramatically weakened for the small energy near E = 0 com-
pared with the SAR of z = 0. When the incident energy E
is increased from zero to �0, the SAR probability tends to
1. This means the conductance increases with the bias in the
gap. A similar thing happens for the dx2−y2 -wave pairing in
Fig. 2(b). The conductance spectra at z = 0 and z = 1 for the
s-wave and dx2−y2 -wave pairings are shown in Figs. 3(a) and
3(b). The behaviors of the conductance are consistent with the
above analyses of SAR. The situations for the dxy-wave and
p-wave pairings become very different. The SARs are reduced
near E = �0 when one increases z from 0 to 1, but they keep
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FIG. 2. The incident angle θ and the incident energy E depen-
dences of the SAR probability at z = 1 for (a) the s-wave pairing,
(b) the dx2−y2 -wave pairing, (c) the dxy-wave pairing, and (d) the
p-wave pairing.

the value A↓ ∼ 1 in a large range of the incident angle near
E = 0, as shown in Figs. 2(c) and 2(d). The conductance will
decrease as the bias is increased in the gap. The conductance
spectra for z = 0 and z = 1 are shown in Figs. 3(c) and 3(d).

If the interfacial barrier continues to increase, for example,
to z = 3, the features of SAR presented in Fig. 2 will become
more obvious. The resulting conductance spectra are plotted
in Figs. 3(a)–3(d) for different pairings. For the s-wave and

σ
σ

Δ
0

Δ
0

FIG. 3. The normalized conductance spectra at different interfa-
cial barriers for (a) the s-wave pairing, (b) the dx2−y2 -wave pairing,
(c) the dxy-wave pairing, and (d) the p-wave pairing.

FIG. 4. (a) Schematic illustration of the WNSM-WNSM-SC
double junctions and the scattering processes in the middle WNSM
for the electron incidence from the left WNSM. The group velocities
are denoted by blue lines which form a closed path. Along the path,
the wave vectors are denoted by red lines. (b) The same closed path
(blue lines) and the corresponding wave vectors (red lines) along
the path in the CM-CM-SC double junctions. The solid lines are for
electrons, and the dashed lines are for holes. Here, the directions of
the wave vectors for holes in (a) and (b) are opposite.

dx2−y2 -wave pairings, the shapes of the conductance evolve
towards the bulk density of states of SCs [2,35]. For the dxy-
wave and p-wave pairings, the conductance possesses ZBC
peaks, which characterize the existence of the bound states at
the surface of SCs [36]. It can be concluded that SAR can
reflect the anisotropic properties of SCs as well as RAR.

The SAR in the WNSM-SC single junction possesses the
same features as the RAR in the CM-SC single junction.
Beneficially, we can obtain the same amplitude for SAR in
a WNSM as that of RAR in a CM. Unfortunately, as an ob-
servable quantity, the conductance of the WNSM-SC junction
has the same form as that for the CM-SC junction [2,35,37].
This indicates the contributions of the SAR and RAR to the
conductance are equivalent. It is difficult to distinguish the
two types of reflections by measuring the electric transport
of the single-junction structure.

III. DETECTION OF SAR IN WNSM-WNSM-SC
JUNCTIONS

In order to distinguish SAR and RAR, we consider
the WNSM-WNSM-SC double-junction structure shown in
Fig. 4. The two interfaces are located at x = 0 and x =
L, whose potential can be described by U (x) = U1δ(x) +
U2δ(x − L). When an electron is injected from the left
WNSM, it will transmit into the middle WNSM through the
interface at x = 0. The transmitted electron impinges on the
interface at x = L and is specularly reflected as the left-going
hole. The left-going hole is normally reflected as the right-
going one at the interface with x = 0 and then specularly
reflected as the left-going electron at the interface with x = L.
The left-going electron will be normally reflected as the right-
going one at the interface x = 0. After two SARs and two
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normal reflections, a closed path of the quasiparticle motion
is formed, as depicted in Fig. 4(a).

