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Pairing correlations in the cuprates: A numerical study of the three-band Hubbard model
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We study the three-band Hubbard model for the copper oxide plane of the high-temperature superconducting
cuprates using determinant quantum Monte Carlo and the dynamical cluster approximation (DCA) and provide
a comprehensive view of the pairing correlations in this model using these methods. Specifically, we compute
the pair-field susceptibility and study its dependence on temperature, doping, interaction strength, and charge-
transfer energy. Using the DCA, we also solve the Bethe-Salpeter equation for the two-particle Green’s function
in the particle-particle channel to determine the transition temperature to the superconducting phase on smaller
clusters. Our calculations reproduce many aspects of the cuprate phase diagram and indicate that there is an
“optimal” value of the charge-transfer energy for the model where Tc is largest. These results have implications
for our understanding of superconductivity in both the cuprates and other doped charge-transfer insulators.
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I. INTRODUCTION AND MOTIVATION

Despite decades of active research, the origin of high-
temperature (high-Tc) superconductivity remains a central
problem in condensed-matter physics. Cuprates, perhaps the
most studied family of high-Tc superconductors, are experi-
mentally observed to have a dx2−y2 -wave (d-wave hereafter)
pairing symmetry when their parent compounds are hole
or electron doped [1]. The pairing mechanism in cuprates,
however, appears to be entirely different [2,3] from the one
operating in conventional s-wave superconductors, which are
well described by the BCS theory. Superconductivity in the
cuprates occurs in the quasi-two-dimensional CuO2 planes.
Here, the half-filled Cu 3dx2−y2 orbitals are highly localized,
resulting in a large local on-site Hubbard repulsion and strong
electron correlations that are believed to drive emergent su-
perconductivity and a host of unusual normal state behaviors.
While the prevailing paradigm for understanding these ma-
terials is that of a doped Mott insulator [2], the cuprates are
properly classified as charge-transfer insulators [4]. As such,
the cuprates have an electron-hole asymmetry in that doped
holes (electrons) preferentially reside on the oxygen (copper)
sublattice. The Cu and O orbitals of CuO2 also have a signif-
icant degree of hybridization. The minimal model to describe
this situation is the three-band Hubbard (or Emery) model [5].

While the three-band model captures the CuO2 plane’s
orbital degrees of freedom, it has historically been very chal-
lenging to study. The usual way to attack this problem is
to map the three-band model onto an effective low-energy
single-band (Hubbard or t-J) model. This approach assumes
that the oxygen orbitals contribute only indirectly to the
low-energy sector by establishing the value of the Cu-Cu
superexchange J and forming the Zhang-Rice singlet quasi-
particles [6]. Indeed, the community has obtained a great deal

of insight by studying these effective models, and they are be-
lieved to contain essential physics of the CuO2 plane. Studies
on the single-band Hubbard model, for example, have found
that it captures antiferromagnetism in undoped [7] and lightly
doped cases [8], d-wave superconductivity [9], high-energy
renormalizations in the band dispersion [10,11], the presence
of a pseudogap [12], and the NMR response [13].

Despite the successes mentioned above, recent studies have
also raised new questions. For example, state-of-the-art nu-
merical techniques [14–19] have been used to simulate the
single-band Hubbard model with a focus on its ground and
low-lying excited states. Collectively, they have found that
this sector is characterized by many near-degenerate states,
including charge and spin orders (i.e., stripes) that compete
with superconductivity. One density matrix renormalization
group (DMRG) study even concluded that the single-band
Hubbard model with only a nearest-neighbor hopping does
not have a superconducting ground state due to competition
between these phases [15]. The introduction of next-nearest-
neighbor hopping t ′, however, can frustrate the stripe order
and stabilize d-wave superconductivity [16]. These results
are in conflict with dynamical cluster approximation (DCA)
calculations [9,20], which yield a finite-temperature supercon-
ducting transition for the Hubbard model with t ′ = 0 but also
find that t ′ is essential to describe the electron-hole asymme-
try [21] and experimental band structure [22].

These discrepancies underscore two essential points for
studying models for the cuprates. First, each numerical
method makes its own approximations, which can bias the
solution towards one of the many competing low-energy
states. It is therefore critical to compare results obtained
using different numerical methods to get a complete phys-
ical picture [19]. Second, the near degeneracy of the states
observed in the single-band model and their sensitivity to
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parameters like t ′ make it necessary to determine whether the
downfolding from the three-band to the single-band model
introduces other biases. Detailed studies of the three-band
Hubbard model are needed to check this. Recent advances in
high-performance computing make simulations of the three-
band Hubbard model more feasible, and several methods have
been brought to bear on the problem [18,23–29]. A detailed
determinant quantum Monte Carlo (DQMC) study [23] was
conducted on this model to understand the spin-spin and
density-density correlations, as well as the spectral function.
But given the discrepancies between methods observed for the
single-band model, it is also essential to attack this problem
using DCA [20]. DCA can access the thermodynamic limit in
two dimensions and is therefore able to resolve the supercon-
ducting instability signaled by a divergence of the pair-field
susceptibility [9]. This capability is not present in finite-size
methods like DQMC or DMRG.

