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Metamagnetic phase transition in the ferromagnetic superconductor URhGe

V. P. Mineev*

Universite Grenoble Alpes, CEA, IRIG, PHELIQS, F-38000 Grenoble, France
and Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia

(Received 16 February 2021; accepted 30 March 2021; published 12 April 2021)

Ferromagnetic superconductor URhGe has orthorhombic structure and possesses spontaneous magnetization
along the c axis. Magnetic field directed along the b axis suppresses ferromagnetism in the c direction and leads
to a metamagnetic transition into polarized paramagnetic state in the b direction. The theory of these phenomena
based on the specific magnetic anisotropy of this material in the (b, c) plane is given. Line of the first order
metamagnetic transition ends at a critical point. The Van der Waals-type description of behavior of physical
properties near this point is developed. The triplet superconducting state destroyed by orbital effect is recreated
in the vicinity of the transition. It is shown that the reentrance of superconductivity is caused by the sharp increase
of magnetic susceptibility in the b direction near the metamagnetic transition. The specific behavior of the upper
critical field in the direction of spontaneous magnetization in UCoGe and in UGe2 related to the field dependence
of magnetic susceptibility is discussed.
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I. INTRODUCTION

Investigations of uranium superconducting ferromagnets
UGe2, URhGe, and UCoGe continue to attract attention
mostly due to the quite unusual nature of its superconducting
states created by the magnetic fluctuations (see the recent
experimental [1] and theoretical [2] reviews and references
therein). They have orthorhombic crystal structure and the
anisotropic magnetic properties. The spontaneous magneti-
zation is directed along the a axis in UGe2 and along the c
axis in URhGe and UCoGe. The ferromagnetic state in the
two last materials is suppressed by the external magnetic field
Hy directed along b crystallographic direction. In URhGe at
field Hy = Hcr ≈ 12 T the second order phase transition to
ferromagnetic state is transformed to the transition of the first
order [3]. The superconducting state suppressed [4] in much
smaller fields Hy ≈ 2 T reappears in the vicinity of the first
order transition in field interval (9, 13) T. The phenomenolog-
ical theory of this phenomenon has been developed in Ref. [5]
(see also Ref. [2]). According to this theory the state arising
in fields above the suppression of spontaneous magnetization
in the c direction is the paramagnetic state.

There was established, however [3,6,7], that in fields above
Hcr the magnetization along the b direction looks like it has
field independent “spontaneous” component

My = My0 + χyHy. (1)

This state is called polarized paramagnetic state. The forma-
tion of this state is related to so-called metamagnetic transition
observed in several heavy-fermion compounds (see the pa-
per [8] and the more recent publication [9] and references
therein). To take into account the formation of polarized
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paramagnetic state one must introduce definite modifications
in the treatment performed in Ref. [5]. Here I present the
corresponding derivation.

The paper is organized as follows. In Sec. II after the
brief reminder of results of the paper [5] the description of
the metamagnetic transition is presented. It is based on the
specific phenomenon of magnetic anisotropy in URhGe ob-
tained with local spin-density approximation calculations by
Alexander Shick [10]. After the general consideration of the
metamagnetic transition the modifications introduced by the
uniaxial stress are considered. Then the Van der Waals-type
theory of phenomena near the metamagnetic critical point is
developed and some physical properties are discussed.

The phenomenon of the reentrant superconducting state is
explained in Sec. III. It is shown that the recreation of super-
conductivity is caused by the sharp increase in the magnetic
susceptibility [7] in the b direction near the metamagnetic
transition. This section also contains the qualitative descrip-
tion of the specific behavior of the upper critical field in
direction of spontaneous magnetization in UCoGe and in
UGe2 related to the field dependence of magnetic suscepti-
bility. The Conclusion contains the summary of the results.

