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Bogoliubov-Fermi surface with inversion symmetry and electron-electron interactions:
Relativistic analogies and lattice theory
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We show that the general low-energy Bogoliubov–de Gennes Hamiltonian in a multiband superconductor with
broken time-reversal and preserved inversion symmetry is a generator of a real four-dimensional representation
of SO(4). In the particular representation such an effective Hamiltonian is a purely imaginary matrix, and
it is proportional to the antisymmetric tensor of a fictitious electromagnetic field which one can define in
the momentum space. The quantum time evolution of the low-energy quasiparticle state becomes this way
closely related to the classical relativistic motion of a charged particle in the presence of the Lorentz force
that would be derived from such an electromagnetic field configuration. The condition for the emergence of
a Bogoliubov-Fermi surface can then be understood as orthogonality of the fictitious electric and magnetic
fields, which would allow zero Lorentz force. The corresponding zero-energy eigenstates are identified as the
physical timelike and the unphysical spacelike solutions of the Lorentz force equation. We study the looming
instability of the inversion-symmetric Bogoliubov-Fermi surface in the presence of electron-electron interaction
by formulating a concrete interacting model on the Lieb lattice that features the requisite SO(4) kinetic energy
term together with nearest-neighbor two-body repulsion. The latter is shown to favor dynamical breaking of the
inversion symmetry. The inversion symmetry in our lattice model indeed becomes spontaneously broken at zero
temperature at infinitesimal repulsion, with the original Bogoliubov-Fermi surface deformed and reduced in size.
General features of this symmetry-breaking phenomenon are discussed and a comparison with other works in
the literature is presented.
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I. INTRODUCTION

The appearance of the gap in the quasiparticle spectrum
has been identified as a key feature of the superconducting
state of matter since the early days of the field and the formu-
lation of the foundational BCS theory of the superconducting
phenomenon [1]. It has also been long known that the gap
may not extend everywhere on the Fermi surface, and that
measure-zero sections of the Fermi surface in the form of
gapless points and or gapless lines are also possible, and in
fact common [2,3]. It came as a surprise, however, when it
was shown recently that in centrosymmetric multiband super-
conductors with broken time-reversal symmetry, the outcome
could be none of the above options, but a new and typically
much smaller surface in the momentum space, named the
Bogoliubov-Fermi (BF) surface [4–6]. In contrast to the previ-
ous examples of the BF surfaces [7,8], here it is not a portion
of the normal Fermi surface that is being left ungapped, but
the BF surface is better thought of as a gapless point or a
line inflated to a surface by the presence of other bands.
Of course, the presence of a BF surface in the quasiparticle
spectrum of a superconducting state in principle leaves a
distinct signature on the crucial low-temperature properties,
such as the temperature dependence of the penetration depth,
of the specific heat, and of the thermal conductivity, which
would all reflect a finite density of states left [9,10]. Signs
of finite density of states in the superconducting state have

been possibly observed in U1−xThxBe13 [11,12], although the
precise nature of the superconducting order there seems not
yet entirely clear.

The presence of inversion symmetry in centrosymmet-
ric superconductors had been assumed to be crucial for
the appearance of the BF surface, as well as for its pro-
tection by the Z2 topological invariant, which requires the
inversion symmetry for its definition [4,13]. However, ex-
amples of time-reversal-broken multiband superconductors
without inversion that nevertheless featured BF surfaces
emerged [14–17], and it has been subsequently shown that
this is a rather generic feature of noncentrosymmetric su-
perconductors as well [18]. Furthermore, the stability of the
inversion-symmetric BF surface has been questioned [19,20];
as will be discussed in this paper at length as well, the
inversion symmetry makes the BF surface everywhere dou-
bly degenerate, and this degeneracy can be removed by a
manifest or a spontaneous breaking of inversion. It was
shown, for example [19], that in presence of favorable ef-
fective electron-electron interactions inversion symmetry at
zero temperature becomes spontaneously broken, and the
BF surface then reduced or eliminated. Another example is
an inversion-reducing lattice distortion, which via electron-
phonon coupling can also cause the reduction of the BF
surface in the quasiparticle spectrum [21]. The net effect of
these examples of dynamical breaking of inversion symme-
try is either a fully gapped quasiparticle spectrum, or a new
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nondegenerate BF surface, of the type that exists in the non-
centrosymmetric case [18].

In this paper we first revisit the formation of the BF sur-
face in the inversion-symmetric case and examine it from
the point of view of the effective low-energy quasiparticle
Hamiltonian He f in the superconductor [5,18,22,23], previ-
ously derived for the noncentrosymmetric superconductors
in Ref. [18]. The effective Hamiltonian describes the two
particle and two hole states that intersect the Fermi level in
the normal phase, intraband-coupled by the presence of the
superconducting order parameter, and then “renormalized” by
the interband-coupling to other states that lie farther from the
Fermi level. We show that He f is in certain preferred basis and
at every momentum a four-dimensional imaginary matrix, and
as such it is a generator of real representation of the group
of four-dimensional rotations in Euclidean space, i.e., of the
standard SO(4). The emergence of SO(4) suggests possible
analogies to classical relativity, and indeed the time-dependent
Schrödinger equation governed by such an He f is related to
the covariant form of the classical second Newton law in the
presence of an “electromagnetic” Lorentz force in the momen-
tum space [24]. Although the full analogy between the two
time evolutions does not, and as we explain, cannot exist, the
BF surface can be understood as an orthogonality condition
between the fictitious momentum-dependent “electric” and
“magnetic” fields, which can be read off as the coefficients
of He f when expanded in terms of the generators of the SO(4)
Lie algebra. The orthogonality condition allows the Lorentz
force to vanish on the BF surface provided that the velocity
of the fictitious classical particle with the right magnitude is
orthogonal to both the “electric” and “magnetic” fields, which
is tantamount to finding the eigenstates with zero energy in the
original quantum problem. Interestingly, since the quantum
problem has two orthogonal zero modes at each momentum at
the BF surface, whereas the analogous classical Lorentz equa-
tion of motion can have only one physical solution, the second
quantum solution corresponds to the unphysical “spacelike”
tachyonic solution for the velocity four-vector. The latter has
no physically acceptable classical analog, but is nevertheless
formally a solution of the Lorentz equation, and as such it
appears in the analogous quantum problem.

The relativistic analogy becomes particularly useful in
studying the potential interaction-induced instability of the
inversion-symmetric BF surface. To this purpose we formulate
a single-particle model of spinless fermions hopping on the
Lieb lattice designed to fall into the topological class D [13],
i.e., to anticommute only with an antiunitary operator A with
a positive square, and violate time-reversal symmetry. The
operator A can be thought of as representing the combined
effects of inversion and particle-hole transformations, and its
anticommutation with He f is tied to the inversion symmetry of
the full original Bogoliubov–de Gennes (BdG) quasiparticle
Hamiltonian. Since the Lieb lattice has a four-component unit
cell our lattice single-particle Hamiltonian is then an SO(4)
generator, with a doubly degenerate manifold of zero-energy
states, fully equivalent to a BF surface in the superconducting
problem. Having such a real-space lattice model allows easy
addition of two-body interaction terms of one’s choice: we
show that the simplest nearest-neighbor repulsion between
the fermions, for example, favors spontaneous breaking of

inversion, that is a dynamical generation of a single-particle
term in the mean-field Hamiltonian which, in contrast to He f ,
commutes with the operator A. At zero-temperature the com-
bined effects of finite density of the zero-energy states and the
matrix structure of the dynamically generated term makes the
BF surface unstable at infinitesimal repulsion. The instability
produces a smaller, deformed, and nondegenerate BF surface.