With these motivations, we previously studied the three-
band Hubbard model within the DCA [28]. By solving the
Bethe-Salpeter equation, we showed that the pairing inter-
action in the three-band model has a simple d-wave pairing
pattern with dominant weights located on the Cu d and oxygen
bonding molecular orbitals. This finding enabled us to unam-
biguously define and calculate the correct orbital-dependent
d-wave pairing susceptibility. This aspect was lacking in ear-
lier studies, which all adopted different definitions for the
pairing susceptibility and failed to reach a consensus re-
garding pairing correlations [27,30–32]. Based on this recent
progress, here, we use DQMC and DCA to study the d-wave
pairing correlations of the three-band Hubbard model more
broadly. We first establish agreement between the suscepti-
bility measured by both methods at high temperature and the
marginal effect of on-site interaction in the oxygen orbitals.
Then we present DCA results for the superconducting Tc

obtained on small clusters and argue that Tc is better predicted
by the solutions to the Bethe-Salpeter equation (BSE) than by
the pair-field susceptibility at temperatures well above Tc. By
varying the charge-transfer energy, we also demonstrate that
an “optimal” Tc occurs for a fixed hole density and discuss the
reasons for this behavior.

II. MODEL AND PARAMETERS

The three-band Hubbard model’s Hamiltonian is defined as
H = K + Vdd + Vpp, where K = K0 + Kpd + Kpp and

K0 = (εd − μ)
∑
i,σ

nd
i,σ + (εp − μ)

∑
i,α,σ

np
i,α,σ ,

Kpd =
∑

〈i, j,α〉,σ
t i, j,α
pd (d†

i,σ p j,α,σ + p†
j,α,σ di,σ ),

Kpp =
∑

〈 j,α, j′,α′〉,σ
t j, j′,α,α′
pp (p†

j,α,σ p j′,α′,σ + p†
j′,α′,σ p j,α,σ ),

Vdd = Udd

∑
i

nd
i,↑nd

i,↓,

Vpp = Upp

∑
j,α

np
j,α,↑np

j,α,↓. (1)

FIG. 1. The orbital basis for the three-band Hubbard model in-
cludes a cooper dx2−y2 orbital and its surrounding oxygen px and py

orbitals. The convention of the hopping integrals is shown.

Here, d†
i,σ (di,σ ) creates (annihilates) a spin σ (=↑,↓) hole

in the copper dx2−y2 orbital at site i; p†
i,α,σ (pi,α,σ ) creates

(annihilates) a spin σ hole in the oxygen pα (α = x, y) orbital
at site j; 〈· · · 〉 denotes a sum over nearest-neighbor orbitals;
nd

i,σ = d†
i,σ di,σ and np

i,α,σ = p†
i,α,σ pi,α,σ are the number opera-

tors; εd and εp are the on-site energies of the Cu and O orbitals,

respectively; μ is the chemical potential; t i, j,α
pd and t j, j′,α,α′

pp are
the nearest-neighbor Cu-O and O-O hopping integrals; and
Udd and Upp are the on-site Hubbard repulsion on the Cu and
O orbitals, respectively.

The hopping integrals are parameterized as t i, j,α
pd = Pi, j,αtpd

and t j, j′,α,α′
pp = Qj, j′,α,α′tpp, where Pi, j,α and Qj, j′,α,α′ take val-

ues ±1 following the convention shown in Fig. 1. Throughout
this work, we adopted a canonical parameter set for the
cuprates (in units of eV): tpd = 1.13, tpp = 0.49, Udd = 8.5,
Upp = 0, and � = εp − εd = 3.24 [23,33–35], unless other-
wise stated. Since we use hole language, half filling is defined
as a hole density nh = 1, which means one hole per unit cell.
nh > 1 then corresponds to hole doping, and nh < 1 corre-
sponds to electron doping.