II. METAMAGNETIC TRANSITION IN URhGe

As in the previous publications (Refs. [2,5]) I shall use
x, y, z as the coordinates pinned to the corresponding crys-
tallographic directions a, b, c. The Landau free energy of an
orthorhombic ferromagnet in magnetic field H(r) = Hyŷ is

F = αzM
2
z + βzM

4
z + δzM

6
z + αyM2

y + βyM4
y + δyM6

y

+βyzM
2
z M2

y − HyMy. (2)

Here

αz = αz0
(
T − T c

c0

)
, αy > 0, (3)
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and I bear in mind the terms of the sixth order in powers of
Mz, My and also the fact that in the absence of a field in the x
direction the magnetization along the hard x direction Mx = 0.

A. Transition ferro-para

Let us remind first the treatment developed in Ref. [5]
undertaken in the assumption βy > 0. Then in the constant
magnetic field H = Hyŷ the equilibrium magnetization pro-
jection along the y direction

My ≈ Hy

2
(
αy + βyzM2

z

) (4)

is obtained by minimization of free energy (2) in respect to My

neglecting the higher order terms. Substituting this expression
back to (2) we obtain

F = αzM
2
z + βzM

4
z + δzM

6
z − 1

4

H2
y

αy + βyzM2
z

, (5)

that gives after expansion of the denominator in the last term,

F = − H2
y

4αy
+ α̃zM

2
z + β̃zM

4
z + δ̃zM

6
z + . . . , (6)

where

α̃z = αz0(T − Tc0) + βyzH2
y

4α2
y

, (7)

β̃z = βz − βyz

αy

βyzH2
y

4α2
y

, (8)

δ̃z = δz + β2
yz

α2
y

βyzH2
y

4α2
y

. (9)

Thus, in a magnetic field perpendicular to the direc-
tion of spontaneous magnetization the Curie temperature
decreases as

Tc = Tc(Hy) = Tc0 − βyzH2
y

4α2
y αz0

. (10)

The coefficient β̃z also decreases with Hy and reaches zero at

Hy = H � = 2α3/2
y β1/2

z

βyz
. (11)

At this field under fulfillment the condition,

αz0βyzTc0

αyβz
> 1 (12)

the Curie temperature (10) is still positive and the phase
transition from the ferromagnetic to the paramagnetic state
becomes the transition of the first order [Fig. 1(a)]. The point
(H �, Tc(H �)) on the line paramagnet-ferromagnet phase tran-
sition is a tricritical point. The qualitative field dependences of
the normalized Curie temperature tc(Hy) = Tc (Hy )

Tc0
and b(Hy) =

β̃z

βz
are plotted in Fig. 1(a).
On the line of the first order phase transition from the

ferromagnet to the paramagnet state the Mz component of
magnetization drops from M�

z to zero [2]. The My com-
ponent jumps from My ≈ H�

2(αy+βyzM�2
z ) to My ≈ H�

2αy
. Then at

FIG. 1. (a) Schematic behavior of the normalized Curie tempera-
ture tc(Hy ) = Tc (Hy )

Tc0
and coefficient b(Hy ) = β̃z

βz
. FM and PM stand for

ferromagnetic and paramagnetic phases. (b) Schematic dependence
My(Hy ) at T < Tcr and Hcr < H �.

fields Hy > H �

My ≈ Hy

2αy
(13)

proportional to the external field. This contradicts experimen-
tal observations [3,6,7] which demonstrate the presence of a
“spontaneous” part of magnetization in the field above the
transition in accordance with Eq. (1).

B. Transition ferro - polarized para

The part of free energy depending on My,

Fy = αyM2
y + βyM4

y + δyM6
y + βyzM

2
z M2

y − HyMy, (14)

can be used also far from the transition to the ferromagnetic
state in the temperature region where Mz is not small. The
important fact obtained with the local spin-density approxi-
mation calculations [10] is that the coefficient βy < 0. In the
frame of the isotropic Fermi liquid model the negativeness of
the fourth order term in the expansion of the free energy in
power of magnetic moment is usually ascribed to the peculiar
behavior of the electron density of states (see the review [11]
and references therein). In the orthorhombic URhGe this spe-
cific magnetocrystalline anisotropy reveals itself in the system
of magnetic moments localized on the uranium atoms [12].