The paper is organized as follows. In Sec. II we discuss
the multiband BdG Hamiltonian as describing Cooper pair-
ing between time-reversed states, for a general time-reversal
operator. The advantage of this representation is that the ex-
istence of a nonunitary operator A that anticommutes with
the BdG Hamiltonian can be seen to be a universal feature
tied to the general commutativity of spatial symmetries such
as inversion and the time reversal. A critical discussion of
the standard construction of the all-important operator A is
provided in Appendix A, and further support for the above-
mentioned commutativity on the example of the standard
Dirac Hamiltonian is given in Appendix B. In Sec. III we
derive the low-energy effective Hamiltonian by invoking the
Schur complement, tantamount to integration over bands with
finite energy, and discuss its energy eigenvalues and the SO(4)
structure. The effective Hamiltonian in the canonical repre-
sentation of SO(3) × SO(3) ∼= SO(4) and its relation to the
inter- and intraband pairing, as well as the transformation
between the SO(4) representation to the canonical represen-
tation of the effective Hamiltonian, can be found in Appendix
C. The zero-energy eigenstates are computed in Sec. IV, and
the analogy with the classical Lorentz force equation is ex-
pounded in Sec. V. How the preservation of time reversal
forbids the BF surface in this formulation is explained in
Sec. VI. In Sec. VII we define a hopping Hamiltonian on
the Lieb lattice that falls into the required topological class
D and provides a realization of a BF surface, and introduce
nearest-neighbor repulsive interactions. The mean-field theory
of the BF surface instability is given in Secs. VIII and IX.
Conclusions and discussion are presented in Sec. X.

II. BdG HAMILTONIAN WITH INVERSION

The quantum-mechanical action for the Bogoliubov quasi-
particles in the superconducting state is given by

S = kBT
∑
ωn,p

�†(ωn, p)[−iωn + HBdG(p)]�(ωn, p), (1)

where the Nambu spinor is here defined as
�(ωn, p) = (ψ (ωn, p), T ψ (ωn, p))T, p is the momentum,
ωn = (2n + 1)πkBT is the Matsubara frequency, and T is
the temperature. ψ = (ψ1, . . . , ψN ) is an N-component
Grassmann number describing N eigenstates of the
normal-state Hamiltonian H(p), and its time-reversed
counterpart is T ψ (ωn, p) = Uψ∗(−ωn,−p), where T is
the antiunitary time-reversal operator, with U as its unitary
part. This way the BdG Hamiltonian becomes

HBdG(p) =
(

H (p) − μ �(p)
�†(p) −[H (p) − μ]

)
. (2)

For simplicity, we assume first that the N-dimensional
Hermitian Hamiltonian H (p) is time-reversal-symmetric,
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so that

U †H (p)U = H∗(−p), (3)

or equivalently, in terms of the commutator, [H (p), T ] = 0.
The off-diagonal (pairing) matrix needs to satisfy

U †�(p)U = −s�T(−p), (4)

where s = T 2 = UU ∗ = ±1. For real electrons the sign s =
−1, of course, but we keep the general sign s nevertheless, to
include fermions with (effective) integer spin [16,25] as well.
As any other matrix, the pairing matrix can also be written as
�(p) = �1(p) − i�2(p), where �1,2 are Hermitian. Then

U †�1,2(p)U = −s�∗
1,2(−p), (5)

and for s = −1 (s = 1), �1,2 are simply even (odd) under time
reversal, and [�1,2(p), T ] = 0 ({�1,2(p), T } = 0, where {, } is
the anticommutator) [26,27].

Let us now also assume the inversion symmetry, i.e., the
existence of the inversion operator P with the effect

P†H (p)P = H (−p), (6)

P†�(p)P = �(−p). (7)

The inversion transformation P in momentum representation
is then the combination of the operator P and the momentum
reversal p → −p. The inversion symmetry of the BdG Hamil-
tonian means that [O(p),P] = 0, for O = H , and O = �.

In contrast to the time reversal, the inversion operator is
unitary, and P†P = 1. We also require that it is a physical
observable, so that P† = P as well. This enforces that

P2 = +1, (8)

so that the eigenvalues of the operator P are ±1, i.e., the
“parity” of the eigenstates of P.

Finally, we postulate that, in general, inversion and time-
reversal operations commute:

[P, T ] = 0. (9)

The motivation is that inversion is an operation in real space,
and as such should have its action completely independent of
the notion of time. The same mutual commutation relation ap-
plies to any SO(3) rotation and time reversal, which can also
be understood as the underlying reason for the antiunitarity of
the time-reversal operator. Additional arguments in support of
this postulate are given in Appendix B.

The BdG Hamiltonian can be rewritten as

HBdG(p) = σ3 ⊗ [H (p) − μ] + σ1 ⊗ �1(p) + σ2 ⊗ �2(p),
(10)

where σi, i = 1, 2, 3, are the usual Pauli matrices. We observe
that if �2 is finite, [HBdG, 1 ⊗ T ] �= 0, if s = −1. Similarly,
when s = 1, [HBdG, 1 ⊗ T ] �= 0 for finite �1. When s = 1 and
�1 = 0 the overall phase factor of i can be gauged away,
and the matrix � again chosen to be Hermitian. It is non-
Hermiticity of the pairing matrix � in either case that signals
the breaking of the time reversal in the superconducting state.
[HBdG(p), 1 ⊗ P] = 0, on the other hand, and the BdG Hamil-
tonian is even under inversion.

One can now construct a new antiunitary operator

A = σk ⊗ (PT ) (11)

with k = 2 for s = −1, and k = 1 for s = 1. Evidently,

{HBdG(p),A} = 0, (12)

and the BdG Hamiltonian is odd under A. By construction

A2 = (σkσ
∗
k ) ⊗ (P2T 2) = +1, (13)

where we used the fact that σkσ
∗
k = T 2 = s, and Eqs. (8) and

(9). An equivalent antiunitary operator was constructed before
[4], and it was responsible for the topological nontriviality
of the ensuing BF surface. The alternative construction is
presented and critically discussed in Appendix A. We see
here that its existence is guaranteed even when the inver-
sion operator matrix P is not diagonal, or a real matrix in
a given representation, and that it may be understood as a
consequence of basic postulates on the discrete symmetries
involved. The existence of an operator that anticommutes with
the BdG Hamiltonian implies that at fixed momentum the
eigenstates of HBdG(p) come in pairs of states with opposite
signs of energy. Such an operator does not exist when the
system has no inversion symmetry in the normal phase [17].
HBdG(p) with inversion and without time reversal therefore
falls into the topological class D [13].

We have so far assumed that the time-reversal symmetry
may be violated only by the off-diagonal pairing terms in
HBdG(p) in Eq. (10). One can, however, imagine it being bro-
ken, additionally or exclusively, by diagonal terms in Eq. (10).
In addition to the time-reversal-invariant part of the normal-
state Hamiltonian H (p), this would require an addition of a
time-reversal-odd term to it: H (p) → H (p) + H ′(p), with

U †H ′(p)U = −[H ′(−p)]∗. (14)

It is easy to see that the extra minus sign in the above ex-
pression relative to Eq. (3) yields then an additional term in
Eq. (10):

1 ⊗ H ′(p). (15)

Assuming that H ′(p) is also even under inversion, it is odd
under the combined operation of time reversal and inversion,
and the extra term then evidently also anticommutes with the
operator A. With this term included HBdG(p) in fact adopts its
most general form that exhibits this property.

An important observation can be made at this point: the
fact that A2 = +1 implies that there exist a “real” basis in
which the unitary part of A is trivial, and A = K ; i.e., it is
just complex conjugation [28]. In this basis therefore HBdG(p)
at every (real) momentum p is a purely imaginary matrix. Of
course, that also makes it antisymmetric, since it is Hermitian.
Both of these facts play a role in the rest of our discussion.

III. EFFECTIVE HAMILTONIAN AND
EMERGENCE OF SO(4)

Let us define the eigenvalues and the eigenstates of the
normal-state Hamiltonian H (p) as Ei(p) and φi(p), i =
1, . . . , N . We may call the eigenstates with their energy ar-
bitrary close to the Fermi surface φi(p) with i = 1, . . . , M
“light”, and the remaining N − M eigenstates “heavy”. When
s = −1, the Kramers theorem implies that M is even, and
when s = 1, M can be both even or odd. Obviously, M = 2,
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corresponding to the usual spin-1/2 fermions such as elec-
trons, would be of the greatest interest.

