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Magnon-assisted dynamics of a hole doped in a cuprate superconductor
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We calculate the quasiparticle dispersion and spectral weight of the quasiparticle that results when a hole is
added to an antiferromagnetically ordered CuO2 plane of a cuprate superconductor. We also calculate the magnon
contribution to the quasiparticle spectral function. We start from a multiband model for the cuprates considered
previously [Ebrahimnejad et al., Nat. Phys. 10, 951 (2014)]. We map this model and the operator for creation
of an O hole to an effective one-band generalized t-J model, without free parameters. The effective model is
solved using the state-of-the-art self-consistent Born approximation. Our results reproduce all the main features
of experiments. They also reproduce qualitatively the dispersion of the multiband model, giving better results
for the intensity near wave vector (π, π ), in comparison with the experiments. In contrast to what was claimed
in Ebrahimnejad et al., we find that spin fluctuations play an essential role in the dynamics of the quasiparticle
and hence in both its weight and dispersion.
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I. INTRODUCTION

More than three decades after the discovery of high-
temperature superconductors, the issue of the appropriate
microscopic minimal model that correctly describes the low-
energy physics is still debated. There is, however, a consensus
on the validity of the three-band model H3b for describing the
physics of the cuprates at energies below ∼1 eV, where the
three bands come from two O 2pσ orbitals (those pointing in
the direction of the nearest Cu sites) and one Cu 3dx2−y2 orbital
[1,2]. At higher energies other orbitals should be considered
[3–7]. Other models used to describe the cuprates are the spin-
fermion model Hs f [8], obtained from H3b after eliminating
the Cu-O hopping by means of a canonical transformation
(only the d9 configuration of Cu is retained, represented by a
spin 1/2, which interacts with the fermions of both O bands)
[9,10], and the generalized t-J model HGtJ [11,12], which
consists of holes moving in a background of Cu 1/2 spins
with antiferromagnetic exchange J , nearest-neighbor hopping
t , and additional terms of smaller magnitude.

HGtJ is derived as a low-energy effective one band model
for H3b or Hs f [12–14], assuming that the low-energy part of
the multiband models is dominated by Zhang-Rice singlets
(ZRSs) [11], which in Hs f consist of singlets formed between
the spin of a copper atom and the spin of the hole residing in
a linear combination L of four ligand oxygen orbitals around
the copper atom [11,12]. In H3b, in which charge fluctuations
are allowed, the ZRS also includes states with two holes in
the Cu 3dx2−y2 orbital and in the O L orbital [14,15]. The
proposal of Zhang and Rice has initiated a debate about
the validity of a one-band model that continues at present

[8,16–28]. This issue is of central importance since models
similar to the t-J model were used to explain many prop-
erties of the cuprates [29,30], including superconductivity
[31–33].

An important probe for the models is the spectral function
of a single hole doped on the parent half-filled compounds,
whose quasiparticle (QP) dispersion relation is directly mea-
sured in angle-resolved photoemission (ARPES) experiments
[34,35]. The nature of this QP has been extensively discussed
[36–39]. Experimental evidence shows that this doped hole
resides mainly on the O 2pσ orbitals [40–42]. Naively, one
might expect that this fact is a serious problem for HGtJ since
O holes are absent in the model. However, mapping appropri-
ately the corresponding operators, Cu and O photoemission
spectra can be calculated with both Hs f [10] and HGtJ [43].
Nevertheless, while the experimental dispersion observed in
Sr2CuO2Cl2 [34] has been fit using HGtJ , an unsatisfactory
aspect is that the “bare” t-J model with only nearest-neighbor
hopping t was unable to explain the observed dispersion, and
ad hoc hopping to second- and third-nearest neighbors was
included [44–47].

In Ref. [23], the QP dispersion EQP(k) and its intensity
ZQP(k) for adding an O hole in an undoped CuO2 plane were
calculated, using Hs f solved with an approximate variational
method using realistic parameters. The dispersion obtained
agrees with experiment. However, the reported intensity in-
creases as k moves from ( π

2 , π
2 ) to (π, π ), in contrast to

experiment. The main claim of the mentioned reference was
that background spin fluctuations play no role in the dynamics
of the hole, and only local spin fluctuations around the hole are
important.
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FIG. 1. Structure of the CuO2 planes and sketch of the parame-
ters of the three-band spin fermion model [Eq. (1)]. Solid (empty)
circles represent Cu (O) sites.

