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Boundary effects in two-band superconductors
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We present a microscopic study of the behavior of the order parameters near the boundaries of a two-band
superconducting material, described by the standard tight-binding Bardeen-Cooper-Schrieffer model. We find
superconducting surface states. The relative difference between bulk and surface critical temperatures is a
nontrivial function of the interband coupling strength. For superconductors with weak interband coupling,
boundaries induce variations of the gaps with the presence of multiple length scales, despite nonzero interband
Josephson coupling.
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I. INTRODUCTION

The majority of the superconductors of current interest
have multiple superconducting bands [1,2] with a widely
varying strength of the interband coupling. Understanding the
boundary effects of a superconductor is important since super-
conducting currents are concentrated near the surfaces, and
the physics of boundaries controls the vortex entry barriers
and thus the onset of dissipation. Moreover, the behavior of
the gaps near the boundaries is crucial in small superconduct-
ing devices, such as superconducting nanowires and single-
photon detectors, where multiband materials are utilized [3].

In the last decades, topological superconductors have at-
tracted particular interest. These materials exhibit topological
surface currents, the observation of which is searched as a
smoking gun for topological superconductivity and can po-
tentially be used to understand the nature of it. Among the
candidate materials, there are compounds with a complicated
multiband structure, raising the need for an understanding
of the surface’s properties [4]. For conventional and exotic
multiband materials, the gaps are characterized by a variety
of probes, some of which selectively probe surfaces, while
others are dominated by the bulk response [5–12]. The gap
ratio is a characteristic quantity that allows one to get insight
into the physics of Cooper pairing. In the presence of surface
superconductivity, it is therefore important to study the gap
ratio properties both in the bulk and near the boundaries.

The series of experimental works [13–15] reported that,
on the surface of ZrB12, the characteristics of the super-
conducting gaps are widely different compared to the bulk.
Refs. [16,17] suggested that ZrB12 is a multiband supercon-
ductor with weak interband coupling. A partial summary
of the experimentally observed discrepancies, concerning
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the surface/bulk gap structure, can be found in Table I in
Ref. [14]. The surface effects are quite strong compared to
other reported experimental examples of enhanced surface
superconductivity [18–24]. The explain this, it was proposed
to search for a mechanism of different phonon-electron inter-
actions on the surface of the material [25]. However, recent
works [26,27] reported that enhanced superconductivity near
the boundary is a generic property of the standard single-band
Bardeen-Cooper-Schrieffer model. Namely, it was found that
the presence of Friedel oscillations near the boundary induces
an increase in the density of states, at a microscopic length
scale, yielding a higher critical temperature [27]. The solu-
tion has multiple length scales and depends on the coherence
length.

That raises the question of the nature of surface states in
a generic multiband Bardeen-Cooper-Schrieffer model [1,2],
where multiple length scales and energy scales are present.
In this paper, we analyze the behavior of the two supercon-
ducting gaps as a function of the interband coupling. We
focus on the limit of a clean ideal surface, with negligible
single-particle interband scattering [28].

II. THE MODEL

We consider a Fermi-Hubbard Hamiltonian describing a
two-band s-wave superconductor. For a d-dimensional hyper-
cubic lattice it reads

H =
∑

i, j,σ,α

ψ
†
iσαhi jσαψ jσα −

∑
iα,β

Vαβψ
†
i↑αψ

†
i↓αψi↓βψi↑β. (1)

The roman indices i, j label the position on a lattice with N
lattice points. σ = ↑,↓ indicates the spin, while α, β = 1, 2
label the component. Then hi jσα = −μδi j − tδ|i− j|,1, where
|i − j| = 1 if i and j are neighboring points in a hypercubic
lattice. μ is the chemical potential and t the hopping coef-
ficient. In order to ensure the Hamiltonian to be Hermitian,
we have hi jσα = h∗

jiσα and Vαβ = V ∗
βα . Then, following the

steps in Ref. [29], we perform the mean-field approximation.
Introducing the Nambu spinors

�†
α = (ψ†

1↑α, . . . , ψ
†
N↑α, ψ1↓α, . . . , ψN↓α ),

�α = (ψ1↑α, . . . , ψN↑α, ψ
†
1↓α, . . . , ψ

†
N↓α )T , (2)

2469-9950/2021/103(14)/144512(6) 144512-1 Published by the American Physical Society

https://orcid.org/0000-0003-2505-7436
https://orcid.org/0000-0002-6430-0737
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.144512&domain=pdf&date_stamp=2021-04-15
https://doi.org/10.1103/PhysRevB.103.144512
https://creativecommons.org/licenses/by/4.0/
https://www.kb.se/samverkan-och-utveckling/oppen-tillgang-och-bibsamkonsortiet/bibsamkonsortiet.html