The spectrum of the Bogoliubov quasiparticles at a mo-
mentum p is given by the solution of the equation for the real
frequency ω:

det[HBdG(p) − ω] = 0. (16)

With the separation into light and heavy states at a given
momentum near the normal Fermi surface one can write the
BdG Hamiltonian in the basis {(φi(p), 0)T , (0, φi(p))T }, i =
1, . . . , N , as

HBdG(p) =
(

Hl (p) Hlh(p)
H†

lh(p) Hh(p)

)
. (17)

The block for the light particle and hole states Hl (p) is a
2M-dimensional matrix and describes the dispersion of the
light particle and hole states as well as the intraband pairing.
The heavy modes are described by the 2(N − M )-dimensional
matrix Hh(p) which denotes the energy eigenstates of the
heavy particle and holes and the intra- and interband pairing
only between the heavy modes. At last, the coupling between
the light and heavy states Hlh(p) is a 2M × 2(N − M ) matrix.
(An explicit expression of Hl,h,lh for M = 2 can be found in
Appendix C 1.) The above determinant can now be rewritten
as

det[HBdG(p) − ω] = det[Hh(p) − ω] det Le f (ω, p), (18)

where the effective Lagrangian Le f is the Schur complement
[29] of the block matrix for the heavy modes:

Le f (ω, p) = Hl (p) − ω − Hlh(p)[Hh(p) − ω]−1H†
lh(p).

(19)
The first factor in Eq. (18) may also be understood as the
fermionic partition function for the heavy modes, and the
second factor is therefore the residual partition function for the
light modes, renormalized by the integration over the heavy
modes [18]. Le f (ω, p) is well defined whenever the heavy
block is invertible, which is fulfilled for |ω| < |Ei(p) − μ|
for i > M. Under this condition the eigenvalue equation in
Eq. (16) reduces to det Le f (ω, p) = 0. In particular, ω = 0 is
a solution only when

det He f (p) = 0, (20)

with He f (p) = Le f (0, p). We call He f (p) the effective Hamil-
tonian [5,18,23]. The same notion has been used in the past in
studies of stability of point nodes in two-dimensional d-wave
superconductors [22]. We emphasize that only the solutions
for zero modes of He f (p) are exactly the same as those for
the original HBdG(p); the rest of their spectra differ. This is,
however, all that is needed to understand the emergence of
the BF surface, the dispersion of quasiparticles close to it, and
even the instability of the BF surface, as we show below.

According to Eq. (19) the effective Hamiltonian is thus

He f (p) = Hl (p) − Hlh(p)H−1
h (p)H†

lh(p). (21)

The effective Hamiltonian computed in the standard (“canon-
ical”) representation where the diagonal terms of the two
matrices Hl,h(p) are the energy dispersions of the states and
the off-diagonal terms of the three matrices Hl,h,lh(p) are the
intra- and interband pairing between the different states can

be found in Appendix C. To understand its general structure,
however, it is better to work in the real basis. In the real basis
A = K , and thus all of the matrices Hl (p), Hlh(p), and Hh(p)
are imaginary. Clearly, He f (p) is then imaginary as well.
The effective low-energy Hamiltonian inherits the antiunitary
(anticommuting) symmetry of the full BdG Hamiltonian, and
therefore in general is a Hermitian imaginary 2M-dimensional
matrix, i.e., a generator of the real representation of the
SO(2M ) group of rotations. In the physically most pertinent
case of M = 2, He f (p) is a generator of SO(4), and in the real
basis can be written as

He f (p) =
3∑

k=1

[ak (p)Nk + bk (p)Jk], (22)

where [Nk]μν = −[Nk]νμ = −iδμ0δνk , and [Jk]i j = −iεi jk ,
[Jk]0 j = [Jk] j0 = 0. Here the Greek indices run from 0 to 3,
and Latin indices from 1 to 3. We observe that in the real
basis the matrix elements of the effective Hamiltonian may
be written as

[He f (p)]μν = iFμν (p), (23)

where Fμν (p) is the standard antisymmetric electro-
magnetic tensor, with the “vector” coefficients a(p) =
(a1(p), a2(p), a3(p)) and b(p) = (b1(p), b2(p), b3(p)) play-
ing the role of momentum-dependent “electric” and “mag-
netic” fields. This analogy will be deepened and will come
in handy shortly when we discuss the form of the zero-energy
eigenstates of the effective Hamiltonian.

The six four-dimensional imaginary matrices Nk and Jk

are chosen to close the standard SO(4) Lie algebra in the
following form:

[Ji, Jj] = iεi jkJk, (24)

[Ni, Jj] = iεi jkNk, (25)

[Ni, Nj] = iεi jkJk . (26)

Indeed, it is easily seen that the fully imaginary representation
of the generators Nk and Jk defined above is equivalent to
the more standard representation of real symmetric Lorentz
boosts Kk , with [Kk]μν = δμ0δνk , and the same imaginary gen-
erators of rotations Jk ; explicitly Nk = SKkS†, and Jk = SJkS†,
where

S = e−i π
4 G (27)

and the matrix G = diag(1,−1,−1,−1).
By forming the symmetric and the antisymmetric linear

combinations

Ri,± = 1
2 (Ji ± Ni ), (28)

it readily follows that

[Ri,r, Rj,r] = iεi jkRk,r, (29)

for r = ±, whereas

[Ri,+, Rj,−] = 0. (30)

The Lie algebra of the generators of the SO(4) is the same as
the Lie algebra of the generators of the SO(3) × SO(3), as is
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well known [30]. The effective Hamiltonian can therefore be
rewritten as

He f (p) =
3∑

k=1

∑
r=±

[ak (p) + rbk (p)]Rk,r . (31)

The four-dimensional matrices Ni and Ji form the irreducible
(1/2, 1/2) representation of the Lie algebra SO(3) × SO(3),
where j = 1/2 refers to the spin-1/2 representation of SO(3)
[30]. The matrices Rk,r can thus be brought by a unitary
transformation into 1 ⊗ (σk/2) and (σk/2) ⊗ 1. The explicit
unitary transformation that does so is provided in Appendix C
2. The spectrum of He f can then be readily discerned as

E (p) = ± 1
2 [|a(p) + b(p)| ± |a(p) − b(p)|]. (32)

In particular, it is evident that there are two zero eigenvalues
at the momenta at which

a(p) · b(p) = 0. (33)

Since this is a single equation for three components of the
momentum, the solutions, when they exist, will form a surface
in the momentum space.

Multiplying the four eigenvalues E (p) yields
det[He f (p)] = [a(p) · b(p)]2. The last equation is therefore
precisely the condition for vanishing of the Pfaffian [4] of
the effective Hamiltonian. The relation between our electric
and magnetic fields a(p) and b(p) and the coefficients of
the canonical representation of the effective Hamiltonian,
which describe the emergence of the BF surface in terms of
the “pseudomagnetic” field of Refs. [4,5], can be found in
Appendix C [Eqs. (C26) and (C27)].

IV. ZERO MODES AT THE BF SURFACE

We will also need the explicit form of the eigenstates of
He f (p) with zero energy, measured of course from the chemi-
cal potential. The eigenvalue equation is then

He f (p)�(p) = 0, (34)

where � = (v0, v1, v2, v3)T, and the ubiquitous momentum
dependence of all variables suppressed for legibility. The
eigenvalue equation can then be compactly written in the
vector notation

a · v = 0, (35)

v0a + b × v = 0, (36)

with v = (v1, v2, v3). Assume v0 �= 0 first. Multiplying
Eq. (36) with b we get that

v0b · a + b · (b × v) = 0, (37)

and therefore b · a = 0, as we already found. In this case then
v ∼ b × a. When normalized, the first zero-energy solution
may be taken to be

�t = 1√
1 + v2

(1, v)T, (38)

where v = (b × a)/b2. The second, orthogonal, solution is
then with v0 = 0: in this case v needs to be orthogonal to a
and parallel to b, which again requires that the vectors a and

b are mutually orthogonal. In that case therefore v ∼ b, and
the normalized zero-energy solution is

�s = (0, b/|b|)T. (39)

Both solutions are manifestly real, and �
†
t �s = 0. One can

rotate them into a pair of complex conjugate zero-energy
solutions

�± = 1√
2

(�t ± i�s), (40)

which satisfy �+ = A�−, since A = K in the real basis we
are assuming.

We explain the motivation behind the labels t and s in the
two basic zero-energy solutions next.