In this work we map the Hs f used in Ref. [23] to an HGtJ

without adjustable parameters, extending to ZQP the procedure
we used before for T -CuO [28]. The resulting HGtJ is solved
using the state-of-the-art self-consistent Born approximation
(SCBA). We obtain results in agreement with experiment for
both EQP and ZQP. We also calculate the hole’s spectral func-
tion by taking into account multimagnon contributions within
the SCBA. In this way we argue that the spin fluctuations play
an essential role in the hole’s dynamics. In particular the width
of EQP is determined by the nearest-neighbor spin exchange J .

II. SPIN-FERMION MODEL AND THE ONE-BAND MODEL
DERIVED FROM IT

We start from the spin-fermion model (Cu spins and O
holes), obtained from H3b integrating out valence fluctuations
at the Cu sites [8–10,23]. With an adequate choice of phases
(see the Supplemental Material of Ref. [28]) the Hamiltonian
reads

Hs f =
∑
iδδ′σ

p†
i+δ′σ pi+δσ

[(
t s f
1 + t s f

2

)(1

2
+ 2Si · si+δ

)
− t s f

2

]

− tpp

∑
jγ σ

p†
j+γ σ p jσ + t ′

pp

∑
jδσ

(p†
i+δσ pi−δσ + H.c.)

−
∑

iδ

Jd Si · si+δ
+ J

2

∑
iδ

Si · Si+2δ
, (1)

where i ( j) labels the Cu (O) sites, i + δ ( j + γ ) label the four
O atoms nearest Cu atom i (O atom j), and p†

jσ creates an O
hole at the 2pσ orbital of site j with spin σ . The spin at the
Cu site i (O orbital 2pσ at site i + δ) is denoted Si (si+δ

). As in
Ref. [23], we include hopping t ′

pp between second-neighbor O
orbitals with a Cu in between, and we add Jd (which reduces
part of the first term for δ′ = δ), which was not included in
earlier studies. The model is represented in Fig. 1. In units
of the Cu-Cu spin exchange J = 1, the parameters chosen
for the multiband model of Ref. [23] are t s f

1 = 2.98, t s f
2 = 0,

tpp = 4.13, t ′
pp = 2.40, and Jd = 3.13. These parameters are

near those calculated by constrained-density-functional calcu-
lations for La2CuO4 [48].

Projecting the Hamiltonian over the subspace of ZRSs, we
have derived a one-band generalized t-J model:

HGtJ = −
∑

κ

tκ
∑
ivκσ

(c†
iσ ci+vκσ + H.c.) + J

2

∑
iv1

Si · Si+v1
,

(2)

where c†
iσ creates a hole at the Cu site i with spin σ and

κ = 1, 2, 3 refer to first-, second-, and third-nearest neighbors
vκ within the sublattice of Cu atoms. Additional terms are
small and do not affect the hole dynamics. The derivation
of this one-band Hamiltonian and the calculation of its pa-
rameters follow the procedure detailed in the Supplemental
Material of Ref. [28], here generalized to include the effect
of second-nearest-neighbor O hopping t ′

pp. The contribution
of this term for a hopping τR between sites at a distance
R = (x, y) becomes

τR = 2t ′
pp

N

∑
k

cos(kxx) cos(kyy)

×
(

1 − cos4(kxb) + cos4(kyb)

cos2(kxb) + cos2(kyb)

)
, (3)

where b = a/2 is half the lattice parameter and N is the
number of sites of the cluster. The contribution of the other
terms of Hs f to the different terms of HGtJ was described in
detail before [28]. The resulting parameters of HGtJ are, taking
J = 0.15 eV to be the unit of energy, t1 = 1.921, t2 = −0.371,
t3 = 0.592.

III. TREATMENT OF THE ONE-BAND MODEL

We calculate the QP spectral functions—from which the
single hole’s dispersion and weight are directly derived—and
the magnon contributions to the hole’s wave function (WF)
by means of the SCBA [37,47,49,50], a semianalytic method
that compares very well with exact diagonalization results on
small clusters in different systems [37,47,50–52]. We must
warn the reader that this approach has some limitations for
J/t1 > 1 [39,53]; however, in our case J/t1 � 0.5.