BENFENATI, SAMOILENKA, AND BABAEV PHYSICAL REVIEW B 103, 144512 (2021)

the total mean-field Hamiltonian reads

HMF =
2∑

α=1

�†
αHα�α. (3)

Hα is the α-band Hamiltonian, defined as

Hα =
(

h↑α �α

�†
α −hT

↓α

)
, (4)

where the elements hi jσα have been defined above. Finally, the
self-consistency equations for the gaps are

�iα =
2∑

β=1

Vαβ〈ci↑βci↓β〉β. (5)

The thermal average 〈·〉β means it is performed over the
eigenvalues of the Hamiltonian Hβ . We can rewrite the self-
consistency equation by introducing the auxiliary vectors
(ei ) j = δi, j and (hi ) j = δ j,i+N as

�iα = −
2∑

β=1

Vαβei f (Hβ )hi, (6)

with f (x) = (1 + ex/T )
−1

being the Fermi-Dirac function. We
solve self-consistently for the gaps �iα , using the Chebyshev
polynomial expansion method [30–32], with a polynomial
up to order 1000. The convergence criterion we adopt is
|�(n+1)

iα − �
(n)
iα |/|�(n)

iα | � 10−8, where n numbers the itera-
tion. We consider both a one-dimensional (1D) lattice with
N = 1000 sites and a 2D square lattice with NxNy = 60 × 60.
The solver is a custom CUDA implementation. To calculate the
critical temperatures, we solve the linearized version of the
self-consistency equation (6). For details, see Ref. [26].

III. RESULTS

A. Effects of interband coupling

We begin by analyzing a two-band system with weak in-
terband coupling and a similar intraband interaction in two
bands. The model is rescaled so that all the quantities are
given in units of the hopping coefficient t . We fix μ = 0,
i.e., half-filled bands, V11 = 1.35 and V22 = 1.36. We compare
the results for a nonzero interband interaction V12 with the
case where the bands are decoupled, i.e., V12 = 0.0. In the
latter, the problem is reduced to two copies of the model
studied in Ref. [26] and shown to have two different criti-
cal temperatures, one for bulk states and one for boundary
states. We denote by Tc1 the bulk critical temperature, i.e.,
when the order parameter vanishes in the bulk. Tc2 is the
boundary critical temperature, i.e., when the order parame-
ter vanishes on the boundaries of the superconductor. When
V12 = 0 the critical temperatures in the system are T band1

c1 =
0.0429 and T band1

c2 = 0.0536 for band 1, and T band2
c1 = 0.045

and T band2
c2 = 0.0562 for band 2. Hence, in this example, the

second band has critical temperatures 5% higher than the
first. Figure 1 shows the numerically obtained gaps �1 and
�2, displayed at various temperatures and interband coupling.
In accordance with the results obtained by different analyt-
ical and numerical methods in Ref. [26], when V12 = 0, the
boundary enhancement of each gap decays to the bulk value
with an independent coherence length. As the coupling is

FIG. 1. Numerical solution for the two gaps at different values
of the interband coupling. The boundary is located at x = 0. For
Vint = 0.0, the two bands have different boundary and bulk crit-
ical temperatures. When the interband interaction is on, the two
bands present the same critical temperatures. Yet, the weak interband
coupling does not drastically affect the structure of the solution.
The gaps exhibit different enhancements near the boundary and the
overall solution shows the presence of different length scales. For
V12 = 0.01, we have Tc1 = 0.0458 and Tc2 = 0.0573. For V12 = 0.02,
the critical temperatures increase respectively to Tc1 = 0.0472 and
Tc2 = 0.0591. Here, we show only the left half of the system.

turned on, U (1) is broken, since the carriers in the individ-
ual bands are no longer independently conserved and there
are no independent transitions for different bands. Then, for
nonzero V12, the bulk critical temperatures become the same
for both bands. Also, the surface critical temperature is only
one. The gap’s behavior near the boundaries is nontrivial as
it includes relative variations of the gap values. In the case
displayed in Fig. 1 we have Tc1 = 0.0458 and Tc2 = 0.0573
for V12 = 0.01, and Tc1 = 0.0472 and Tc2 = 0.0591 for
V12 = 0.02.