V. RELATIVISTIC ANALOGY TO LORENTZ FORCE
EQUATION

There exists an instructive analogy between our time-
dependent Schrödinger equation at low energies and the
classical covariant second Newton law with the Lorentz force
for a charged particle in the electromagnetic field. The time-
dependent Schrödinger equation for the effective Hamiltonian
is

d

dt
� = F�, (41)

once one recalls that He f = iF , with F = Fμν as the real
antisymmetric electromagnetic tensor. Newton’s second law
in the electromagnetic field, on the other hand, in the covariant
formulation takes the form

m
d

dτ
V = FGV, (42)

where G = Gμν = diag(1,−1,−1,−1) is Minkowski’s met-
ric tensor, V = V μ = γ (v)(c, v)T is the velocity four-vector,
c the velocity of light, v the velocity three-vector, and γ (v) =
1/

√
1 − (v/c)2. τ is the proper time, and m the rest mass of

the particle. The velocity four-vector has the fixed positive
norm with respect to the Minkowski metric [24]:

V μVμ = V TGV = c2. (43)

The presence of Minkowski’s metric tensor G in the Lorentz
equation, of course, makes it decidedly not a Schrödinger
equation; the Lorentz group in not SO(4) but SO(1, 3), which
is not compact, and its finite-dimensional representations are
consequently not unitary [30]. Multiplying both sides of the
Lorentz equation by the imaginary unit will fail to make
the matrix iFG, which appears in place of a Hamiltonian,
Hermitian, for example. Nevertheless, the solutions of the
Schrödinger equation for which F� = 0 do have a classical
analog: they correspond to the four-velocity V for which the
forces from the electrical and magnetic fields precisely cancel.
Obviously this is possible only at the points in space where
the electric and the magnetic fields are mutually orthogonal,
and the unique three-velocity, of the right magnitude and right
direction, is orthogonal to both. Apart from our normaliza-
tion with respect to Euclidean and not Minkowski’s metric,
the zero-energy solution �t is precisely such a four-vector,
with the velocity of light being simply unity. Index t in this
solution was chosen to suggest a “timelike” four-vector that
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would have positive Minkowski norm for velocities below the
velocity of light, as the physical velocity four-vector by its
definition has to be.

The second real solution we found, on the other hand, does
not correspond to a physical velocity in our analogy, since
the form of �s is “spacelike”, i.e., with a negative Minkowski
norm. As a physical solution for four-velocity of the classical
Lorentz equation it is thus unacceptable. But as a solution of
the Schrödinger equation it is perfectly regular, and it can be
used in a linear combination with the timelike solution to form
a pair of complex-conjugate zero modes. It is the fact that the
positive-norm quantum state � can be complex whereas the
positive-norm four-velocity V can only be real that leads to
an additional zero-mode in the quantum case, relative to the
closely related but not entirely equivalent Newton equation
with the Lorentz electromagnetic force.

VI. TIME REVERSAL PRESERVED

When the HBdG preserves not only inversion but time-
reversal symmetry as well, there cannot be a Bogoliubov-
Fermi surface of zero modes. The elimination of the heavy
modes will in this case produce an effective Hamiltonian
which will commute with an operator that represents the com-
bined operation of PT , i.e., with an antiunitary operator with
a square of −1. At the level of He f let us call this operator
B = W K , with a unitary representation-dependent matrix W ,
which is four-dimensional if we focus on the physically most
urgent case of M = 2. Operation B leaves the momentum
invariant. To recognize the matrix W it is useful to write the
explicit form of the matrices Rk,± in our representation:

R1,+ = 1 ⊗ σ2

2
, (44)

R2,+ = σ2 ⊗ σ3

2
, (45)

R3,+ = σ2 ⊗ σ1

2
, (46)

and similarly for Rk,−:

R1,− = −σ3

2
⊗ σ2, (47)

R2,− = −σ2

2
⊗ 1, (48)

R3,− = −σ1

2
⊗ σ2. (49)

Consider now W = σ2 ⊗ X , with X a Pauli matrix. The matrix
X only needs to be real, so that B2 = −1 as required. Direct
inspection then gives that for any such X the operator B would
commute with two, and anticommute with the remaining four
out of six matrices Ri,±. Furthermore, the three of the latter
four matrices are either all Ri,+, or all Ri,−. For example, for
X = σ1, B commutes only with R1,+ and R2,+. This means
that when time-reversal symmetry is present, first, it must be
that

a(p) + rb(p) ≡ 0, (50)

for either r = +1 or r = −1. In the relativistic analogy this
means that the electric and magnetic fields are either parallel
or antiparallel everywhere, and therefore the Lorentz force can
never vanish, unless both fields vanish. Second, since for one
of the components we also have that

ak (p) − rbk (p) = 0, (51)

there are only two finite terms in the representation in Eq. (31).
For the specific choice in the example above the spectrum
would therefore be

E (p) = ±2[a1(p)2 + a2(p)2]1/2. (52)

In general therefore E (p) = 0 leads to two conditions to be
satisfied for three components of the momenta, i.e., a line in
the momentum space [27].

The algebra involved in the above argument becomes par-
ticularly transparent in the canonical representation of the
generators Rk,± (Appendix C).

VII. LATTICE HAMILTONIAN AND INTERACTIONS

We now define a lattice single-particle Hamiltonian which
provides a minimal realization of the above He f (p) in Eq. (22)
for spin-1/2 electrons. The only requirement is that it is a four-
dimensional matrix Hamiltonian that admits an antiunitary
operator with positive square that anticommutes with it.

With this in mind we consider the Lieb lattice in three
dimensions: the unit cell consists of four sites, one that is at
the sites of the primitive cubic lattice at positions R = ∑

i niei

with ni as integers, ei · e j = δi j , and the other three which are
at the centers of the three links in orthogonal directions that
connect the sites of the cubic lattice at positions R + (ei/2),
with i = 1, 2, 3. The Hamiltonian is then defined as

H0 = −it
∑

R,k=1,2,3

c†(R)c

(
R ± ek

2

)
+

{
iχ

∑
R,s=±1

(s)c†

(
R + e1

2

)[
c

(
R + e1 + s

e2

2

)

− c

(
R + s

e2

2

)]
+ (1 → 2, 2 → 3) + (2 → 3, 3 → 1)

}
+ H.c., (53)

with parameters t and χ real, so that the hoppings are all
purely imaginary. c†(R) is the usual fermionic creation opera-
tor on site R. (See Fig. 1.) The phases of the hopping terms are
chosen so that in momentum space the Hamiltonian becomes

H0 =
∑

p

�†(p)He f (p)�(p), (54)

with

�(R) =
[

c(R), c

(
R + e1

2

)
, c

(
R + e2

2

)
, c

(
R + e3

2

)]T

,

(55)
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FIG. 1. Hoppings on the Lieb lattice as defined by the Hamiltonian in Eq. (53). The fermions hop with amplitude +i along the direction of
the arrow, and with the amplitude −i in the direction opposing the arrow on a link between two sites. Pink lines connect nearest neighbors and
correspond to hopping of magnitude t , and yellow lines connect next-nearest neighbors with hopping of magnitude χ . The two-body repulsion
is between the fermions residing on the nearest-neighboring sites. Panel (a) shows the full three-dimensional picture of the Lieb lattice, while
panel (b) shows the projection of the Lieb lattice in the xy plane.

and He f (p) precisely as in Eq. (22), with

ai(p) = 2t cos
( pi

2

)
(56)

and

bi(p) = 4χ sin
( p j

2

)
sin

( pk

2

)
, (57)

with i �= j, i �= k, j �= k in the last equation. The BF surface
is now determined by the equation[ ∏

i=1,2,3

sin
( pi

2

)] ∑
i=1,2,3

cot
( pi

2

)
= 0, (58)

which is independent of the hopping parameters t and χ as
long as they are both finite. The BF surface is depicted in
Fig. 2. Note that whereas the three axes belong to the BF
surface, poles of the cotangents remove the planes pi = 0
from it.

One may now also define the two-body interaction term as

Hint = V
∑
R,i

n(R)n
(

R ± ei

2

)
, (59)

with n(R) = c†(R)c(R) as the usual particle number operator,
which describes repulsion between nearest neighbors on the
Lieb lattice (V > 0). The full interacting lattice model is then

H = H0 + Hint. (60)

We assume half filling, which corresponds to the spectral
symmetry of the BdG Hamiltonian between positive and neg-
ative states. Besides possessing translational symmetry, the
Hamiltonian remains invariant under 2π/3 rotations around
the (1,1,1) diagonal and under inversion around any site R.