A. z2 = 0

We first consider the junctions with z2 = 0 to clarify the ba-
sic physics. For the s-wave and dx2−y2 -wave SCs, if the phase
accumulated along the closed path satisfies the quasiclassical
quantization condition,

−
∑
α=±

arccos
E

|�α| + 2
(
ke↑

x + kh↓
x

)
L = 2nπ, (13)

with n being an integer number, the energy levels of bound
states will be formed. For the s-wave pairing, �± = �0,
while for the dx2−y2 -wave pairing, �± = �0 cos(2θ ∓ 2β ),
with β = 0. The wave vectors ke↑

x and kh↓
x are the ones in

Eq. (4). The first term in Eq. (13) is acquired from the An-
dreev reflection (see the Appendix for details). The second
term originates from the motion of quasiparticles along the
closed path. For the zero-energy bound state with E = 0 and
the normal incidence with ky = 0, the quantization condition
degenerates into

kF L = (2n + 1)π

4
, (14)

with kF =
√

2mμ

h̄2 . This indicates the ZBC of the junctions will
oscillate with the length L of the middle WNSM. The peaks
of the ZBC appear at kF L = π

4 , 3π
4 , 5π

4 , . . . . The oscillation
period defined as the space between the neighboring peaks is
�kF L = π

2 .
For the dxy-wave and p-wave SCs, the quasiclassical quan-

tization condition becomes

π −
[∑

α=±
arccos

E

|�α| + 2δθ

]
+ 2

(
ke↑

x + kh↓
x

)
L = 2nπ,

(15)

where �± = �0 and δ = 1 for the p-wave SC, while �± =
�0 cos[2(θ ∓ β )], with β = π

4 and δ = 0 for the dxy-wave SC.
The difference between Eqs. (13) and (15) is caused by the
anisotropy of the p-wave and d-wave SCs (see the Appendix
for details). The phase (− arccos E

|�+| − δθ ) is acquired by
the SAR with the conversion from an electron to a hole,
while the phase (π − arccos E

|�−| − δθ ) is acquired by the
SAR with the conversion from a hole to an electron, as shown
in Fig. 4(a). For the s-wave and dx2−y2 -wave SCs, the two
phases are the same. According to Eq. (15), the zero-energy
levels for the normal incidence (θ = 0) can be formed when

kF L = 2nπ

4
, (16)

which indicates the peaks of the ZBC appear at kF L =
0, π

2 , π, . . . . The oscillation period is �kF L = π
2 .

The expressions in Eqs. (13) and (15) are our critical re-
sults which can be used to distinguish SAR from RAR. The
key point is the presence of the term 2(ke↑

x + kh↓
x )L derived

from the integration of wave vectors along the closed path.
This term embodies the intrinsic character of the specularly
Andreev reflected hole. For the spin-up electron in the middle
WNSM, its wave vectors and its group velocities have the

FIG. 5. The length kF L and the incident angle θ dependences of
SAR at E = 0 for (a) the s-wave pairing and (b) the dxy-wave pairing.
(c) The oscillation of the ZBC as the length kF L for the s-wave pair-
ing and the dxy-wave pairing in the WNSM-WNSM-SC junctions.
The effective interfacial barriers are taken as z1 = 5 and z2 = 0. The
width-independent straight dashed lines denote the ZBCs for the
s-wave pairing (the lower one) and the dxy-wave pairing (the upper
one) in the CM-CM-SC junctions under the same parameters.