In our recent DCA study [28], we observed a pairing in-
teraction with a simple d-wave structure that exists between
the Cu d and oxygen bonding and antibonding molecular
orbitals, denoted here as L and L′, respectively. The unitary
transformation [6,36,37] from the oxygen px, py orbital basis
to the pL, pL′ molecular orbital basis is defined in k space as

pL,k,σ = i

γk

[
sin

(
kxa

2

)
px,k,σ − sin

(
kya

2

)
py,k,σ

]
(2)

and

pL′,k,σ = − i

γk

[
sin

(
kya

2

)
px,k,σ + sin

(
kxa

2

)
py,k,σ

]
, (3)

where γ 2
k = sin2(kxa/2) + sin2(kya/2), pα,k,σ =

N−1/2
c

∑
j pα, j,σ exp(−ik · R j ), and the lattice constant a

is set to 1. A feature of this basis is that the d and pL′ orbitals
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hybridize with only the pL state and not with each other. The
Fourier transform of the pL and pL′ orbitals to real space is
defined as pL,i,σ = N−1/2 ∑

k pL,k,σ exp(−ik · Ri ), pL′,i′,σ =
N−1/2 ∑

k pL′,k,σ exp(−ik · Ri′ ), where i′ = i + x̂/2 + ŷ/2.

III. METHODS

A. Determinant quantum Monte Carlo

We first provide a brief overview of the DQMC algorithm.
Additional details also can be found in Refs. [23,32,38,39].

DQMC is a nonperturbative auxiliary field technique that
computes the expectation values of an observable in the grand-
canonical ensemble

〈Ô〉 = 1

Z Tr[Ô e−βH ], (4)

where Z = Tr[e−βH ] is the partition function. To evaluate
Eq. (4), the imaginary-time interval [0, β] is divided into L
evenly spaced slices of width �τ = β

L . Once this is done, the
exponential is decomposed using the Trotter approximation
such that

e−L�τH ≈ (e−�τK e−�τVdd e−�τVpp )L.

A trace over the quadratic terms can be evaluated di-
rectly [40]. The quartic interacting terms are therefore
transformed into a quadratic form by introducing a Hubbard-
Stratonovich transformation,

e−�τUααnα
i,↑nα

i,↓ = 1

2

∑
si,α,l

si,α,l e
λαsi,α,l (nα

i↑−nα
i↓ )− 1

2 �τUαα (nα
i↑+nα

i↓ ),

where we introduce auxiliary Hubbard-Stratonovich fields
si,α,l = ±1 at each space-(imaginary) time point (i, l ), α

is an orbital index, and λα is defined by tanh2(λα/2) =
tanh(�τUαα/4).

Once the interacting terms are rewritten in a quadratic
form, we can evaluate the trace over the fermionic degree of
freedom to obtain an expression for the partition function in
terms of matrix determinants,

Z =
∑

si,α,l =±1

det M+ det M−,

where Mα = I + Bσ
L Bσ

L−1 · · · Bσ
1 , B±

l = e−�τK evd
±(l )ev

p
±(l ), I is

the identity matrix, and vα
±(l ) are matrices whose elements

are given by

vα
±(l )mm′ = δmm′

[
±λαsm,α,l − �τ

Uαα

2

]
.

We can then calculate the expectation values of an observable
〈Ô〉 by sampling the Hubbard-Stratonovich fields using the
Markov chain Monte Carlo method, where the system accepts
proposed local and global changes using a modified heat bath
algorithm.

The weight of each Hubbard-Stratonovich field configu-
ration is given by W ({si,α,l}) = 1

Z det M+ det M−, which is
not positive definite. This aspect is a manifestation of the
infamous fermion sign problem. To deal with it, we separate
the weight into a “probability” P(s), representing its absolute
value of det M+ det M−, and fsign, representing its sign. ( fsign

is commonly referred to as the fermion sign.) The expectation

values are then reweighted as

〈Ô〉 =
∑

sm,α,l
Ô fsignP(s)∑

sm,α,l
fsignP(s)

,

where the denominator measures the average value of the
fermion sign 〈 fsign〉. The average sign is usually less than 1
except for some special cases, where it is protected by its sym-
metry (e.g., the half-filled single-band Hubbard model) [41].
In general, 〈 fsign〉 decreases with increasing lattice size or
decreasing temperature. When 〈 fsign〉 is close to zero, the
statistical fluctuations in measuring an observable will be
magnified, and many more measurements are needed to obtain
an accurate result.

B. The dynamical cluster approximation

The DCA [9,20,42] maps the bulk lattice in the ther-
modynamic limit to a finite-size cluster embedded in a
self-consistent mean field that approximates the remainder of
the system. DCA describes a system in the thermodynamic
limit by treating the short-range correlations within the cluster
explicitly and the longer-range correlations as a dynamical
mean field. An interested reader can find further details about
the DCA method in Ref. [20]. Here, we provide an overview
and highlight the aspects that are needed to treat the three-
band Hubbard model.