The My component of magnetization is determined by the
equation

2α̃yMy + 4βyM3
y + 6δyM5

y = Hy, (15)

where

α̃y = αy + βyzM
2
z . (16)
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Taking into account the third order term we obtain

My ≈ Hy

2α̃y
− βyH3

y

2α̃4
y

. (17)

The coefficient βy < 0 and we see that the increase of magne-
tization occurs faster than it was according to Eq. (4).

The shape of My(Hy) depends on the temperature and pres-
sure dependence of coefficients αy, βy, δy. In particular, the
coefficient α̃y(T ) is decreasing function of temperature and
at temperature decrease the field dependence of My transfers
from the monotonous growth taking place at β2

y < 5
3 α̃yδy to

the S-shape dependence realizing at β2
y > 5

3 α̃yδy. This trans-
formation occurs at some temperature Tcr such that in the
dependence Hy(My) appears an inflection point. It is deter-
mined by the equations

∂Hy

∂My
= 0,

∂2Hy

∂M2
y

= 0 (18)

having common solution

M2
cr = − βy

5δy
, (19)

at β2
y = 5

3 α̃yδy. The corresponding critical field is

Hcr = Hy(Mcr) = 16

5
√

3

α̃3/2
y

|βy|1/2
. (20)

At T < Tcr the inequality

β2
y > 5

3 α̃yδy (21)

is realized and the equation ∂Hy

∂My
= 0 acquires two real solu-

tions, hence, the field dependence of My acquires the S shape
plotted at Fig. 1(b). Equilibrium transition from the lower to
the upper part of the curve My(Hy) corresponds to a vertical
line connecting the points M1 and M2 defined by the Maxwell
rule

∫ 2
1 M(H )dH = 0. The integration is performed along the

curve My(Hy). The My component of magnetization jumps
from M1 to M2 [see Fig. 1(b)].

At temperatures above Tcr the jump transforms into the
crossover which is the temperature-field region character-
ized by the fast growth My. The lower boundary of this
region roughly coincides with the Curie temperature (see
Fig. 2). The Curie temperature decreasing with growth of
magnetization My

Tc(Hy) = Tc0 − βyzM2
y

αz0
(22)

falls down to zero or even to negative value at sharp increase
of My in the vicinity of the critical field Hcr and the ferromag-
netic order along the z direction disappears. Thus, at T < Tcr

and Hy = Hcr we have the phase transition of the first order
from the ferromagnetic state with spontaneous magnetization
along the z direction to the polarized paramagnetic state with
induced magnetization along the y direction (Fig. 2).

The described jumplike transition is realized in the cylin-
drical specimen in the magnetic field parallel to the cylinder
axis. In specimens of arbitrary shape with demagnetization
factor n the transition occurs in some field interval where the

FIG. 2. Phase diagram UCoGe in magnetic field parallel to the
b-crystallographic direction. PM, FM, and PPM denote paramag-
netic, ferromagnetic, and polarized paramagnetic phases. CEP is the
critical end point. SC and RSC are the superconducting and reentrant
superconducting states.

specimen is filled by the domains with different magnetiza-
tion.

When the critical field Hcr is smaller than the critical field
of transition ferro-para H�, the ferro-para transition discussed
in the previous section does not occur. At T < Tcr in fields Hy

exceeding Hcr, the field dependence of My component of mag-
netization behaves in accordance with Eq. (1) corresponding
to the experimental observations.

C. Uniaxial stress effects

It is known that a hydrostatic pressure applied to URhGe
crystals stimulates ferromagnetism and at the same time
suppresses the superconducting state [13] and the reentrant
superconducting state [14] as well. The latter is also shifted
to a bit higher field interval. On the contrary, the uniaxial
stress along the b direction suppresses the ferromagnetism
decreasing the Curie temperature and stimulates the supercon-
ducting state so strongly that it leads to the coalescence of the
superconducting and reentrant superconducting regions in the
(Hy, T ) phase diagram [15]. The phenomenological descrip-
tion of these phenomena was undertaken in the paper [16].
There it was shown that both coefficients αz and αy in the
Landau free energy Eq. (2) acquire the linear uniaxial pressure
dependence

αz(Py) = αz0(T − Tc0) + AzPy, (23)