same sign; that is, they are in the same direction [see Figs. 1(a)
and 4(a)]. The specularly reflected spin-down hole also pos-
sesses the relation. Its wave vectors and group velocities are
also in the same direction, as shown in Figs. 1(b) and 4(a).
As a result, along the closed path, the phase acquired by the
motion of the hole is 2kh↓

x L when the phase for the electron is
2ke↑

x L.
However, the case for RAR in CM-CM-SC double junc-

tions is not the same since the retro-Andreev reflected hole
has a sign relation opposite that of the incident electron, as
shown in Figs. 1(d), 1(e), and 4(b). For the spin-up electron
in the middle CM, its wave vectors and its group velocities
have th same sign, but the wave vectors and group velocities
of the retroreflected hole have opposite sign [38–40]. Along
the closed path, the phase acquired by the motion of the hole is
−2kh↓

x L when the phase for the electron is 2ke↑
x L. For E = 0,

we have ke↑
x = kh↓

x exactly. The phase from the quasiparticle
motion is zero. The quantization condition is independent of
the length of the CM. There is no oscillation effect for the
ZBC. Even if E 	= 0, the conclusion still holds as long as E is
much smaller than the chemical potential.

To support our physical analyses, we calculate numerically
SAR and conductance in WNSM-WNSM-SC double junc-
tions. We define the effective interfacial barriers as z1 = 2mU1

h̄2kF

and z2 = 2mU2

h̄2kF
. In the calculations, z1 = 5 and z2 = 0 are

taken. Figures 5(a) and 5(b) show the length and the incident
angle dependences of SAR at E = 0 for the s-wave pairing
and the dxy-wave pairing, respectively. For kF L → 0, SAR is
almost completely suppressed for the s-wave pairing, while it
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can occur for the dxy pairing. The former corresponds to the
ZBC near zero, and the latter corresponds to the ZBC peak.
These results are consistent with the results of the WNSM-SC
single junction as given in Figs. 3(a) and 3(c).

The oscillation of the SAR probabilities with the length of
the middle WNSM is very obvious for a given incident angle
θ , which can be well explained by the quantization conditions
(13) and (15). The bright fringes demonstrate the formation of
the zero-energy bound states. Each bright fringe corresponds
to an integer number n. From the bottom to the top, n is
0, 1, 2, . . . . For a certain bright fringe with number n, it bends
in the direction of the length increase as the incident angle
is raised. This is because the wave vectors ke↑

x and kh↓
x are

reduced when one raises the incident angle θ . According to
Eqs. (13) and (15), we need to enlarge the length L to ensure
the establishment of the equations with a fixed number n.

Figure 5(c) presents the conductance integrated about θ for
the s-wave pairing and the dxy-wave pairing. Although the
integration about θ will bring about broadening of the ZBC
peaks, the positions of the peaks still fit Eqs. (14) and (16)
very well. The π

4 shift of the peaks for the dxy pairing relative
to those for the s-wave pairing is derived from the extra π

phase in Eq. (15) due to the anisotropy of the d-wave SC.
This shift also shows itself in SAR, as shown in Figs. 5(a)
and 5(b). The SAR and ZBC for the dx2−y2 -wave and p-wave
pairings are not presented here since the former is similar to
that of the s-wave case and the latter is similar to that of the
dxy-wave case. In addition, the measurement of the period of
the discrete ZBC peaks can provide immediate information
about the nodal-line size in the WNSM.

For comparison, we also present the ZBCs of the CM-
CM-SC junctions for the s-wave pairing (the lower straight
dashed line) and the dxy-wave pairing (the upper straight
dashed line) in Fig. 5(c). They are both independent of the
width of the middle CM, as we have discussed. Actually, the
width-independent RARs for the zero energy in the CM-CM-
SC junctions are heavily suppressed for the s-wave pairing by
the high barrier with Z1 = 5, while the probability of RAR
is still 1 for the dxy-wave pairing. Accordingly, the ZBC for
the s-wave pairing is almost zero, and that for the dxy-wave
pairing has a peak with a large value. In Fig. 5(c), the value
for the lower dashed line has been magnified 80 times, and
the value for the upper dashed line has been reduced 5 times.
These behaviors of RAR and ZBC for the CM-CM-SC double
junctions are the same as those for the CM-SC single junction
but totally different from the features for the WNSM-WNSM-
SC double junctions.