The SCBA is one of the most reliable and checked methods
to date to calculate the hole Green’s function, in particular,
its QP dispersion relation. However, some care is needed to
map the QP weight between different models [47]. In order
to do such a calculation, we follow standard procedures [37].
On the one hand, the magnon dispersion relation is obtained
by treating the magnetic part of the Hamiltonian at the linear
spin-wave level since the system we study has long-range
antiferromagnetic order, and it is well known that its magnetic
excitations are semiclassical magnons [54]. On the other hand,
the electron creation and annihilation operators in the hopping
terms are mapped into holons of a slave-fermion represen-
tation (details in Ref. [28]). Within SCBA, we arrive at an
effective Hamiltonian:

Heff =
∑

k

εkh†
khk +

∑
k

ωkα
†
kαk

+ 1√
N

∑
kq

(Mkqh†
khk−qαq + H.c.), (4)
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with

εk = 4t2 cos(akx ) cos(aky) + 2t3[cos(2akx ) + cos(2aky)],

ωk =
√

A2
k − 4B2

k,

Mkq = 2t1[uqζ (k − q) − vqζ (k)], (5)

where εk is the bare hole dispersion (with no cou-
pling to magnons); ωk is the magnon dispersion relation,
with Ak = 2J , Bk = J

4

∑
R cos(R · k); and Mkq is the ver-

tex that couples the hole with magnon excitations. Here
ζ (k) = cos(akx ) + cos(aky), where a is the distance be-
tween Cu atoms in the CuO2 planes and uq and vq are the
usual Bogoliubov coefficients, uq = [(1 + νq)/2νq]1/2, vq =
−sgn(γq)[(1 − νq)/2νq]1/2, with γq = ζ (q)/2.

The heart of the SCBA method lies in the self-consistent
Dyson equation for the hole’s self-energy [36],

k(ω) = 1

N

∑
q

|Mkq|2Gk−q(ω − ωq),

where Gk(ω) = [ω − εk − k(ω)]−1 is the hole Green’s func-
tion. From the self-energy the QP energy can be computed by
means of the self-consistent equation EQP(k) = k[EQP(k)]
and also the holon spectral weight, defined as [36]

Zh(k) =
(

1 − ∂Re k(ω)

∂ω

)−1∣∣∣∣
EQP (k)

. (6)

Although Eq. (6), in principle, allows the calculation of
the spectral weight directly, in practice within the SCBA it
is impossible to apply it due to the strong irregularities in the
derivative of Rek. Instead, the spectral weight is calculated
by integrating the QP peak in the spectral function.

A. QP spectral function and magnon coefficients
of the QP wave function

For the calculation of the magnon contributions to the QP’s
WF we follow the steps taken in Refs. [55–57]. The QP WF
with momentum k can be expressed as a sum of terms, each
of which involves the contribution of a growing number of
magnons. Hence, within the SCBA, the QP WF results by
taking the n → ∞ limit of

∣∣�n
k

〉 = Zh(k)

[
h†

k + 1√
N

∑
q1

gk,q1 h†
k−q1

α†
q1

+ · · ·

+ 1√
Nn

∑
q1,...,qn

gk,q1 gk1,q2 · · · gkn−1,qn h†
kn

α†
q1

· · ·α†
qn

]
|AF〉,

where ki = k − q1 − · · · − qi, |AF〉 is the undoped antiferro-
magnetic ground state, and

gkn,qn+1 = Mkn,qn+1 Gkn+1

[
EQP(k) − ωq1 − · · · − ωqn+1

]
. (7)

It can be seen that each contributing term to the QP WF
involves a growing number of magnons, starting from the first
zero magnon term whose relative weight is given by the holon
spectral weight Zh(k).
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FIG. 2. QP hole dispersion relation. The solid black (blue) curve
corresponds to the QP dispersion relation for the one-band gen-
eralized t-J model (three-band model) calculated with SCBA (the
variational approach). The dashed red (dash-dotted green) curve cor-
responds to the SCBA QP dispersion for a one-band model with an
exchange interaction twice (half) the value of the experimental one.