αy(Py) = αy − |Ay|Py (24)

corresponding to the moderate uniaxial pressure suppression
of the Curie temperature

Tc(Py) = Tc0 − AzPy

αz0
, (25)

reported in Ref. [15] in the absence of an external field. How-
ever, under the external field along the y direction the drop of
the Curie temperature Eq. (10) is accelerated

Tc(Hy, Py)) ≈ Tc0 − AzPy

αz0
− βyzH2

y

4(αy(Py))2αz0
(26)
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in correspondence with the observed behavior. Moreover, the
uniaxial stress causes strong decrease of the critical field
Eq. (20)

Hcr = Hy(Mcr) = 16

5
√

3

(α̃y(Py))3/2

|βy|1/2
. (27)

D. Van der Waals-type theory near the critical point

The critical end point temperature for the first order transi-
tion in URhGe is Tcr = 4 K and the critical field is Hcr = 12T .
Let us expand the function Hy(My) at temperature slightly
deviating from critical temperature T = Tcr + t and the mag-
netization near its critical value My = Mcr + m. We have

h = Hy − Hcr = bt +
[

∂Hy

∂My

∣∣∣∣
t=0

+ 2at

]
m

+ 1

2

∂2Hy

∂M2
y

∣∣∣∣
t=0

m2 + 1

6

∂3Hy

∂M3
y

∣∣∣∣
t=0

m3. (28)

Here, we neglected by the temperature dependence of the
second and the third order terms. Taking into account that
∂Hy

∂My
|t=0 = ∂2Hy

∂M2
y
|t=0 = 0 we obtain

h = bt + 2atm + 4Bm3, (29)

which obviously corresponds to the expansion of pressure
p = P − Pcr in powers of density η = n − ncr near the Van der
Waals critical point [17].

At t < 0 according to the Maxwell rule the magnetization
densities of two phases in equilibrium with each other are:

m2 = −m1 =
√−at

2B
. (30)

The line of phase equilibrium between the two phases below
and above the transition is given by the equation

h = bt, t < 0. (31)

1. Specific heat

The specific heat at fixed external field (see Ref. [17]) is

Ch ∝ T

(
∂h
∂t

)2

m(
∂h
∂m

)
t

. (32)

Then, using Eq. (29) we obtain

Ch ∝ b2T

2at + 12Bm2
. (33)

Thus, the contribution to heat capacity according to the equa-
tion of state (29) near the critical point grows so long m2

decreases until to m2
1 and then begins to fall when m2 increases

starting from m2
2 (see Fig. 3). This is the contribution to the

specific heat of the whole system and cannot be directly at-
tributed to the specific heat of itinerant electrons proportional
to the electron effective mass.

The low temperature behavior of the URhGe specific heat
in magnetic field has not been established by a direct measure-
ment but was derived [6] by the application of the Maxwell
relation ( ∂S

∂Hy
)
T

= ( ∂My

∂T )
Hy

from the temperature dependence
of the magnetization My(T, Hy) in the fixed field. The changes

FIG. 3. Schematic behavior Ch/T (see the main text).

of the ratio C(T )/T have been ascribed to the electron ef-
fective mass dependence from magnetic field [6,18]. This
was done in the assumption that URhGe is a weak itinerant
ferromagnet, in other words, all the low temperature degrees
of freedom in this material belong to the itinerant electron sub-
system. As we already mentioned above, the strong magnetic
anisotropy of this material [10] points on the importance of the
magnetic degrees of freedom localized on the uranium ions
and related with crystal field levels [2,12].

2. Resistivity

The magnetic field dependence of effective mass was also
found [18,19] by the application of the Kadowaki-Woods
relation A(Hy) ∝ (m�)2 where coefficient A is a prefactor in
the low-temperature dependence of resistivity ρ = ρ0 + AT 2.
The A(Hy) behavior is determined by the processes of inelastic
electron-electron scattering which in the multiband metals
interfere with scattering on impurities (see Refs. [20–24]) and
on magnetic excitations with field dependent spectrum. The
nonspherical shape of the Fermi surface sheets and the screen-
ing of el-el Coulomb interaction can introduce deviations
from T 2 resistivity dependence. So, the physical meaning of
the coefficient A(Hy) behavior is not so transparent and its
relationship with the electron effective mass is questionable.