The basic assumption of the DCA is that the dominant
correlations are primarily short range and can be captured
within the cluster. With that, the self-energy �α1,α2 (k, iωn)
is approximated by �α1,α2 (K, iωn), where K are the cluster
momenta and α1 and α2 are band indices. The coarse-grained
single-particle Green’s function can be obtained by

Ḡα1,α2 (K, iωn)

= Nc

N

∑
k

Gc(K + k, iωn)α1,α2

= Nc

N

∑
k

[(iωn + μ)I − ε(K + k) − �(K, iωn)]−1
α1,α2

,

(5)

where μ is the chemical potential, adjusted to obtain a given
density, and Nc is the number of unit cells in the cluster.
Here, the dispersion ε(K + k) is a 3 × 3 matrix in the d ,
px, and py orbital basis, obtained by Fourier transforming the
hopping integrals in Eq. (1). The coarse-grained sum is over
the momenta k in a square patch centered at K whose size is
determined by the ratio of the Brillouin zone volume to the
size of the cluster. This procedure reduces the bulk problem to
a finite-size cluster problem, which we solve self-consistently
using the continuous-time auxiliary field quantum Monte-
Carlo algorithm [43].

To study the pairing correlations in the normal state, we
solve the BSE:

− T

Nc

∑
K ′,α1,α2

�
c,pp
α,β,α1,α2

(K, K ′)χ̄α1,α2,α3,α4 (K ′)φR,ν
α3α4

(K ′)

= λνφ
R,ν
αβ (K ), (6)
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Here, K = (K, iωn), and χ̄α1,α2,α3,α4 (K, iωn) =
(Nc/N )

∑
k′[Gα1α3 (K + k′, iωn)Gα2α4 (−K − k′,−iωn)] is

the coarse-gained bare particle-particle propagator. The
irreducible particle-particle vertex �

c,pp
α1,...,α4(K, K ′) is assumed

to depend on only the cluster momenta K. It is extracted from
the two-particle cluster Green’s function G2,c

α1,...,α4
(K, K ′) with

zero center of mass momentum and frequency by inverting
the cluster Bethe-Salpeter equation,

G2,c
α1,α2,α3,α4

(K, K ′) = Ḡα1,α3 (K )Ḡα2,α4 (−K )δK,K ′ + T

Nc

∑
K ′′

α′
1,...,α

′
4

Ḡα1,α
′
1
(K )Ḡα2,α

′
2
(−K )�c,pp

α′
1,α

′
2,α

′
3,α

′
4
(K, K ′′)G2,c

α′
3,α

′
4,α3,α4

(K ′′, K ′).

(7)

To keep the left and right eigenvectors of the eigenvalue
equation (6) consistent, we symmetrize the pairing kernel
entering Eq. (6). Using matrix notation in (K, α, β ), we
first diagonalize the bare particle-particle propagator, χ̄D =
U −1χ̄U , where χD is a diagonal matrix. We then use the
transformation matrix U to symmetrize the BSE,

− T

Nc
U

√
χDU −1�c,ppU

√
χDU −1φν = λνφ

ν. (8)

We use the eigenvectors of the symmetrized BSE φν
αβ (K )

for our analysis presented here. They are related to the right
eigenvectors of the BSE in Eq. (6) by

φν = U
√

χDU −1φR,ν .

The coarse-grained two-particle Green’s function is de-
fined as

Ḡ2(K,−K,−K ′, K ′) = N2
c

N2

∑
k,k′

G2,c(k,−k,−k′, k′). (9)

It can be constructed from the eigenvalues and eigenvectors
using Eq. (7):

Ḡ2 = [U
√

χDU −1]
∑

ν

[φ−1]νφν

1 − λν

[U
√

χDU −1]. (10)

This equation shows that Ḡ2 diverges as the leading eigen-
value λν → 1. The temperature at which this divergence
occurs is the superconducting transition temperature Tc.

Our DQMC and DCA calculations are both limited by
the fermion sign problem. The coupling of the cluster to a
self-consistent mean field in DCA reduces the sign problem
considerably, however, which allows us to access physics at
lower temperatures [20,44].

IV. RESULTS AND DISCUSSION

In this section, we define the components of the d-wave
pairing susceptibility in the {d, pL, pL′ } basis following our
recent DCA study [28]. We then present the filling and charge-
transfer energy dependence of the pair-field susceptibility and
transition temperature from both DCA and DQMC.