VIII. MEAN-FIELD THEORY

To study the effects of two-body interactions we first
rewrite the interaction Hamiltonian as

Hint = V

4

∑
R,i

{[
n(R) + n

(
R ± ei

2

)]2

−
[
n(R) − n

(
R ± ei

2

)]2
}
. (61)

FIG. 2. BF surface of zero-energy states of the Hamiltonian H0

in Eq. (53) in the first Brillouin zone.
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It may then be decoupled with two Hartree variables (in the
sense of Hubbard-Stratonovich transformation):

Hint = 1

V

∑
R,i

[
ζ 2

(
R, R ± ei

2

)
− μ2

(
R, R ± ei

2

)]

+
∑
R,i

{
ζ
(

R, R ± ei

2

)[
n(R) − n

(
R ± ei

2

)]

+μ
(

R, R ± ei

2

)[
n(R) + n

(
R ± ei

2

)]}
. (62)

Anticipating the energetically preferable uniform mean-field
configuration, we take

ζ (R, R ± ei/2) = 〈n(R) − n(R ± ei/2)〉 = ζ (63)

and

μ(R, R ± ei/2) = 〈n(R) + n(R ± ei/2)〉 = μ, (64)

and both constant. The mean-field interaction term then be-
comes

Hint,m f = 6N

V
(ζ 2 − μ2)

+ 2
∑
R,i

[
(ζ + μ)n(R) + (μ − ζ )n

(
R + ei

2

)]
,

(65)

with N as the number of primitive lattice sites. In the mo-
mentum space the full mean-field Hamiltonian Hm f = H0 +
Hint,m f can therefore be arranged into

Hm f =
∑

p

{
�†(p)[He f (p) + u1 + vG]�(p) + v2 − u2

2V

}
,

(66)

with the matrix G as the previously encountered Minkowski
metric matrix, and the two new Hubbard-Stratonovich vari-
ables being u/4 = μ + (ζ/2) and v/4 = ζ + (μ/2).

Let us define the two “critical” eigenvalues of the He f

which vanish at the BF surface as ±ξ (p), with

ξ (p) = 1
2 [|a(p) + b(p)| − |a(p) − b(p)|], (67)

and the remaining two “massive” eigenvalues which are finite
everywhere as ±m(p) with

m(p) = 1
2 [|a(p) + b(p)| + |a(p) − b(p)|]. (68)

There exists a unitary transformation Ue f (p) that diagonalizes
He f (p), so that

Ue f (p)He f (p)U †
e f (p) =

(
m(p)σ3 0

0 ξ (p)σ3

)
. (69)

The two-component fermions that correspond to the mas-
sive and critical states are then given by Ue f (p)�(p) =
(�m(p), �ξ (p))T . The mean-field Hamiltonian in terms of the
critical and massive fermions now becomes

Hm f =
∑

p

{
�†

m(p)[m(p)σ3 + u1 + vXm(p)]�m(p)

+ v2 − u2

2V
+ �

†
ξ (p)[ξ (p)σ3 + u1 + vXξ (p)]�ξ (p)

+ v[�†
m(p)Xmξ (p)�ξ (p) + �

†
ξ (p)X †

mξ (p)�m(p)]

}
,

(70)

where the two-dimensional matrices X are defined by

Ue f (p)GU †
e f (p) =

(
Xm(p) Xmξ (p)
X †

mξ (p) Xξ (p)

)
. (71)

The imaginary-time mean-field quantum-mechanical ac-
tion at finite temperatures is then

S =
∫ β

0
dτ

[ ∑
p,r=m,ξ

�†
r (p, τ )∂τ�r (p, τ ) + Hm f

]
(72)

(β = 1/kBT ) in terms of the usual Grassmann variables for the
massive and critical fermions [31]. Minimization of the free
energy, which is the logarithm of the usual path integral over
Grassmann and Hubbard-Stratonovich variables, determines
the saddle-point values of u and v, which then equal their
expectation values in the ground state: u = 〈∑�†(p)�(p)〉 is
the shift in the chemical potential, and v = 〈∑ �†(p)G�(p)〉
is the “staggered” chemical potential [32,33], i.e., the imbal-
ance between the average occupations of sites on the corners
R and sites on the links R ± ei/2. If either u or v is finite the
inversion symmetry is broken, since Hm f would acquire real
terms and so cease to anticommute with the operator A.

We now integrate over fermions to get the remaining ac-
tion S in terms of the variables u and v only, and expand
in powers of both variables to examine the stability of the
inversion-symmetric BF surface. The integration over the
massive fermions, of course, can only produce infrared-finite
terms in the expansion of such S in powers of u and v [34].
In particular, the terms ∼uv and ∼u2 produced by this inte-
gration vanish exactly at T = 0. The same absence of ∼uv

and ∼u2 terms is also found in the integration over the more
important critical modes, as we explain below.

The integration over the critical modes yields the following
term in the action S, quadratic in u and v:

kBT

2

∑
ωn,p

Tr

[
iωn + ξσ3

ω2
n + ξ 2

(u + vXξ )
iωn + ξσ3

ω2
n + ξ 2

(u + vXξ )

]
,

(73)
where ξ = ξ (p). This can be rearranged into

kBT

2

∑
ωn,p

Tr

[ −ω2
n + ξ 2(

ω2
n + ξ 2

)2 u(u + 2vXξ ) (74)

+ v2 iωn + ξσ3

ω2
n + ξ 2

Xξ

iωn + ξσ3

ω2
n + ξ 2

Xξ

]
.

The first term (∼u2 and ∼uv) vanishes at T = 0 due to the
exact property of the integral over frequencies∫ ∞

−∞
dω

ξ 2 − ω2

(ω2 + ξ 2)2
= 0, (75)

whereas it would be finite at T �= 0. It cannot therefore pro-
duce a T = 0 instability of the BF surface at infinitesimal
coupling by itself. The remaining second term (∼v2), on the
other hand, upon expanding

Xξ (p) =
3∑

μ=0

gμ(p)σμ, (76)
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becomes

v2kBT
∑
ωn,p

ξ 2
[
g2

0(p) + g2
3(p) − g2

1(p) − g2
2(p)

] − ω2
ng2

μ(p)[
ω2

n + ξ 2(p)
]2 .

(77)
At T = 0, using Eq. (75), the last expression can be written as

−v2
∫ +∞

−∞

dω

2π

∑
p

g2
1(p) + g2

2(p)

ω2 + ξ 2(p)
= −v2

∫ �

0

dξ

|ξ |N (ξ ),

(78)

where

N (ξ ) =
∑

p

δ(ξ − ξ (p))
[
g2

1(p) + g2
2(p)

]
, (79)

and � is a UV cutoff. The integral is logarithmically divergent
if N (0) is finite, i.e., if the expansion coefficients g1,2(p)
of Xξ (p) have finite support on the BF surface. The sign
of the integral implies that the coefficient of the quadratic
term ∼v2 is in that case always negative, which signals the
instability of the inversion-symmetric BF surface at T = 0.
Computing the energy of the ground state with a finite uniform
v and minimizing it then yields the characteristic form when
VN (0) → 0:

v = �e−1/[2VN (0)]. (80)

The critical temperature below which v �= 0 exhibits the same
essential singularity in the interaction V , common to all weak-
coupling instabilities.

Since the integration over the fermions at T = 0 does not
contribute to the coefficients of ∼u2 and ∼uv terms in the
action, the saddle-point value of u vanishes at T = 0.

Finally, it is easy to show that although the integration
over massive states modifies the propagator for the critical
fermions to the order of v2, this does not alter the log-
divergent coefficient of the quadratic term above.

IX. FATE OF BF SURFACE

The lesson of the previous section is that the stability of the
BF surface depends only on whether the matrix G that couples
the light fermions to the order parameter v, once projected
onto the critical states, has finite off-diagonal elements for the
momenta at the BF surface. For momenta at the BF surface
ξ (p) = 0, and the matrix Xξ is then by definition

Xξ=0(p) =
(

�
†
+(p)G�+(p) �

†
+(p)G�−(p)

�
†
−(p)G�+(p) �

†
−(p)G�−(p)

)
, (81)

with the states �±(p) given by Eq. (40). This readily yields
gk (p) = 0 for k = 2, 3 and

g0(p) = − a2(p)

a2(p) + b2(p)
, (82)

g1(p) = b2(p)

a2(p) + b2(p)
. (83)

g1(p) is finite everywhere on the BF surface, except at the
three coordinate axis. The integral in Eq. (78) is then in-
deed logarithmically divergent, and the inversion-symmetric

BF surface is unstable at T = 0 and infinitesimal repulsive
nearest-neighbor interaction V .