One can also note that the temperature fit of the experimen-
tal data was done in a very narrow temperature interval and
the T 2 temperature dependence claimed in Ref. [19] seems
somewhat unreliable. Compare with the results reported in
Refs. [13,25].

3. Correlation function

The correlation function of fluctuations of the magnetiza-
tion density m near the critical point at t < 0 behaves similar
to the specific heat [17]

ϕ(k) = T

2(at + 6Bm2 + γi jkik j )
. (34)

This is in correspondence with a marked increase of the NMR
relaxation rate 1/T2 with field Hy increasing toward 12 T
reported in Refs. [26,27].

III. PHASE TRANSITION TO SUPERCONDUCTING STATE

The superconducting state in URhGe is completely sup-
pressed by the magnetic field Hc2(T = 0) ≈ 2 T in the y
direction due to the orbital depairing effect. Then supercon-
ductivity recovers in the field interval 9–13 T around the
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critical field Hcr ≈ 12 T of the transition of the first order from
the ferromagnetic state with spontaneous magnetization along
the z direction to the state with induced magnetization along
the y direction. Evidently such type behavior is possible if
the magnetic field somehow stimulates the pairing interaction
surmounting the orbital depairing effect.

In numerous publications starting from the paper by A.
Miyake et al. [18] the treatment of this phenomenon was
related with the assumption of an enhancement of electron
effective mass m� = m(1 + λ) leading to the enhancement
of pairing interaction and consequently of the temperature
of transition to superconducting state according to the Mc-
Millan-like formula [28]

Tsc ≈ ε exp

(
−1 + λ

λ

)
(35)

derived in the paper [29] for the superconducting state with p
pairing in an itinerant isotropic ferromagnetic metal. Similar
to the liquid He-3 in this model there are two independent
phase transition to the superconducting state in the subsys-
tems with spin-up and spin-down electrons. The constant λ

determined by the Hubbard four-fermion interaction [29,30]
increases as we approach but not get too close to ferromag-
netic instability. In the frame of this model the question of
why the growth of the magnetic field Hy approaches the ferro-
magnetic transition remains unanswered.

The following development of this type approach has been
undertaken by Yu. Sherkunov and co-authors [31]. The reen-
trant superconductivity and mass enhancement have been
associated with the Lifshitz transition [32] which occurs in
one of the bands in a finite magnetic field stimulating the split-
ting of spin-up and spin-down bands. There was established
modest enhancement of the transition critical temperature in
the field about 10 T. Thus, the model can claim to the qual-
itative explanation of the superconducting state reentrance.
However, it should be noted that the measured [32] quasipar-
ticle mass in the corresponding band does not increase but
decreases and remains finite, implying that the Fermi velocity
vanishes due to the collapse of the Fermi wave vector. The
cross section of the Fermi surface of this band corresponds
to 7% of the Brillouin zone area. Thus, the reentrance of su-
perconductivity hardly could be associated with the observed
Lifshitz transition.

The models [29,31] describe the physics of pure itinerant
electron subsystem. Such a treatment is approved in appli-
cation to the 3He Fermi liquid. The measurements by x-ray
magnetic circular dichroism [12] point to the local nature of
the URhGe ferromagnetism. Namely, the comparison of the
total uranium moment μU

tot to the total magnetization Mtot at
different magnitude and direction of magnetic field indicates
that the uranium ions dominate the magnetism of URhGe. The
same is true also in the parent compound UCoGe [33]. So,
the magnetic susceptibility χi j (q, ω) is mostly determined by
the localized moments subsystem. Hence, an approach based
on the exchange interaction between conduction electrons
and magnetic moments localized on uranium atoms seems
more appropriate. This type theory has been developed in
the paper by Hattori and Tsunetsugu [34]. Here, there will
be undertaken another approach allowing explicitly taking
into account the enhancement of magnetic susceptibility near

the metamagnetic transition from the ferromagnet state with
spontaneous magnetization along the c axis to the magnetic
state polarized along the b axis.