A. The d-wave pair-field susceptibility

We examine several components of the d-wave pair-field
susceptibility defined in the {d, pL, pL′ } basis. We previously
showed that in this basis, all the contributions have d-wave

symmetry [28]. First, we define a generalized pair-field sus-
ceptibility in the d-wave channel

Pd,α1α2α3α4 =
∫ β

0
dτ

〈
�†

α1,α2
(τ )�α3,α4

(0)
〉
, (11)

where αi = d , pL, pL′ are orbital indices, �†
α1,α2

=
1√
N

∑
k gd (k)c†

α1,k,↑c†
α2,−k,↓, gd (k) = cos(kx ) − cos(ky), and

c†
α,k,σ

creates a hole in orbital α with momentum k and spin σ .
The total dx2−y2 -wave pair-field susceptibility is defined as the

FIG. 2. The total d-wave pair-field susceptibility Pd,tot as
a function of hole density from DQMC and DCA at tpd =
1.13 eV, tpp = 0.49, � = 3.24,Udd = 8.5, T = 0.125, NCu = 4 ×
4, �τ = 0.1 (DQMC), with Upp = 0 and Upp = 4.1. The two meth-
ods largely agree. In both cases, setting Upp 
= 0 changes Pd,tot only
slightly while also increasing the statistical error bars. The latter
effect is due to a decrease in the average value of the fermion sign.
The lines in both panels are guides for the eye.
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summation over all channels:

Pd,tot =
∑
α1,α2,
α3,α4

Pd,α1α2α3α4 . (12)

This quantity characterizes how easily Cooper pairs form
once an infinitesimal pair-field switches on and provides a
measure of the superconducting correlations in the normal
state.

B. High-temperature pairing correlations

Figure 2 presents DQMC and DCA results for Pd,tot as a
function of hole density at T = 0.125 eV−1 obtained on an
NCu = 4 × 4 cluster with Upp = 0 eV [Fig. 2(a)] and Upp =
4.1 eV [Fig. 2(b)]. DQMC treats the problem with a finite-
size cluster in a numerically exact way, while DCA embeds
its cluster self-consistently in a dynamical mean field. We
therefore expect the two methods to give slightly different
results that converge towards one another as the cluster size
increases. Figure 2 shows that, at high temperatures and for
the 16-site cluster, both DQMC and DCA already give very
similar results. Moreover, comparing the results in Figs. 2(a)
and 2(b), we find that setting Upp = 4.1 eV marginally affects
Pd,tot while also increasing the statistical error bars. We can
rationalize this observation by recalling that Upp increases
the correlations in the doped system and exacerbates the sign
problem [23]. For this reason, we will set it to zero for the
remainder of this study.

The agreement between DQMC and DCA, two inde-
pendent numerical methods, gives us confidence that the
three-band model has been implemented correctly in the
DCA++ code and shows that both methods produce very sim-
ilar results when correlations are short-ranged and sufficiently
represented within the cluster. We note, however, that DCA
approximates the thermodynamic limit by treating long-range
correlations at the mean-field level. At the same time, DQMC
solves the problem exactly on a finite-size cluster (with the as-
sociated finite-size effects). For these reasons, we expect that
we would see more significant differences between the two
methods at lower temperatures (if the sign problem were not
present) when considering small clusters like those considered
here. These differences, however, would vanish as the cluster
size increases.

Inspecting Fig. 2, we find that the total pair-field sus-
ceptibility is larger on the electron-doped side compared to
the hole-doped side for the fillings we investigated, which
is contrary to expectations. Upon examining the dominant
components of this quantity (shown in the Appendix), we
observe that all of them exhibit a similar asymmetry between
electron and hole doping. This difference arises because the
doped holes tend to go to the O orbitals, while doped electrons
tend to go to the Cu orbitals. We do not believe that the larger
susceptibility on the electron-doped side is a finite-size effect
since we observe similar asymmetries in a 2 × 2 cluster, as
discussed in the next section. One might naively expect the
reverse asymmetry since the experimental transition temper-
ature is higher for the hole-doped cuprates. However, as we
will show in the next section, the high-temperature pairing

FIG. 3. (a) λd vs T at different hole densities. Using DCA, we
were able to reach low enough temperatures where λd goes be-
yond 1 and estimate Tc by interpolation. (b) Tc versus nh shows
two superconducting domes on the hole-doped and electron-doped
sides, respectively, with the maximum Tc higher on the hole-doped
side, qualitatively consistent with experiments. The peaks are located
around 0.05 doping, close to half filling, due to the small cluster size.

susceptibility can be a poor proxy for the actual Tc realized
in the system.