We conclude this section by moving beyond the weak inter-
band coupling regime and investigate the relative increase of
the boundary critical temperature Tc2, with respect to the bulk
temperature Tc1, as a function of interband coupling V12. To
efficiently measure this increase, we define τ =
(Tc2 − Tc1)/Tc1. The numerical solutions for a one-
dimensional model are shown in Fig. 2 for various values of
V22. We find that the dependence is nontrivial: At relatively
weak interband coupling, τ first increases with V12 and then it
starts to decrease.
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FIG. 2. Relative increase of the boundary critical temperature
with respect to the bulk critical temperature as a function of the pair-
ing potential of the second band V22 and of the interband coupling V12.
We define τ = (Tc2 − Tc1)/Tc1. For a given value of V22, τ exhibits
a nonmonotonic behavior as a function of interband coupling V12.
V11 = 1.35 and μ = 0.

B. The relative behavior of the gaps in two-band
systems: Boundaries versus bulk

A useful characteristic of a multiband superconductor is
the ratio of the gaps of different bands, whose temperature
dependence can give insights into the nature of the pairing in
the material. Figure 3 shows the gap ratio shifted by its bulk
values at various temperatures T and interband coupling V12

for a 1D system as a function of distance from the boundary.
The system we consider first has the intraband potential of
the second band only 1% bigger than the first one, namely
V11 = 1.35 and V22 = 1.36.

Even for these similar gap characteristics, we find that the
gap ratio can be different on the boundary of a superconductor
compared to its bulk value, when the interband coupling is
weak. Figure 3 displays the results for V12 = 0.01, 0.02, and
compares them to the decoupled-band case.

In particular, we notice that both gaps and their ratios are
enhanced near the ends of the sample, and this enhancement
decays into the interior of the superconductor on a macro-
scopic length scale. The surface gap ratio deviation has not
only a strong temperature dependence in magnitude, but also
its length scale varies as a function of T . We can study the

FIG. 4. Long-range asymptotic decay length scale ξ (T ) of the
gap ratio deviation displayed in Fig. 3. ξ (T ) is plotted as a function of
the temperature T and for different values of the interband coupling.
The nonmonotonic behavior as a function of T is clearly visible.
We obtain ξ (T ) by fitting the tails (i.e., after N = 50 sites from the
boundary) of the gap ratio deviation using an exponential function
f (x) ∝ e−x/ξ , for the different values of T and V12. The remaining
parameters used in the simulations are V11 = 1.35, V22 = 1.36, and
μ = 0.

latter’s behavior in further detail by fitting the tails (i.e., after
N = 50 sites from the boundary) of the gap ratio deviations
reported in Fig. 3, with an exponential function f (x) ∝ e−x/ξ .
Here, ξ (T ) measures the length scale of the decay into the
bulk. The result, reported in Fig. 4, confirms the nonmono-
tonic behavior of ξ (T ) as a function of T .

Discussions concerning the existence of multiple length
scales in a multiband material, previously focused on vor-
tex physics [33–35]. The behavior of the surface states that
we find is another example of the existence of multiple
coherence lengths in multiband materials, despite nonzero
Josephson coupling. The long-range character associated with
the relative variations of the gaps and its nonmonotonicity
are consistent with the conclusions obtained for the vortex
core solutions in weakly interacting two-band systems in
Refs. [33,34]. At higher values of the interband coupling,
we can notice that the relative variation of the gap profile

FIG. 3. Plot of gap ratios shifted by the bulk value. We can notice that the gap ratio near the surface is enhanced compared to the bulk
value. The presence of weak interband coupling does not qualitatively change this effect. Moreover, the length scale of the penetration into the
bulk shows a nonmonotonic behavior as a function of T , as more accurately displayed in Fig. 4. We show only half of the system (500 out of
L = 1000 sites), since the second half is entirely symmetrical. The parameters used for this simulations are V11 = 1.35, V22 = 1.36, and μ = 0.
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FIG. 5. Suppression of the relative gap variations at stronger
interband coupling. We can notice that the gap ratio change near the
boundary is an order of magnitude smaller for V12 = 0.1 than for
V12 = 0.01. For strong interband coupling V12 = 1, in the simplest
two-band model, the surface-induced change of the gap ratio is
negligible. Also in this case we show only half of the system (500
out of N = 1000 sites), since the second half is symmetrical. The
parameters used for these calculations are V11 = 1.35, V22 = 1.36,
and μ = 0.

near the surfaces decreases, both in amplitude and in its
spatial extension, as Fig. 5 reports. This remains consistent
with the hybridization of bulk coherence lengths and their
dependence on interband coupling strength [33]. When the
interband coupling V12 becomes of the same order of magni-
tude as the intraband coupling V11 and V22, e.g., V12 = 1.0, the
enhancement of the gap ratio basically disappears. Note that
the disappearance of this variation is similar to the condition
for the disappearance of the second coherence lengths in the
clean two-band BCS semiclassical model found in Ref. [33].
This confirms that the width of the boundary states, in two
band systems, is in general determined by two bulk coherence
lengths.