Using the standard functional-integral representation of the
partition function of the system (see Ref. [35]), we obtain the
following term in the fermionic action describing an effective
two-particle interaction between electrons:

Sint = −1

2
I2

∫
dx dx′Si(x)Di j (x − x′)S j (x

′), (36)

where S(r) = ψ†
α (r)σαβψβ (r) is the operator of the electron

spin density, x = (r, τ ) is a shorthand notation for the co-
ordinates in real space and the Matsubara time,

∫
dx(...) =∫

dr
∫ β

0 dτ (...), I is the exchange constant of interaction of
itinerant electrons with localized magnetic moments, Di j (x −
x′) is the spin-fluctuation propagator expressed in terms of the
dynamical spin susceptibility χi j (q, ω).

Making use of the interaction (36) one can calculate the
electron self energy and find the dependence of the electron
effective mass from magnetic field as well the temperature
of transition to the superconducting state with triplet pairing.
The energy of electronic excitations in the temperature region
where the superconducting state is realized is much smaller
than typical energy of magnetic excitations. Hence, in calcu-
lation of the superconducting properties one can neglect the
frequency dependence of susceptibility.

A. Upper critical field parallel to the c axis in UCoGe

In application to UCoGe in magnetic field parallel to di-
rection of spontaneous magnetization this program has been
accomplished in the paper [36]. There has been considered
transition into the equal-spin pairing superconducting state in
two-band (spin-up, spin-down) orthorhombic ferromagnetic
metal. According to this paper in the simplified case of a
single-band (say spin-up) equal-spin pairing superconducting
state the critical temperature without including the orbital
effect of the field is

Tsc = ε exp

(
− 1 + λ〈

N0(k)χu
zz

〉
I2

)
, (37)

where, as in the McMillan formula, 1 + λ corresponds to the
effective mass renormalization, whereas the pairing amplitude
expressed through the odd in momentum part of static suscep-
tibility

χu
zz = 1

2 [χzz(k − k′) − χzz(k + k′)],

which is the main source of the critical temperature depen-
dence from magnetic field. Here,

χzz(k) = 1

χ−1
z + 2γi jkik j

, (38)

and χz = χz(Hz ) is the z component of susceptibility in the fi-
nite field Hz. Its magnitude at Hz → 0, and we will denote χz0.
The angular brackets denote averaging over the Fermi surface
and N0(k) is the angular dependent density of electronic states
on the Fermi surface,

〈
N0(k)χu

zz(Hz )
〉 ≈ 2

〈
N0(k)k̂2

z

〉
k2

F χz

(2χz )−1 + 4γzzk2
F

. (39)
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The denominator in the exponent of Eq. (37) can be expressed
through its value at Hz → 0〈

N0(k)χu
zz(Hz )

〉
〈
N0(k)χu

zz(Hz → 0)
〉 = χz

χz0

1 + 4(ξmkF )2

χz0

χz
+ 4(ξmkF )2

. (40)

Here the product 2γzzk2
F χz0 = (ξmkF )2 is expressed through

the magnetic coherence length ξm which near the zero tem-
perature is of the order of several interatomic distances.

In assumption (ξmkF )2 � 1 one can rewrite Eq. (40) as

〈
N0(k)χu

zz(Hz )
〉 ≈ χz(Hz )

χz0

〈
N0(k)χu

zz(Hz → 0)
〉
. (41)

This very rough estimation presents the qualitative depen-
dence of exponent in equation (37) from magnetic field. The
longitudinal susceptibility drops with the augmentation of
magnetic field parallel to the spontaneous magnetization (see
Fig. 3 in the paper [37]) leading to the suppression of the
temperature of transition to the superconducting state without
including the orbital effect according to Eq. (37).