C. Density dependence of pair-field susceptibility and
transition temperature

Our DCA calculations are able to reach temperatures
low enough to directly determine the superconducting Tc

on a 2 × 2 cluster, the minimum size needed to support a
d-wave symmetry. To demonstrate this, Fig. 3(a) plots λd

vs T for hole-doped (nh = 1.05) and electron-doped (nh =
0.95) systems. As discussed in Sec. III B, the superconduct-
ing transition occurs when λd (Tc) = 1. Here, we are able
to track λd across this value so that we can extract Tc by
interpolating the data. Using this procedure, we are able to
explicitly compute Tc as a function of doping, as shown in
Fig. 3(b). The results shown in Fig. 3(b) display a super-
conducting dome on both the hole- and electron-doped sides
with the maximum Tc = 0.028 eV (β ≈ 36) at nh = 1.05.
These observations are consistent with those made in a pre-
vious DCA study on a two-band Hubbard model, where Tc

was obtained from an extrapolation of the d-wave pair-field
susceptibility [21].

Our Tc results on the 2 × 2 cluster capture many qual-
itative aspects of the cuprate phase diagram. For example,

144514-5



MAI, BALDUZZI, JOHNSTON, AND MAIER PHYSICAL REVIEW B 103, 144514 (2021)

FIG. 4. (a) The pair-field susceptibility and its factors (b) 1/(1 − λd ), (c) the approximate pair-field susceptibility P̄d,tot, and (d) the prefactor
Pd0, all plotted as functions of hole density. Results shown here were obtained from a DCA calculation on a 2 × 2 cluster. The panels share
the legend. The asymmetry of the pair-field susceptibility is determined by the intrinsic pair-field susceptibility Pd0, while the divergence of
1/(1 − λd ) determines Tc. The lines in all panels are guides for the eye.

T max
c is larger on the hole-doped side, and the superconduct-

ing dome is wider on the electron-doped side in comparison
to the hole-doped side; however, we also obtain Tc val-
ues that are larger than those observed experimentally [45],
and our “optimal” doping values appear closer to half fill-
ing. We believe that both inconsistencies are due to the
use of a small 2 × 2 cluster or possibly additional physics
not included in the model (e.g., inhomogeneities). For the
single-band Hubbard model, previous DCA calculations have
found that Tc decreases considerably when larger clusters are
considered [9].

Next, we determine how the particle-hole asymmetry in
Tc is related to that of Pd,tot found above. This question is
imperative since the pair-field susceptibility is often used as
a proxy for the superconducting transition [9,21,27,32]. Fig-
ure 4 presents an analysis of the pair-field susceptibility, this
time obtained on a 2 × 2 cluster to facilitate a direct compar-
ison to Fig. 3. As with the 4 × 4 case, Pd,tot has a reversed
asymmetry compared to Tc, in that it is significantly higher on
the electron-doped side. To understand this discrepancy better,
we now analyze Pd,tot in more detail.

According to Eqs. (10) and (11), we can write Pd,tot as

Pd,tot = gd [U
√

χDU −1]
∑

ν

[φ−1]νφν

1 − λν

[U
√

χDU −1]gd . (13)

The contribution from the leading d-wave eigenvector and
eigenvalue becomes dominant at low temperature, leading to
an approximate pair-field susceptibility:

P̄d,tot = gd [U
√

χDU −1]
[φ−1]dφd

1 − λd
[U

√
χDU −1]gd

= Pd0

1 − λd
. (14)

where in the second line we factor P̄d,tot into two compo-
nents, one determined by the BSE’s leading eigenvalue λd

and one determined by the pair-mobility Pd0. The latter is
given by the noninteracting but dressed two-particle pair-field
susceptibility.

Pd,tot and P̄d,tot are plotted as a function of filling in Figs.
4(a) and 4(c), respectively, and the similarity in their density-
dependence enables our analysis based on Eq. (14). The
individual factors 1/(1 − λd ) and Pd0 are plotted in Figs. 4(b)
and 4(d), respectively. Figure 4(b) shows that 1/(1 − λd )
diverges more rapidly on the hole-doped side as the tem-
perature is lowered. The reason why Pd,tot remains larger on
the electron-doped side is due to the prefactor Pd0, shown
in Fig. 4(d); Pd0 on the electron-doped side is almost twice
as large as its value on the hole-doped side. This analysis
demonstrates that the leading eigenvalue λd [or 1/(1 − λd )]

144514-6



PAIRING CORRELATIONS IN THE CUPRATES: A … PHYSICAL REVIEW B 103, 144514 (2021)

FIG. 5. (a) The pair-field susceptibility and (b) its factor 1/(1 −
λd ) vs hole density, obtained from a DCA calculation on a 4 × 4
cluster for different temperatures. The panels share the legend. At
the lowest temperature, the magnitude of 1/(1 − λd ) is larger on the
hole-doped side, just like Tc in the 2 × 2 cluster, while the pair-field
susceptibility shows the opposite asymmetry. The lines are guides for
the eye.

is a more suitable proxy for Tc and that conclusions drawn
from inspecting the pair-field susceptibility at a temperature
too far above Tc can be misleading.