The QP WF satisfies the normalization condition

Sk = lim
n→∞

〈
�n

k

∣∣�n
k

〉 =
∞∑

m=0

A(m)
k = 1. (8)

Each coefficient A(m)
k is the m-magnon contribution to the QP

WF and is defined as

A(m)
k = zk

Nm

∑
q1,...,qn

g2
k,q1

g2
k1,q2

· · · g2
km−1,qm

, (9)

while for the particular case m = 0, A(0)
k ≡ Zh(k). In this way,

within the SCBA the relative weight of each n-magnon term
for the spin polaron can be evaluated for a specific moment of
the Brillouin zone.

In order to estimate the effective number of magnons nec-
essary to have a reliable QP WF we can find the minimum n
such that S(n)

k = 〈�n
k|�n

k〉 = ∑n
m=0 A(m)

k � 1, within a certain
precision.

IV. RESULTS

In this section we present the SCBA calculations for
HG t−J , using the previously estimated parameters and the
experimental value J ≡ J0 = 0.15 eV.

A. Quasiparticle dispersion relation

Figure 2 shows the SCBA QP dispersion relation corre-
sponding to our one-band generalized t-J model along with
the QP dispersion relation of the three-band model, obtained
variationally [24]. We recall that in our model there are no
free parameters. All of them are rigorously obtained from the
three-band model [23] and experiments. The agreement of
the one-band model and the multiband model dispersions is
very good near the QP ground state momentum ( π

2 , π
2 ) and

all along the diagonal and antidiagonal lines. In the rest of
the chosen path, the agreement is semiquantitative. Compared
with the ARPES measurements [34,58], our results seem to
better capture the quasidegeneracy between the (π, π ) and
(π, 0) points, with the energy at (π, 0) a little higher than
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FIG. 3. QP spectral weight: the blue curve corresponds to the O
contribution to the photoemission intensity calculated with SCBA,
while the red curve corresponds to the QP weight function of the
three-band model calculated variationally (taken from Ref. [23]).

that at (π, π ). It should be stressed that, for simplicity, we
are taking a hole picture, so the dispersion relation should be
reversed in order to be compared with ARPES. From only the
dispersion relation, it is not possible to conclusively discern
whether the SCBA solution of the generalized t-J model or
the variational solution of the three-band model predictions
agrees better with ARPES.

To analyze the role of the spin fluctuations for the hole
motion within our theory, we also plot in Fig. 2 the SCBA
QP dispersion relation for the same HG tJ parameters but half
and double exchange interaction J values. The first point to
notice is that as a first approximation, the bandwidth is directly
proportional to J . When J = 2J0, that is, the spin fluctuations
are enhanced in comparison with the hole kinetic energy, the
relative dispersion bandwidth (in units of the corresponding
J) is decreased, and now the energy of the k = (0, 0) and
(π, π ) points is slightly higher than that at the (π, 0) point, in
contrast to ARPES. On the other hand, the dispersion for J =
J0/2, i.e., when spin fluctuations are lowered, has the same
structure as for J = J0, but its relative bandwidth is larger
than that of the three-band model. Therefore, it is evident that
the spin fluctuations have a noticeable impact on the global
dispersion form and its bandwidth. In particular, the increase
of the exchange interaction gives rise to more localized QP
states.

In previous treatments of the spin-fermion model the QP
dispersion relation was found to be qualitatively similar for
Ising and Heisenberg backgrounds [23,24]. We believe that
the lack of a discrepancy is most likely attributable to the
variational treatment lacking enough magnons.

B. Quasiparticle spectral weight

In Fig. 3 we show the QP spectral weight for the one-band
and three-band models along the same Brillouin zone path as
in Fig. 2. Care must be taken to calculate the QP spectral
weight within the one-band model since almost all of the
contribution to the photoemission spectra comes from the
addition of an O hole. However, in the one-band model the O
degrees of freedom have been integrated. In order to compute
the O contribution to the ARPES QP intensity ZQP(k) within
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FIG. 4. Solid curves: Magnon coefficients A(m)
k of the SCBA QP

wave function for N = 400. Dashed curve: sum of the first four
magnon coefficients.