We may now examine the resulting low-energy spectrum of
the quasiparticles in the inversion-symmetry-broken state with
v > 0 and u = 0. It is given by the two-dimensional mean-
field Hamiltonian for the critical fermions near the BF surface

Hm f ,ξ = ξ (p)σ3 + vg1(p)σ1 + vg0(p), (84)

with gk (p), k = 0, 1 given above, and ξ (p) as in Eq. (67). Near
the BF surface one can approximate

ξ (p) = a(p) · b(p)

[a(p)2 + b(p)2]1/2

{
1 + [a(p) · b(p)]2

2[a(p)2 + b(p)2]2
+ · · ·

}
.

(85)
The spectrum of Hm f ,ξ is therefore

E (p) = ±[
ξ 2(p) + v2g2

1(p)
]1/2 + vg0(p). (86)

In particular, the location in the momentum space of the zero
modes of the new spectrum is in general given by the solution
of

ξ 2(p) = v2[g2
0(p) − g2

i (p)
]
, (87)

which in the present case and with the order parameter v small
reduces to the simple condition

[a(p) · b(p)]2 = v2[a(p)2 − b(p)2]. (88)

The left-hand side of the last equation vanishes at the orig-
inal BF surface. The parts of the original BF surface where
the right-hand side [RHS = v2(a2 − b2)] of the equation is
positive will thus split into two wings of the new surfaces of
zero modes, which merge at the intersection of the original
BF surface and the surface given by the zero value of the
right-hand side of the equation (RHS = 0). So if such an
intersection of the two surfaces exists, a part of the original
BF surface will become gapped, and its complement will
effectively remain gapless, i.e., transform into a new surface.
If there is no such intersection of the two surfaces, on the other
hand, the original BF surface is either completely gapped out
(if RHS < 0 everywhere on it), or split into two new separate
nearby surfaces (if RHS > 0 everywhere on it).

In our lattice model, since a ∼ t vanishes in the corners of
the Brillouin zone, and b ∼ χ vanishes at the three axis, the
surface RHS = 0 always intersects the original BF surface,
and thus gaps out only a part of it. The size of the remaining
surface when v �= 0 depends on the ratio χ/t : when χ/t → 0,
the gapped part vanishes, whereas as χ/t → ∞ only the parts
of the BF surface around the axis survive, and the gap is finite
almost everywhere. A typical result is depicted in Fig. 3.

X. SUMMARY AND DISCUSSION

We have discussed the formation of the BF surface in
the multiband superconductors with inversion symmetry by
pointing out the analogy with classical relativity, furnished
by the SO(4)-generator form of the low-energy Hamiltonian
which ensues when the time reversal is broken, either in
the superconducting or the normal phase, or in both. In this
analogy the zero-energy solutions of the BdG Hamiltonian
correspond to four-velocities for which the classical Lorentz
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FIG. 3. New BF surface (yellow) after the inversion is sponta-
neously broken. Parts of the original BF surface (blue) outside of the
new BF surface are gapped out, whereas those inside are split into the
new surface, as described in the text. The values of the parameters are
here chosen to be t = 1, χ = 0.5, and v = 0.6.

force in fictitious corresponding electric and magnetic fields
vanishes, and the BF surface is linked to the orthogonality
of the electric and magnetic fields. The latter condition is
found to be tantamount to vanishing of the Pfaffian of the
low-energy Hamiltonian. The relativistic analogy suggested a
simple single-particle lattice model which falls into the class
D, that is, which yields a hopping Hamiltonian that anticom-
mutes with an antiunitary operator of a positive square, the
latter encoding the joint particle-hole and inversion symme-
tries of the superconducting state. We then added a two-body
repulsive term between nearest neighbors on the lattice, to find
that the inversion symmetry becomes spontaneously broken at
T = 0 at infinitesimal such interaction. The BF surface of the
noninteracting lattice model deforms and reduces in size as a
result, but does not completely disappear.

The relativistic analogy offers maybe the simplest way to
understand why a BF surface arises when the time reversal is
broken: since the effective Hamiltonian is a four-dimensional
SO(4) generator which belongs to the (1/2, 1/2) represen-
tation equivalent to standard boosts and rotations in the
Minkowski space, the quasiparticle spectrum is a linear
combination of two familiar spectra of spin-1/2 particles
[Eq. (32)]. As such it yields a single zero-energy condition on
three components of momentum, which when satisfied leads
to a surface in the momentum space. The preservation of the
time reversal prevents the condition to be fulfilled, and leads
to two equations on momenta with zero energy, i.e., a line.

Following the same mode-elimination procedure of
Ref. [18] for the present inversion-symmetric case, outlined
also here in Appendix C, one finds that at weak Cooper pairing
BF surfaces will inevitably form around those points in the

momentum space where the intraband pairing between the
light states happens to vanish. The size of the BF surface
is then ∼�2/E0, where � is the overall norm of the multi-
component pairing order parameter, and E0 the energy gap
to the first higher energy level in the normal state, and thus
typically small in the weak-coupling limit. In precise analogy
to the case without inversion [18], increasing the pairing order
parameter initially inflates the BF surfaces, but only up to
a point, beyond which it begins to reduce them, until they
disappear via an example of a Lifshitz transition [35].

It was pointed out [19,20] that the inversion symmetry is in
danger of being spontaneously broken by residual interaction
effects, and the concomitant BF surface further reduced or
gapped out. This ensues, however, only if the effective resid-
ual interactions between the low-energy quasiparticles with
momenta near the BF surface are attractive in the particular
inversion-symmetry-breaking channel, which seems difficult
to ascertain without a specific model in mind. To that purpose
we proposed a lattice model which is motivated by the phe-
nomenon of the BF surface in the inversion-symmetric and
time-reversal-broken multiband superconductor; the only re-
quirement on it is that it falls into the class D [13], as dictated
by the symmetries of the superconducting problem under con-
sideration. The model then features spinless fermions hopping
on the three-dimensional Lieb lattice and repelling each other
when found on nearest-neighboring sites. We show that this
model indeed exhibits a surface of Weyl points, which spans
the entire Brillouin zone, and serves therefore as a magnified
version of a BF surface. Infinitesimal nearest-neighbor inter-
action leads however to spontaneous dynamical breaking of
the D-class condition in the mean-field Hamiltonian, which
should be interpreted as breaking of inversion in the super-
conducting problem. The noninteracting BF surface is found
to be deformed and reduced by this mechanism, with its final
size dependent on the model parameters.

The dynamical inversion symmetry breaking in the present
lattice model is interesting from the point of view of the theory
of quantum phase transitions in fermionic systems. At the
level of the model, it is not really, as usual, a symmetry (a
commuting linear operator) that becomes broken, but an “anti-
symmetry” (an anticommuting, and even antiunitary operator)
that does so. Other modifications of our lattice model with
different two-body interaction terms, or disorder, may lead to
further insights into this new phenomenon.
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APPENDIX A: CP SYMMETRY OF THE BdG
HAMILTONIAN

Let us redefine the quantum-mechanical action for the Bo-
goliubov quasiparticles in the superconducting state:

S = kBT
∑
ωn,p

�†(ωn, p)[−iωn + HBdG(p)]�(ωn, p), (A1)
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where the Nambu spinor is now simply
�(ωn, p) = (ψ (ωn, p), ψ∗(−ωn,−p))T, without the unitary
part of the time reversal in the lower, hole component. In this
representation the BdG Hamiltonian assumes the standard
form [4]:

HBdG(p) =
(

H (p) − μ �(p)
�†(p) −[HT(−p) − μ]

)
, (A2)

related to our form in an obvious way. The pairing matrix
needs to satisfy

�T(−p) = −�(p). (A3)

It is straightforward to check that the BdG Hamiltonian in
this representation possesses the particle-hole symmetry (by
construction) in the following form:

(σ1 ⊗ 1N×N )HT
BdG(−p)(σ1 ⊗ 1N×N ) = −HBdG(p). (A4)

We now additionally assume that there is an inversion sym-
metry, so

P†H (−p)P = H (p), (A5)

P†�(−p)P = �(p). (A6)

For the BdG Hamiltonian this implies that

(1 ⊗ P†)HBdG(−p)(1 ⊗ P) = HBdG(p). (A7)

Recognizing that transposing the (Hermitian) BdG Hamilto-
nian is the same as complex-conjugating it, one discerns the
antiunitary operator A′,

A′ = (σ1 ⊗ P )K, (A8)

which has the desired effect of anticommuting with the BdG
Hamiltonian at fixed momentum, i.e.,

(A′)−1HBdG(p)A′ = −HBdG(p). (A9)

The square of this operator is now

(A′)2 = (σ1)2 ⊗ (PP∗) = PP∗. (A10)

When P is simply a unit matrix this is +1, but when it is
not, even if one assumes the usual Hermiticity of P, i.e., that
P = P†, the square of A′ depends on whether the matrix for
P in the given representation is real or imaginary. A simple
example of the Dirac Hamiltonian with imaginary Hermitian
P is provided in the next Appendix. Of course, one can always
from the outset work in the eigenbasis of P itself, in which it
is a real diagonal matrix, and in which consequently PP∗ =
P2 = +1. The antiunitary operator that anticommutes with the
BdG Hamiltonian therefore always exists. Another way to see
that is to construct the BdG Hamiltonian by defining the hole
component of the Nambu spinor as a time-reversed particle
component, as done in the body of the paper. Then the fact
that A2 = +1 simply reflects the fundamental commutation
relation between spatial transformations such as inversion and
time reversal. More on this is next.