To test the robustness of our results against finite-size ef-
fects, Fig. 5 presents a similar analysis of results obtained on
a 4 × 4 DCA cluster, where we arrive at a similar set of con-
clusions. Compared to the results for the 2 × 2 cluster, here,
we find that the peaks of the susceptibility in the 4 × 4 cluster
[Fig. 5(a)] shift away further from half filling. This behavior is
consistent with the notion that in larger clusters, the maximum
Tc shifts to higher doping. Similar to the 2 × 2 result, Fig. 5(b)
again shows that at sufficiently low temperatures, 1/(1 − λd )
is larger on the hole-doped side than on the electron-doped
side. These results lend further support to the argument that
λd is a better indicator for the doping dependence of Tc.

D. Dependence of pair-field susceptibility and transition
temperature on the charge-transfer energy

Studying the three-band model allows us to account for
the material dependence in Tc by considering changes in the
charge-transfer energy � = εp − εd , which varies between
different cuprate superconductors. Analogous studies in the
single-band Hubbard model are challenging because the ef-
fective parameters t , t ′, and U all have an implicit dependence
on � [35].

FIG. 6. (a) Superconducting transition temperature as a function
of charge-transfer energy (bottom x axis) and spectroscopic gap (top
x axis) for a 2 × 2 cluster with nh = 1.15. Tc has a peak around � =
3 eV. For � � 2.44 eV and � � 3.44 eV, we did not find a finite
Tc, as marked by the shaded region and as seen from the temperature
dependence of λd (T ) in (b) and (c).

Figure 6(a) plots Tc as a function of the charge-transfer
energy, obtained again from a 2 × 2 cluster at optimal hole
doping nh = 1.15. (We reiterate that Tc is determined here
by interpolating between the temperatures where λd crosses
1.) We find that Tc has a nonmonotonic dependence on �,
with a maximum occurring near � ≈ 3.1 eV. Moreover, we
do not find any indication of a finite Tc down to the lowest
accessible temperatures (T ∼ 0.013 eV) for � � 2.44 eV or
� � 3.44 eV. For these values of �, λd approaches 1 upon
cooling but eventually turns over, indicating competition from
another phase [see Figs. 6(b) and 6(c)].
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FIG. 7. (a) The intrinsic pair-field susceptibility Pd0 and the
strength of the d-wave pairing interaction Vd in a separable approx-
imation as a function of the charge transfer gap � for n = 1.15 and
T = 0.025 eV. The left y axis is for Pd0, and the right y axis is for
Vd . Pd0 increases along with �, while Vd decreases. (b) and (c) The
� dependence of the orbital density and the average quantum Monte
Carlo sign, respectively, at the same temperature as for (a).

A recent scanning tunneling microscopy (STM) exper-
iment [46] correlated the spectroscopic gap �s in several
undoped cuprates and found that it correlates strongly with
their optimal Tc’s obtained upon doping. To compare with the
STM results, we estimated �s for a 2 × 2 cluster using exact
diagonalization by computing the sum of the energy costs of
adding a hole to and subtracting a hole from the half-filling
system, namely, �s = E (n↑ = 3, n↓ = 2) + E (n↑ = 1, n↓ =
2) − 2E (n↑ = 2, n↓ = 2). We found that �s depends linearly
on � in our parameter region, with �s ≈ 0.42� + 0.25. Us-
ing this relationship, we then mapped our computed Tc(�)
onto a Tc(�s) in Fig. 6(a) (top x axis). When the transition is
present, the experiments show a trend of increasing maximum

FIG. 8. Im�(k, iωn) vs ωn at k = (0, π ), T = 0.031, and half
filling for various charge-transfer energies � (in eV). The metal-
insulator transition happens at � ∼ 2.6.

Tc as �s decreases [46]. Tc in Fig. 6(a) for �s > 1.5 eV is
qualitatively consistent with this trend.