Taking into account the orbital effect one can write the
field dependence of critical temperature of transition to the
superconducting state in the Ginzburg-Landau region

T orb
sc (H ) = Tsc(H ) − H

ATsc(H )
, (42)

where A is a constant. Thus, the decreasing of Tsc(H ) with
magnetic field causes not only faster drop but also the pe-
culiar upward curvature in the critical temperature T orb

sc (H )
dependence from magnetic field in correspondence with the
experimental data reported in Ref. [38].

B. Reentrant superconductivity in URhGe

In the field perpendicular to the spontaneous magnetization
the similar approach applied to the simplified single band
model in weak coupling approximation yields (see Eq. (169)
in the review [2]) the critical temperature

Tsc ≈ ε exp

(
− 1[〈

N0(k)χu
zz

〉
cos2 ϕ + 〈

N0(k)χu
yy

〉
sin2 ϕ

]
I2

)
,

(43)

where tan ϕ = Hy/h and h is the exchange field acting on the
electron spins. This is the critical temperature of transition to
the superconducting state without including the orbital effect.

The orbital effect suppresses the superconducting state and
near the upper critical field at zero temperature

Hc2y(T = 0) = H0 = cT 2
sc (44)

the actual critical temperature is

T orb
sc = a

√
H0 − Hy, (45)

where a
√

c is the numerical constant of the order of unity.
This is the usual square root BCS dependence of the critical
temperature from magnetic field in low temperature-high field
region such that T orb

sc (Hy = H0) = 0. However, in the present
case the magnitude H0 itself is a function of the external field
Hy. Let us look on its behavior.

Similar to Eq. (41) we get〈
N0(k)χu

zz(Hy)
〉
cos2 ϕ + 〈

N0(k)χu
yy(Hy)

〉
sin2 ϕ

≈ χz(Hy)

χz0

〈
N0(k)χu

zz(Hy → 0)
〉
cos2 ϕ

+ χy(Hy)

χy0

〈
N0(k)χu

yy(Hy → 0)
〉
sin2 ϕ. (46)

Here, χz(Hy) and χy(Hy) are the z and y components of
susceptibility in finite field Hy and χz0 and χy0 are the cor-
responding susceptibilities at Hy → 0. Unlike Eq. (41) the
field dependence of Eq. (46) is not so visible. One can note,
however, the different field dependence of two summands in
Eq. (46).

(i) The susceptibility along the z direction χz(Hy) increases
with magnetic field Hy following to the decreasing of the
Curie temperature according to Eq. (22). The growth of sus-
ceptibility along the z direction at the approaching field Hy to
Hcr is confirmed by the field dependence of the NMR scatter-
ing rate 1/T1 reported in Refs. [26,27]. At the same time, the
increase of χz(Hy) is limited by the decrease of cos2 ϕ. We do
not know how fast it is because the magnitude of the exchange
field is not known.

(ii) As the field approaches to Hcr the low temperature
susceptibility χy(Hy) has a high delta-function-like peak [7]
with magnitude more than 10 times greater than it is at Hy →
0. The factor sin2 ϕ is also increased. This indicates that in
URhGe, more important is the second term connected with
the metamagnetic transition.

Thus, in the vicinity of metamagnetic transition one can ex-
pect the increase of the critical temperature estimated without
including the orbital effect according to Eq. (43). The radicand
in equation (45) after being negative in some field interval
acquires the positive value as the field approaches to Hcr. The
critical temperature Eq. (45) reaches maximum in the vicinity
of metamagnetic transition, see Fig. 2.

Similar arguments in favor of stimulation superconductiv-
ity near the metamagnetic transition in the field parallel to
the b axis can be applied to the recently discovered other
superconducting compound UTe2 [39–41] isostructural with
URhGe. However, in view of many particular properties of
this material we leave this subject for future studies.

In the parent compound UCoGe the metamagnetic tran-
sition is absent (at least at Hy < 40 T) [42]. Hence, in this
material the unusual temperature dependence of the upper
critical field parallel to the b axis is probably mostly deter-
mined by the first term in Eq. (46).

Near Hy = Hcr at temperatures T < Tcr the NMR spectrum
is composed of two components indicating that the transition
is of the first order accompanied by the phase separation [26].
Thus, in almost whole interval near Hcr the superconductivity
is developed in a mixture of ferromagnetic state with polar-
ization along the z direction and the field polarized state with
polarization along the y direction.