APPENDIX B: COMMUTATION BETWEEN INVERSION
AND TIME REVERSAL

Let us provide an argument as to why inversion
and time-reversal operations need to be assumed to be

commuting in general on the familiar example of the Dirac
Hamiltonian. First, modulo an overall sign, there is a unique
four-dimensional representation of five-dimensional Clifford
algebra, which can always be chosen so that three of the matri-
ces are real (αi, i = 1, 2, 3), and two imaginary (βi, i = 1, 2)
[28]. We may choose all five matrices to be Hermitian, and
to be squaring to unity. These are simple generalizations of
the known properties of the Pauli matrices. Consider then
a massless inversion-symmetric Dirac Hamiltonian, which is
the sum of two Weyl Hamiltonians of opposite chirality. It can
be written, for example, as

HW (p) =
3∑

i=1

piαi. (B1)

There is not one, but two options for the matrix part of the
inversion operation P at this stage: P1 = β1, or P2 = β2. Both
have the desired effect on the massless inversion-symmetric
Dirac Hamiltonian:

P†
i HW (−p)Pi = HW (p), (B2)

and both are Hermitian and unitary matrices.
Likewise, there are two options for the time-reversal oper-

ator: T1 = β1K , and T2 = β2K . The time-reversal operation T
in the momentum space is then given by the combined action
of Tk and the momentum reversal p → −p. Since β1,2 are
imaginary, we have

[Pi, T j] = 0 (B3)

only if i �= j; otherwise the two operations anticommute in-
stead of commuting. Let us chose then one anticommuting
pair, say P1 and T1. Is this a sensible choice? Add a relativistic
mass term to the massless Dirac Hamiltonian, and consider

HD(p) = HW (p) + mβk, (B4)

with k = 1 or k = 2. The mass m is real. These are the only
two options for the mass term, since there are no further four
dimensional matrices that would anticommute with all three
matrices αi. If we chose k = 1, HD is symmetric under inver-
sion operation P1, but the mass term violates time reversal T1.
If we had chosen k = 2, then the mass term would respect
the time reversal T1, but violate the inversion P1. Obviously if
we would choose the second anticommuting pair P2 and T2 it
would be the other way around. Still, either choice of the mass
term would violate one of the two discrete symmetries, if we
allowed them to anticommute with each other.

So the very existence of massive relativistic fermions
in the world which is both inversion-symmetric and time-
reversal-symmetric implies that these two symmetries must
be assumed to be commuting. Then the mass term uniquely
selects the corresponding operators: if k = 1, the required pair
is P1 and T2.

We may also note, in relation to the previous Appendix,
that in the above representation, in spite of P2

k = 1, PkP∗
k =

−1, for both k = 1, 2.
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FIG. 4. (a) The energy bands of light particle and hole states (red) and the heavy particle and hole states. Each energy band is doubly
degenerate. (b) The energy dispersion of the BdG quasiparticles with broken TR symmetry in the special direction where the intraband
coupling between the light states vanishes and f1,2 ∝ O(�3). The interband pairing induces a shift in momentum and energy with f3 ∝ O(�2)
and f0 ∝ O(�2), respectively. Meanwhile f1,2 introduces a gap between the critical and the massive energy bands. The two critical energy
bands are intersecting the Fermi level at p1 and p2 in that special direction. If one deviates from this special direction, the two points p1 and p2

will approach each other until they merge. This way a closed BF surface nucleates. (c) The energy dispersion of the BdG quasiparticles with
preserved TR symmetry again in the special direction. We see that f0 = 0; i.e., there is no shift in energy of the energy bands induced by the
interband pairing but only a shift in momentum. This will lead to either point or line nodes.

APPENDIX C: THE EFFECTIVE HAMILTONIAN IN THE
CANONICAL REPRESENTATION OF SO(3) × SO(3)

In this Appendix, we consider systems in the normal state
with M = 2 and T 2 = −1; i.e., the energy band Ei(p) is
doubly degenerated due to the inversion symmetry and has
the eigenstates φ+,i(p) and φ−,i(p). The emergence of the BF
surface in such a system will be explained in terms of shifts in
momentum and in energy of the critical and massive energy
bands due to inter- and intraband pairing. To this end, the ef-
fective Hamiltonian is written in the canonical representation
of SO(3) × SO(3) and has the form

He f = f0(p) σ3 ⊗ 12×2 +
3∑

j=1

[ f j (p)12×2 ⊗ σ j], (C1)

where the function f0(p) is defined as

f0(p) =
√

Z1(p)2 + Z2(p)2 + Z3(p)2 (C2)

with Zi(p) being the coefficient of Zi(p)σi ⊗ 12×2. The func-
tion f0(p) acts as a “pseudomagnetic field” responsible for the
emergence of the BF [4,5]. How f0(p) is related to the electric
field a(p) and the magnetic field b(p) in the body of paper is
shown in the second part of this Appendix.

In the normal state with the pairing matrix �(p) = 0 and
the superconducting gap being zero, i.e., � = 0, the effective
Hamiltonian is only proportional to f3(p) = E1(p) − μ and
describes the two particle and two hole states of the light mode
which arises due to the inversion symmetry; see Fig. 4.

However, in the superconducting state with broken time-
reversal (TR) symmetry, i.e., � = �1 − i�2 with �1,2 being
finite, the term f3(p) − [E1(p) − μ] introduces a shift in the
momentum of the energy band of order O(�2) due to inter-
band pairing, f0(p) introduces a shift in the energy of order
O(�2), while f1,2(p) ∝ O(�) + O(�3) which introduces a
gap between the light particle and hole states. Whenever the

leading order term of f1,2(p), which describes the intraband
pairing between the light particle and light hole state, vanishes
in a certain direction and f1,2(p) ∝ O(�3), the shift in mo-
mentum and energy of the energy bands leads to two points p1

and p2 along that special direction, where the energy bands of
the quasiparticles are zero; see Fig. 4. If one deviates from this
special direction, the two points will come closer to each other
and merge at one point due to continuity. This will lead to a
closed BF surface. In the case of a superconducting state with
preserved TR symmetry, f0(p) ≡ 0, which means that no shift
in the energy occurs. There is only a shift in the momentum
of the energy bands introduced by f3(p) − [E1(p) − μ]. This
leads in general to a line of gapless nodes.

1. The relation between the effective Hamiltonian and inter- and
intraband pairing

Next, we want to relate the intra- and interband pairing
of the different energy bands to the functions fα (p) with
α = {1, 2, 3, 4} which shift the light states in energy and
momentum ( f0,3) and open up a gap between the critical and
massive energy bands ( f1,2).