B. z2 �= 0

Finally, we consider the more realistic junctions with z2 	=
0. Figure 6 shows SAR probabilities and the ZBC for z1 = 5
and z2 = 2 at E = 0. For the dxy-wave pairing, both SAR and
ZBC oscillations remain virtually unchanged, including the
positions of peaks and the period. However, there are signif-
icant changes for the s-wave pairing. First, the ZBC peaks,
which have been magnified 10 times in Fig. 6(c), are greatly
weakened. Second, the distribution of peaks is no longer uni-
form. The space between the 2nth and the (2n + 1)th peaks
with n � 1 becomes small. This can also be seen from the

FIG. 6. The length kF L and the incident angle θ dependences of
SAR at E = 0 for (a) the s-wave pairing and (b) the dxy-wave pairing.
(c) The oscillation of the ZBC as the length kF L for the s-wave
pairing and the dxy-wave pairing. The effective interfacial barriers
are taken as z1 = 5 and z2 = 2.

SAR probability in Fig. 6(a). Actually, the space will get
smaller and smaller as z2 increases. Two neighboring peaks
will form a main peak with a split when z2 is large enough, for
example, z2 = 5. The two changes result from the suppression
of SAR and the enhancement of normal reflection of the s-
wave pairing when the effective barrier z2 is raised at E = 0.

The normal reflection in the middle WNSM also leads
to conductance oscillation. Two normal reflections, one at
x = 0 and the other at x = L, will form a closed path. The
quasiclassical quantization condition is simply kF L = nπ for
the normal incidence with θ = 0. Hence, the positions of the
main peaks are located at kF L = 0, π, 2π, . . . . Each main
peak possesses two split peaks from SAR. A similar thing also
happens for the dx2−y2 -wave and p-wave pairings. However,
the peaks for the p-wave pairing are not weakened as much
since there is still a range of incident angle for strong SAR
at E = 0, as given in Fig. 2(d). The situation is different
for the dxy-wave pairing in which ZBC peaks from SAR can
survive even if z2 = 5. The total SAR at E = 0 is unaffected
by the interfacial barrier, as shown in Fig. 2(c). In brief, the
SAR-induced oscillation is completely distinguishable for all
pairings, at least when z2 � 2. For larger z2, the split of main
peaks is still a strong signal for SAR.

IV. DISCUSSIONS

Let us have a short discussion of the detection of SAR in
other materials. For the WNSM here, we study the behaviors
of the ZBC, which are related to the formation of zero-energy
Andreev levels. In this situation, the conductance oscillates
for SAR, but it does not do so for RAR. However, the zero
energy is not the necessary requirement to distinguish the
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two Andreev reflections. Even if the finite bias conductances
with E 	= 0, which will oscillate both for RAR and SAR,
are considered, their oscillation behaviors are still distinct.
The key is that the quantization conditions for the levels
of Andreev bound states are different for RAR and SAR
due to their intrinsic characters. The conditions will form
different Andreev levels for RAR and SAR in the junction
parameter space which can show themselves in conductances
and be detected. For materials such as monolayer graphene
[9], bilayer graphene [19], topological insulators [21], and
nodal-line semimetals [25], the establishment of quantization
conditions could be a little more complicated, but our method
is still effective and can still predict some distinguishable
features for RAR and SAR.