the SCBA, we follow the procedures of Ref. [43]: we first cal-
culate the holon spectral weight Zh(k), we then calculate the
spectral weight for emitting a physical electron (see Ref. [47]),
and finally, from this we calculate the O intensity by means
of a simple analytical relation between both, as detailed in
Ref. [43]. In general, the calculated O intensity is higher than
that of the variational calculation of the three-band model.
Even so, it can be seen that along the diagonal (0, 0) →
(π, π ), the intensity is large near the ground state (π/2, π/2)
momentum [note that it is not symmetric around (π/2, π/2)],
but it decreases abruptly when approaching both (0,0) and
(π, π ). Nevertheless, these momenta do not show degeneracy
in the intensity, which happens for the holon weight within the
SCBA [37].

The general trend of the intensity calculated with the gen-
eralized t-J model by means of the SCBA coincides with
experiments [34,58], in contrast to the results of the varia-
tional three-band model calculations [23]. In particular, the
experiments show an almost vanishing QP photoemission
weight close to (0,0) and (π, π ) (see Fig. 1 of Ref. [34]) that
is correctly captured by our results, while in the three-band
model calculation the (π, π ) point has an appreciable QP
weight. Reference [23] showed that using a five-band model a
partial decrease of the QP weight is obtained at (π, π ), while
our more sophisticated SCBA calculation already captures
this spectral feature in the one-band generalized t-J model.
Hence, we believe that the one-band model provides a quan-
titatively correct description of the photoemission spectra for
the undoped cuprates.

C. Magnon contributions to the QP wave function

In Fig. 4 we show the magnon coefficients A(m)
k for m =

1, 2, 3, and 4, along the same path in the Brillouin zone as
in Fig. 2. The data shown were obtained for a cluster of
N = 400 sites using 25 000 frequencies. We have checked
that the results are essentially the same as for N = 1600 sites,
which is an indication that the N = 400 cluster is a very good
approximation for the thermodynamic limit. We have chosen
this cluster size because, for 1600 sites, the calculation of
the fourth coefficient A(4)

k is computationally expensive. For
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TABLE I. Magnon coefficients A(m)
k for m = 1, 2, 3 calculated

for an N = 1600 cluster for selected momenta along the diagonal
of the Brillouin zone. By symmetry, A(m)

( π
2 +k, π

2 +k) = A(m)
( π

2 −k, π
2 −k).

kx/π ky/π A(0)
k A(1)

k A(2)
k A(3)

k Sk

0.0 0.0 0.0048 0.0055 0.0032 0.00073 0.014
0.1 0.1 0.0059 0.0080 0.0044 0.00095 0.019
0.2 0.2 0.012 0.021 0.011 0.0023 0.047
0.3 0.3 0.056 0.086 0.041 0.0087 0.19
0.4 0.4 0.42 0.40 0.15 0.029 0.99
0.5 0.5 0.55 0.38 0.10 0.017 1.00

comparison, we put in Table I the A(m) m = 1, 2, 3 coefficients
for the 1600 cluster and for selected momenta along the diag-
onal (0, 0) − (π, π ). It is worth mentioning that for a correct
computation of all the magnon coefficients it is essential to get
a very precise QP dispersion relation and its spectral weight,
as can be seen from Eqs. (7) and (9). For this purpose, it is
necessary to use a very large number of frequencies.

What can be clearly seen in Fig. 4 and Table I is that the
one- and two-magnon coefficients can be, for many momenta,
greater than or of the same order of magnitude as the zero-
magnon coefficient A(0)

k , which we recall is the holon spectral
weight Zh(k). The three-magnon coefficient A(3) is small for
all momenta but is by no means negligible. On the other hand,
A(4)

k is always very small, even compared to A(3)
k . From the

magnon coefficients it can be concluded that spin fluctuations
corresponding to several magnons are essential to build up
the QP wave function. Since our one-band generalized t-J
model is rigorously derived from a multiband model and,
as we have shown above, it reproduces the main features of
the experimental QP dispersion relation and photoemission
intensity, it can be stated that the spin polaron [37] is the
appropriate physical picture of the QP in cuprates. In this
sense, other points of view have been proposed, such as the
string picture [59] and the parton theory [60], all of which
support the importance of spin fluctuations in the physics of
cuprate superconductors.