To analyze this behavior, we then adopted the separable
approximation [47,48]:

λd (T ) ∼ Pd0(T )Vd (T ),

with Pd0 defined in Eq. (14) and Vd (T ) as the ratio of λd (T )
to Pd0(T ), representing the strength of the effective pairing
interaction. The results for Pd0 and Vd computed at T = 0.025
are shown in Fig. 7(a). We find that Pd0 grows with �, while
Vd falls monotonically. The competition between these two
effects therefore gives rise to an optimal � with the highest
Tc. Given the manageable sign problem in Fig. 7(c) for this
region, we believe these results are reliable.

We can gain a more physical understanding of the non-
monotonicity of Tc(�) by considering the degree to which
the carriers are localized in the three-band model. In the
three-band model, � is the dominant factor setting the charge-
transfer energy, and increasing this value discourages the
doped holes from residing on the oxygen sites, as shown in
Fig. 7(b). This situation impedes the mobility of electrons
since there is no direct Cu-Cu hopping in the model that
can bypass the oxygen sites. Conversely, as � reduces, mo-
bility is enhanced, resulting in an increasing pair mobility
Pd0 with decreasing �. Further decreasing �, the correla-
tion from Udd , or the “Mottness,” is reduced as the carriers
can move through the O sublattice [49] and the half-filled
system becomes a metal [4] instead of an insulator. We can
confirm this behavior in Fig. 8, where we plot the imaginary
part of the self-energy as a function of Matsubara frequency
for k = (π, 0) for the half-filled case for different values of
�. Here, one sees a transition from insulating behavior at
� � 2.6 eV to metallic behavior at lower �, consistent with
Ref. [50]. At the same time, the strength of the effective
d-wave pairing interaction Vd decreases with decreasing �.
This behavior can be understood by considering the increased
mixing of the uncorrelated O p states with the correlated Cu
d states at the Fermi level as the charge transfer gap size �

decreases. Since Vd is an effective interaction that arises from
the Coulomb repulsion Udd on the Cu d orbitals, this increased
orbital distillation leads to a reduction in the effective pairing
interaction [51].
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V. SUMMARY AND CONCLUSION

We have studied the three-band Hubbard model using
DQMC and DCA, two complementary nonperturbative meth-
ods. Using these approaches, we examined the d-wave pairing
correlations and superconducting transition temperatures Tc in
the model. Specifically, we explored the doping dependence
of Tc for a 2 × 2 DCA cluster and found a superconducting
dome on the hole-doped (nh > 1) and electron-doped (nh <

1) sides of the phase diagram. While the hole-doped case
presents a higher Tc, the pair-field susceptibility Pd,tot above
Tc is stronger on the electron-doped side. This result indicates
that the eigenvalue λd of the particle-particle Bethe-Salpeter
equation [or 1/(1 − λd )] is a better proxy for Tc than the
pair-field susceptibility. In particular, we have found that the
pair-field susceptibility Pd,tot is too heavily influenced by the
bare susceptibility Pd0 at high temperatures, resulting in a dop-
ing dependence qualitatively different from that of Tc. Similar
behavior was also observed on 4 × 4 clusters, indicating that
our results are reasonably robust against finite-size effects.

Armed with these results, we also examined the effects of
the charge-transfer gap size on the superconducting transition
temperature Tc. We found that there is an optimal charge-
transfer gap (� ≈ 3.04 eV in our specific parameter set) that
gives rise to a maximum Tc. This observation sheds light on
how the charge-transfer properties of the cuprates relate to
their superconducting transition temperature, thus providing
opportunities to further optimize Tc. Moreover, these results
are relevant to the recently discovered superconducting state
in the nickelates [52], where the charge transfer energy is
thought to be much larger [52,53].
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APPENDIX: COMPONENTS OF THE d-WAVE PAIR-FIELD
SUSCEPTIBILITY

For completeness, we plot the different (dominant) com-
ponents of the total d-wave pair-field susceptibility Pd,tot in

FIG. 9. Different components of the d-wave pair-field suscepti-
bility as a function of hole density nh for a 4 × 4 cluster with Upp = 0
for different temperatures, (a) T = 0.125 and (b) T = 0.042 eV. The
number in parentheses represents the multiplicity of the same type of
component.

Fig. 9. Each curve exhibits asymmetry between electron and
hole doping. The dddd component is the largest individual
component, and as temperature decreases, a peak develops on
both the hole- and electron-doped sides of the plot. Although
the other components are relatively smaller, they could con-
tribute to the total susceptibility significantly considering their
multiplicity. For this reason, the L′-related components, which
are not shown in Fig. 9 because they are small individually
but have large multiplicity, together provide a non-negligible
contribution to the total susceptibility, especially at higher
temperatures.
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