Finally, we discuss the difference between the CM-CM-SC
(WNSM-WNSM-SC) junctions and the SC-CM-SC (SC-
WNSM-SC) junctions to show that the proposed method to
distinguish the RAR and SAR can work in only the WNSM-
WNSM-SC junctions. Actually, for clean SC-CM(WNSM)-
SC junctions with transparent interfaces, the quantization
condition for the Andreev levels can be simply written as
(here, we take the s-wave SC as an example) [38]

−2 arccos
E±

n

�0
± ϕ + (

ke↑
x − kh↓

x

)
L = 2nπ (17)

for the RAR with the superconducting phase difference ϕ, and
the quantization condition is

−2 arccos
E±

n

�0
± ϕ + (

ke↑
x + kh↓

x

)
L = 2nπ (18)

for the SAR. Although the quantization conditions in Eqs.(17)
and (18) are similar to that in Eq. (13), this does not mean that
the Josephson current from the RAR in the SC-CM(WNSM)-
SC junctions is not dependent on the length L because the
Josephson current includes contributions from all Andreev
bound states with E±

n < 0 even at zero temperature. From
Eq. (17), the formation of the zero-energy level E = 0 is
irrespective of the length L, but the levels with E 	= 0 are
dependent on the length L, leading to the Josephson current
depending on the length L also.

V. CONCLUSIONS

We proposed a more universal method to detect SAR by
using the semimetal-semimetal-SC double-junction structure.
The method is completely based on the intrinsic character
of the specularly reflected hole in SAR, which has the same
sign relation for the group velocity and the wave vector as
the incident electron. However, the sign relation for the retro-
Andreev reflected hole in RAR is the opposite. This essential
difference between SAR and RAR can be perceived subtly
by the accumulated phase of the quasiparticle motion along
a closed path in the middle semimetal. By establishing the
quasiclassical quantization conditions for the energy levels
of bound states, one finds the ZBC from SAR periodically
oscillates with the length of the middle region, while that from
RAR does not. Further, the positions and the period of ZBC
peaks can be predicted precisely with the quantization condi-
tions. This provides strong distinguishable signatures of SAR.
Actually, even though the phases acquired by the electron and

hole do not cancel for RAR at nonzero incident energy, the
oscillation features of the ZBC, including the positions and
period of peaks, are still recognizably different from those for
SAR.
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APPENDIX

1. Derivation of the quasiclassical quantization conditions

Using the boundary conditions in Eq. (7), the SAR and nor-
mal reflection coefficients for the spin-up electron incidence
in the WNSM-SC junction are solved as

a↓ = 4kxke↑
x u−v+

k2
x ξ− + kx

(
ke↑

x + kh↓
x

)
ξ+ + (

z − ike↑
x

)(
z + ikh↓

x
)
ξ−

,

b↑ = kx
(
ke↑

x + kh↓
x

)
ξ+ − k2

x ξ− + (
ke↑

x − iz
)(

kh↓
x − iz

)
ξ−

k2
x ξ− + kx

(
ke↑

x + kh↓
x

)
ξ+ + (

z − ike↑
x

)(
z + ikh↓

x
)
ξ−

,

(A1)

with ξ± = u+u−eiφ+ ± v+v−eiφ− .
We consider the transparent junction with z = 0. Under the

Andreev approximation, we take kx = ke↑
x = kh↓

x . The SAR
coefficient degenerates to

a↓ = v+
u+

e−iφ+ . (A2)

For the s-wave and dx2−y2 -wave pairings, a↓ = e−i arccos E
|�+| ,

with E < |�+|. The expression implies a phase of
(− arccos E

|�+| ) is acquired by the specularly reflected hole in
the SAR process. For the dxy-wave and p-wave pairings, the

coefficient a↓ = e−i arccos E
|�+| e−iδθ . This implies the specularly

reflected hole will acquire a phase of (− arccos E
|�+| − δθ ).

Here, �+ = �0 for the s-wave and p-wave pairings, while
�+ = �0 cos(2θ − 2β ) for the dx2−y2 -wave pairing (β = 0)
and the dxy-wave pairing (β = π

4 ). In addition, δ = 1 for the
p-wave SC, and δ = 0 for the dxy-wave SC.