Next, we consider the boundary states when the difference
between the intraband potential is greater. Specifically, we
consider V11 = 1.35 and V22 = 1.68. The upper panel of Fig. 6
shows the gaps �1 (solid line) and �2 (dashed line) at various
temperatures. The bottom panel displays the variation of the
gap ratio with respect to the bulk value. Here, the interband
potential is set to be V12 = 0.1. We can see a moderate in-
crease of V22 yields a substantial variation of the relative gap
values near the surface compared to Fig. 5.

FIG. 6. Numerically obtained order parameters for different val-
ues of the T . In this case, we study a coupled two-band system where
the difference between the two intraband potentials V11 and V22 is
higher, namely 25%. The upper panel displays the gaps �1 (solid
line) and �2 (crossed line) independently. The bottom panel reports
the gap ratio near-surface spatial variation relative to the bulk value.
For both panels we fixed V12 = 0.1. We can notice that the modest
increase in V22 results in a substantially larger variation of the gap
ratio near the boundary. Both results were obtained for a system with
N = 1000 and μ = 0.

C. Surface effects in two dimensions and corner states

In 2D and 3D single-component BCS models there are
superconducting corner and edge states with a relative critical
temperature higher than the bulk critical temperature [26,29].
In this section, we consider the gap ratio spatial profile in
a two-dimensional, two-band system. In 2D we have edges
and corners, therefore we can associate Tc2 as the mean-field
critical temperature for edge superconductivity, and Tc3 as the
mean-field critical temperature for corner superconductivity.
In a single-band BCS 2D system, Tc3 > Tc2, as shown in
Ref. [29]. We study the two-band system for T < Tc1, Tc1 <

T < Tc2, and Tc2 < T < Tc3. Studying the boundary effects
in two dimensions is challenging, as it requires numerically
solving significantly large systems, to avoid the finite-size
effects’ influence on the resulting states. Figure 7 shows the
gap ratio shifted by its value in the bulk, and the two gaps
�1,�2. We can notice that the boundary states exist at much
smaller length scales than the size of the sample. Both for the
bulk (T = 0.75) and the edge (T = 0.77) states the gap ratio is
enhanced along the system boundaries. When the temperature
exceeds the edge critical temperature Tc2 = 0.774, the super-
conductivity ceases to exist along the boundaries, but remains
in the four corners. We observe that in the corners there is the
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FIG. 7. Plot of the gap ratio shifted by the bulk value (left column), �1 (center column), and �2 (right column) in two dimensions for
increasing temperatures. The bulk critical temperature for the system reads Tc1 = 0.759 and the edge critical temperature is Tc2 = 0.774.
Therefore the first row shows the bulk superconductivity, the second row shows the edge superconductivity, and the third row shows the state
where the gap survives only in the corners. Below the corner critical temperature, i.e., for bulk and edge states, we can notice the gradient of the
gap ratio localized along the system’s boundaries. The increase is more pronounced above the bulk critical temperature, i.e., with edge states.
When Tc2 < T < Tc3, superconductivity survives in the four corners, where also the gap ratio undergoes a significant enhancement, penetrating
into the bulk with a macroscopic length scale.

largest variation of the gap ratio, which decays into the bulk
at a macroscopic length scale.

IV. CONCLUSIONS

Since most of the superconductors of current interest are
multiband, and there are experimental puzzles, such as the
surface gap enhancement in ZrB12 [13–15], it is important to
understand the boundary effects in multiband superconduct-
ing materials.

We studied the boundary effects in the standard two-band
Bardeen-Cooper-Schrieffer theory of superconductivity. We
showed that, at the level of mean-field theory, the system has
multiple critical temperatures, associated with the presence of
boundary states.

We found that the dependence of the critical temperatures
on the value of interband coupling is nonmonotonic. More-
over, when interband coupling is relatively weak, the behavior
of the gaps near the boundaries presents multiple length scales
and a relative variation of the gap values.

In dimensions higher than one, the effects are stronger in
the sample’s corners. The relative variation of the gap values
extends into the superconductor with a large temperature-
dependent length scale. This should be of particular impor-
tance for critical currents in small superconducting devices.
The enhanced surface superconductivity may be harvested to
improve superconducting-nanowire-based single-photon de-
tectors. A material with an increased gap near the surface is
expected to enhance the vortex entry barrier which can yield
less dark counts. An interesting question for further studies is
the effect of boundary-induced single particle scattering [36]
on the states we report.
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