Figure 4 also displays the partial sum of the norm S(4)
k ,

which is the sum of the first four magnon coefficients. It is
evident that for those momenta where the holon QP weight
Zh(k) is not so small (Zh � 0.05), the normalization rule (8) is
reasonably satisfied with only a very few magnon coefficients.
If the sum does not reach the value 1, it is very close, and
hence, it can be argued that with the inclusion of a few more
magnon coefficients, the condition would be fulfilled. In this
case, the QP can be thought of as the bare hole moving
around, exciting up to only three or four magnons. On the
other hand, it is also clear that close to k = (0, 0) and (π, π ),
where the holon QP spectral weight is much smaller than
0.05, the normalization condition is far from being satisfied.
Since the four-magnon coefficients A(4)

k are much smaller than
the three-magnon ones A(3)

k , it is plausible to assume that the
following coefficients would be even smaller, and so there
must be a “magnon proliferation”; that is, the QP would be
composed of a great number of magnons, and the sum rule can
be reasonably satisfied only with a huge number of magnon
coefficients, corresponding to very slowly convergent series.

In the pure t-J model (t2 = t3 = 0), for a J/t ratio like our
J/t1, Ramšak and Horsch [56] showed that the QP is also
composed of several magnons, that for some momenta the
one-magnon coefficient is larger than the zero-magnon one,
and even that the two- and three-magnon terms are impor-
tant to fulfill the normalization condition. This behavior is
analogous to the one we have found in this work. However,
it is known that in the pure t-J model the hole can propa-
gate only by emitting and absorbing spin fluctuations [36].
In addition, this model does not reproduce the experimentally
measured dispersion [34]. With our generalized model, with
second- and third-nearest-neighbor hoppings, we were able
to reproduce the experiments. It is usually argued [23] that,
since t2 and t3 allow free hopping processes, in which the
hole can move along a magnetic sublattice without disturbing
the Néel order, the correct dispersion obtained by including
further hoppings in the model implies that spin fluctuations
do not play an important role in the QP formation. Our results
indicate that this is not the case and that for the generalized
HGt−J the multimagnon processes are equally important in the
formation of the QP as in the pure t-J model. In previous
works [51,52] we already showed that even when there is a
“free hopping” channel that allows the hole to move without
generating spin fluctuations of the magnetic background, the
hole motion is promoted by emitting magnons since this is, all
in all, energetically favorable.

V. CONCLUSIONS

Recent variational calculations [23,24,27] have suggested
that one-band models cannot give a correct description of
cuprate superconductors based on the argument that these
models, without ad hoc terms, fail to describe even the ARPES
photoemission spectra for a hole doped into an antiferromag-
netically ordered CuO2 layer. Also, these works argue that the
spin polaron nature of a single hole doped in undoped cuprates
is different in one- and multiband models. To elucidate these
claims, in this work we have performed a rigorous derivation
of a one-band Zhang-Rice singlet based generalized t-J model
for cuprate superconductors, with no free parameters, starting
from a three-band model. Its hopping terms, appreciable up
to third-nearest neighbors, are obtained from the three-band
model parameters [23], while the exchange interaction J be-
tween copper sites is taken from experimental measurements.

With the well-established SCBA, we have computed the
QP dispersion relation and the oxygen contribution to the pho-
toemission intensity, obtaining satisfactory agreement with
ARPES experiments [34,58], improving the above-mentioned
variational three-band model calculations [23]. Particularly,
we have reproduced the experimental abrupt drop of the QP
spectral weight going away from ( π

2 , π
2 ) to (π, π ) that, within

the variational calculation, can be only partially obtained us-
ing a more complicated five-band model.

In addition, we have analyzed the structure of the SCBA
QP wave function computing its magnon coefficients, and we
have found that the spin fluctuations play an essential role in
the building up of the QP. This happens even for our general-
ized t-J model in which second- and third-nearest-neighbor
hoppings allow the hole motion without emitting magnon
excitations of the antiferromagnetic background.
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From our results we can conclude that rigorously derived
one-band models are appropriate for the description of the
low-energy physics of (at least slightly doped) cuprate super-
conductors, while the physical nature of a single hole doped in
a CuO2 layer corresponds to a spin polaron quasiparticle with
spin fluctuations as its main ingredient.
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