On the other hand, when a spin-down hole is injected from
the WNSM, the coefficients ã↑ for the specularly reflected
electron and b̃↓ for the normally reflected hole can also be
solved as

ã↑ = 4kxkh↓
x u+v−eiφ+eiφ−

k2
x ξ− + kx

(
ke↑

x + kh↓
x

)
ξ+ + (

z − ike↑
x

)(
z + ikh↓

x
)
ξ−

,

b̃↓ = −kx
(
ke↑

x − kh↓
x

)
ξ+ + k2

x ξ− − (
ke↑

x + iz
)(

kh↓
x + iz

)
ξ−

k2
x ξ− + kx

(
ke↑

x + kh↓
x

)
ξ+ + (

z − ike↑
x

)(
z + ikh↓

x
)
ξ−

.

(A3)
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Under the Andreev approximation, ã↑ becomes

ã↑ = v−
u−

eiφ− . (A4)

For the s-wave and dx2−y2 -wave pairings, ã↑ = e−i arccos E
|�−| ,

with E < |�−|, which means a phase of (− arccos E
|�−| ) is

obtained by the specularly reflected electron. For the dxy-wave

and p-wave pairings, ã↑ = −e−i arccos E
|�−| e−iδθ , which means a

phase of (π − arccos E
�0

− δθ ) is obtained by the specularly
reflected electron. Here, �− = �0 for the s-wave and p-wave
pairings, while �− = �0 cos(2θ + 2β ) for the dx2−y2 -wave
pairing (β = 0) and the dxy-wave pairing (β = π

4 ). In addi-
tion, we still have δ = 1 for the p-wave SC and δ = 0 for the
dxy-wave SC.

Along the closed path in the middle WNSM in Fig. 4(a),
there are two SAR processes. One is for the right-going elec-
tron which is specularly reflected as a hole at x = L. The
other is for the right-going hole which is specularly reflected
as an electron. Combing the acquired phases, the total phase
obtained by the two SAR processes can be derived as given in
Eqs. (13) and (15). Note that we have assumed θ > 0 for the
dxy-wave SC in the above discussions. The situation for θ < 0
can be considered in a similar way, which will not change the
final results in Eqs. (13) and (15).

2. SAR probability and conductance for the WNSM-WNSM-SC
double junctions

The wave function in the left WNSM (x < 0) for the spin-
up electron incidence is given by

ψLW =
(

1
0

)
eike↑

x x + a↓

(
0
1

)
e−ikh↓

x x + b↑

(
1
0

)
e−ike↑

x x, (A5)

with a↓ and b↑ still being the SAR and normal reflection coef-
ficients. The wave function in the middle WNSM (0 < x < L)
is

ψMW = f1

(
1
0

)
eike↑

x x + f2

(
1
0

)
e−ike↑

x x

+ f3

(
0
1

)
eikh↓

x x + f4

(
0
1

)
e−ikh↓

x x,

(A6)

where f1 and f2 are coefficients for the right-going electron
and the left-going electron and f3 and f4 are coefficients
for the right-going hole and the left-going hole. The wave
function in the SC (x > L) is written as

	S = c↑

(
u+eiφ+

v+

)
eikxx + d↓

(
v−eiφ−

u−

)
e−ikxx, (A7)

with c↑ and d↓ still being the coefficients for quasiparticle
transmissions. For the spin-down electron incidence, the wave
functions can be given in a similar way.

Using the boundary conditions

ψLW |x=0 = ψMW |x=0,

ψMW |x=L = 	S|x=L,

ψ ′
MW |x=0 − ψ ′

LW |x=0 = 2mV1

h̄2 τ̂zψLW |x=0,

	 ′
S|x=L − τ̂zψ

′
MW |x=L = 2mV2

h̄2 ψMW |x=L, (A8)

a↓ and b↑ will be solved. Similar boundary conditions for the
spin-down electron incidence can lead to the solutions of a↑
and b↓. The probabilities for SAR and the normal reflection
are defined according to Eq. (9). The conductance of the
double junctions can also be written as Eqs. (11) and (12).
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