C. Upper critical field near metamagnetic transition in UGe2

A peculiar example of superconductivity stimulation in
the vicinity of metamagnetic transition is realized in the
other ferromagnetic compound UGe2. This material has
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FIG. 4. The schematic P, T phase diagram of UGe2 [45,46].
Thick lines represent first-order transitions and thin lines denote
second-order transitions. The dashed line indicates a crossover while
the dots mark the positions of critical points. The superconducting
region is represented in the red area at the bottom.

orthorhombic structure with spontaneous magnetization di-
rected along the a crystallographic direction. The magnetism
in UGe2 has an even more localized nature [2,43,44] than in
related compounds URhGe and UCoGe. The superconduc-
tivity exists inside of the ferromagnetic state in the pressure
interval shown in Fig. 4. Inside of this interval at P = Px there
is a metamagnetic transition from ferromagnetic state FM1 to
ferromagnetic state FM2 characterized by the jump of sponta-
neous magnetization from smaller to larger value [45]. At a bit
higher pressure P = Px + δP the transition from FM1 to FM2
occurs in a finite magnetic field applied along the direction of
spontaneous magnetization [47]. Near this transition in a finite
field the magnetic susceptibility along the a-axis χa strongly
increases. Hence, the critical temperature without including
the orbital effect

Tsc = ε exp

(
− 1 + λ〈

N0(k)χu
a

〉
I2

)
(47)

growths up. As a result the upper critical field in a crystal-
lographic direction measured at P = Px + δP acquires non-
monotonic temperature dependence shown in Fig. 5 [48,49].

It is worth noting that at pressures far from metam-
agnetic transition the upper critical field parallel to the a
direction does not reveal an upward curvature [48,49]. This
important distinction from the upper critical field behavior
in UCoGe considered in Sec. III A is related to the differ-
ence of susceptibility dependence from magnetic field along
spontaneous magnetization in these two materials. Whereas in
UCoGe the susceptibility χc along the c axis is strongly field

FIG. 5. Temperature dependence of Hc2 for a field parallel to the
a axis in UGe2 at 1.35 GPa, which is just above Px . The metamagnetic
transition is detected at Hx between FM1 and FM2 [48,49].

dependent [37], in UGe2 the susceptibility χa along the a axis
is practically field independent [45,50].

IV. CONCLUSION

We have demonstrated that in the orthorhombic ferromag-
net URhGe the ferromagnetic ordering along the c axis is
suppressed in the process of increase of magnetization in the
perpendicular b direction induced by the external magnetic
field. This process is accelerated by the tendency to the meta-
magnetic transition which occurs at Hy = Hcr = 12 T. The
transition of the first order is accompanied by the suppression
of the ferromagnetic state with polarization along the c axis
and the arising of magnetic state polarized along the b axis.
The line of first order phase transition is finished at the critical
end point with temperature T = Tcr = 4 K.

The uniaxial stress along the b axis causing moderate sup-
pression of the Curie temperature in the absence of magnetic
field accelerates the Curie temperature drop in finite mag-
netic field Hy and quite effectively decreases the critical field
of metamagnetic transition. As a result, the superconducting
state recovers itself in a much smaller field and can even
be merged with the superconducting state in the small fields
region. The superconducting pairing is determined by the ex-
change interaction between the conduction electrons and the
magnetic moments localized on uranium atoms.

In UCoGe the upward curvature of the upper critical field
along the c axis is mostly determined by the longitudinal
magnetic susceptibility decrease along with the magnetization
saturation. In URhGe the superconducting state suppressed in
field Hy ≈ 2 T is recovered in fields interval (9–13) T near
the critical field. This phenomenon is related to the strong
increase of the pairing interaction caused mostly by the strong
augmentation of the magnetic susceptibility along the b di-
rection in the vicinity of the metamagnetic transition. The
nonmonotonous behavior of the upper critical field in UGe2
is explained by the strong increase of longitudinal magnetic
susceptibility at the metamagnetic transition from FM1 to
FM2.
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