To derive the effective Hamiltonian, we employ Eq. (21)
where the effective Hamiltonian is (again) given by

He f (p) = Hl (p) − Hlh(p)H−1
h (p)H†

lh(p). (C3)

For the doubly degenerated energy bands, the matrix describ-
ing the light states Hl = H (0)

11 , while H (0)
ii with i � 2 denote the

intraband pairing between the heavy states. The matrices H (0)
ii

describing the energy dispersion and the intraband pairing
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between one energy band are thus given by

H (0)
ii =

⎛
⎜⎜⎝

Ei(p)−μ R(0)
i 0 0

R̄(0)
i −Ei(p)+μ 0 0
0 0 Ei(p) − μ R(0)

i

0 0 R̄(0)
i −Ei(p)+μ

⎞
⎟⎟⎠,

(C4)
with R(0)

i = φ
†
±,i(p)�φ±,i(p). The form of the matrices is

determined by the inversion and TR symmetry of the normal-
state Hamiltonian and the pairing matrix �1,2 which is defined
by the operator D = P · T = P · UK with D2 = −1. The uni-
tary part of D is defined as Ũ = P · U . A consequence of this
property is the fact that the eigenstates transform as

φ−,i(p) = +Dφ+,i(p), (C5)

φ+,i(p) = −Dφ−,i(p), (C6)

while the pairing term transforms as

Ũ† �(p) Ũ = �(p)T. (C7)

The elements (1,4),(2,3),(3,2), and (4,1) of H (0)
ii are zero, since

these matrix elements describe the coupling between Kramers
pairs and

φ
†
+,i�φ−,i = (−Dφ−,i )

†�Dφ+,i = −φ
†
+,i�φ−,i = 0. (C8)

The matrices H (0)
i j with i �= j describe the coupling between

the light state and the jth heavy state in the case of i = 1
and j �= 1 and between the ith and jth heavy state. They are
defined as

H (0)
i j =

⎛
⎜⎜⎜⎝

0 C(0)
i j 0 B(0)

i j

Ā(0)
i j 0 D̄(0)

i j 0
0 −D(0)

i j 0 A(0)
i j

−B̄(0)
i j 0 C̄(0)

i j 0

⎞
⎟⎟⎟⎠, (C9)

where the coefficients are given by

A(0)
i j = φ

†
−,i(p)�φ−, j (p) = φ

†
+, j (p)�φ+,i(p), (C10)

B(0)
i j = φ

†
+,i(p)�φ−, j (p), (C11)

C(0)
i j = φ

†
+,i(p)�φ+, j (p), (C12)

D̄(0)
i j = φ

†
+,i(p)�†φ−, j (p). (C13)

Note that the diagonal blocks H (0)
ii are Hermitian matrices

whereas the off-diagonal blocks H (0)
i j in general are not. To

obtain a physical intuition for how the functions fα are related
to the inter- and intraband pairing, we consider the result
of second-order perturbation theory. Since the matrix blocks
belonging to Hlh are in first order of �, we neglect all intra-
and interband coupling between the heavy states; i.e., we set
� = 0 in all H (0)

i j with i > 2, which yields

He f = H (0)
11 −

N∑
k=2

H (0)
1k

(
H (0)

kk,�=0

)−1
H (0)†

1k + O(�3). (C14)

The BF surface emerges when the leading order of the intra-
band pairing between the light particle and light hole state is
vanishing in one special direction, which is described in the
effective Hamiltonian by

f1(p) − i f2(p) = φ
†
+,1(p)�φ+,1(p) + O(�3). (C15)

This can also be rewritten in terms of � = �1 − i�2 as

f1 = φ
†
+,1(p)�1φ+,1(p) + O(�3), (C16)

f2 = φ
†
+,1(p)�2φ+,1(p) + O(�3). (C17)

The interband pairing between the light state and the heavy
states shifts the energy band crossing of the light particle and
light hole state in momentum and is given

f3(p) = E1(p) − μ +
N∑

k=2

1

2[Ek (p) − μ]

× [|φ†
+,1(p)�φ−,k (p)|2 + |φ†

+,1(p)�φ+,k (p)|2

+ |φ†
+,1(p)�†φ−,k (p)|2 + |φ†

+,1(p)�†φ+,k (p)|2].
(C18)

The function f0(p) which introduces a shift in energy of the
energy bands and is thus responsible for the nucleation of the

BF surface, is defined as f0 =
√

Z2
1 + Z2

2 + Z2
3 . The functions

Z1(p) and Z2(p) are defined as the interband pairing between
the light states and the heavy states and are only finite when
TR symmetry is broken (i.e., �2 is finite), as can be seen in

Z1(p) − iZ2(p) =
N∑

k=2

1

Ek (p) − μ
{[φ†

+,1(p)�†φ+,k (p)][φ+,1�φ−,k (p)] − [φ†
+,1�

†φ−,k (p)][φ†
+,1(p)�φ+,k (p)]}, (C19)

or also with � = �1 − i�2

Z1 = 0, (C20)

Z2 =
N∑

k=2

2

Ek (p) − μ
{[φ†

+,1(p)�2φ+,k (p)][φ†
+,1(p)�1φ−,k (p)] − [φ†

+,1(p)�1φ+,k (p)][φ†
+,1(p)�2φ−,k (p)]}. (C21)

The same is true for Z3 which is given by

Z3(p) =
N∑

k=2

1

2[Ek (p) − μ]
[|φ†

+,1(p)�φ−,k (p)|2 + |φ†
+,1(p)�φ+,k (p)|2 − |φ†

+,1(p)�†φ−,k (p)|2 − |φ†
+,1(p)�†φ+,k (p)|2]. (C22)
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In Eqs. (C19)–(C22), we see explicitly that f0(p) ≡ 0 for
a TR-preserved superconducting state with �2 = 0. This im-
plies that the interband pairing induces no shift in energy of
the critical and massive energy bands. The only shift induced
by the interband pairing is in the momentum of the light parti-
cle and hole states which exhibits only line or point nodes, as
can be seen in Fig. 4.

2. The effective Hamiltonian in the SO(4) representation and in
the canonical SO(3) × SO(3) representation

In this section, we want to relate the SO(4) representation
of the effective Hamiltonian to the canonical SO(3) × SO(3)
representation.

Although the SO(4) commutation relations guarantee the
existence of the unitary transformation that would bring the
matrices in Eqs. (44)–(49) into the standard form, we never-
theless provide it here, for completeness:

U = 1

2

⎛
⎜⎝

1 −i i 1
−1 −i −i 1
−i −1 −1 i
−i 1 −1 −i

⎞
⎟⎠. (C23)

Then

UR+U† = 1
2 (1 ⊗ σ3, 1 ⊗ σ1, 1 ⊗ σ2), (C24)

UR−U† = 1
2 (σ2 ⊗ 1, σ3 ⊗ 1, σ1 ⊗ 1), (C25)

which are cyclic permutations of the canonical form 1 ⊗ σk/2,
k = 1, 2, 3, and σk/2 ⊗ 1, respectively.

Hence, we can relate the coefficients ai(p) and bi(p) of the
SO(4) representation to their canonical counterpart fi(p) and
Zi(p) in the following way:

a1(p) = 1
2 [ f3(p) + Z2(p)], b1(p) = 1

2 [ f3(p) − Z2(p)],

(C26)

a2(p) = 1
2 [ f1(p) + Z3(p)], b2(p) = 1

2 [ f1(p) − Z3(p)],

(C27)

a3(p) = 1
2 [ f2(p) + Z1(p)], b3(p) = 1

2 [ f2(p) − Z1(p)].

(C28)

The condition for the emergence of the BF surface [see
Eq. (33)] can now be expressed by the coefficients fi and Zi as

a(p) · b(p) =
3∑

i=1

[
f 2
i (p) − Z2

i (p)
] =

3∑
i=1

f 2
i (p) − f 2

0 (p) = 0,

(C29)
which is the same condition as Eq. (10) of Ref. [18], and
corresponds to the condition that the Pfaffian of the effective
Hamiltonian has to vanish. Or in other words, the condition for
the emergence of the BF surface in the SO(4) representation
is the orthogonality of the electric and magnetic fields a(p)
and b(p), whereas in the canonical representation the condi-
tion for the emergence of the BF surface translates into the
fact that the interband coupling, which introduces the shift in
momentum of the critical and massive energy bands as well
as the gap between the critical and massive bands, has to be
as large as the shift in energy of the bands induced by the
“pseudomagnetic” field f0.

For a superconducting state with preserved TR symmetry,
Zi(p) = 0 (as proven above) which yields that the electric and
magnetic fields are parallel with a(p) = b(p) [as demanded
in Eq. (50)]. Furthermore, we see that the component a3(p) =
b3(p) = 0 vanishes when TR symmetry is preserved, i.e., �2

is zero, which is in agreement with Eq. (51).
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