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Mesoscale helicity distinguishes Vinen from Kolmogorov turbulence in helium-II
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Experiments and numerical simulations show that quantum turbulence exists in two distinct limiting regimes:
Kolmogorov turbulence (which shares with classical turbulence the important property of a cascade of kinetic
energy from large eddies to small eddies) and Vinen turbulence (which is more similar to a random flow). In this
work, we define a mesoscale helicity for the superfluid, which, tested in numerical experiments, distinguishes the
two turbulent regimes, quantifying the amount of nonlocal vortex interactions and the orientation of the vortex
lines.
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I. INTRODUCTION

Vorticity in superfluid liquid helium (helium-II) is not a
continuous and unconstrained field, as in ordinary (classical)
fluids, but consists of thin vortex lines [1] whose strength
(measured by the velocity circulation κ) and thickness (i.e.,
the vortex core radius a0) are held fixed by quantum-
mechanical constraints. In this study we focus on turbulent
tangles of vortex lines generated when liquid helium is stirred
[2–4]. Similar tangles of vortex lines can also be created in
trapped atomic Bose-Einstein condensates by laser stirring,
by shaking the trap [5], or by temperature quenches [6]. The
natural question is whether this state of disorder (hereafter
referred to as quantum turbulence) is similar to turbulence in
ordinary fluids (classical turbulence) or not.

The evidence so far is that quantum turbulence can as-
sume two distinct limiting regimes [7–9] called respectively
Kolmogorov turbulence and Vinen turbulence (see Sec. II for
a description of their physical properties). The Kolmogorov
regime has been observed in helium experiments driven by
counter-rotating propellers [10], wind tunnels [11], towed
grids [12,13], vibrating grid in 3He-B [14,15], or by the in-
jection of vortex rings [8] and has been reproduced in the
numerical simulations of these experiments [16,17]. At large
scales this regime resembles classical turbulence. The Vinen
regime (and its crossover to the Kolmogorov regime) has been
observed in experiments [8] and in numerical simulations [18]
of turbulence driven by vortex ring injection; it has also been
generated in numerical simulations of helium-II turbulence
driven by a small heat flux [17] (also known as counterflow
superfluid turbulence), in numerical simulations of turbulence
in trapped atomic Bose-Einstein condensates [19] (including
the thermal quench of a Bose gas [20,21]), and in superfluid
models of the early universe [22]. This regime seems to have
no classical counterpart.

Our aim is to show that, in helium-II, Kolmogorov tur-
bulence and Vinen turbulence differ also in terms of what
we call mesoscale helicity. Helicity is a property of great

importance in classical fluid dynamics, but in the context
of quantum fluids its role, and even its definition, are still
debated. The mesoscale definition of superfluid helicity which
here we propose extends the classical definition of helicity in
fluid dynamics to the mesoscale description of turbulent vor-
tex lines in helium-II provided by the vortex filament model
(VFM); the VFM is the best model currently available for
turbulent helium-II at the nonzero temperatures and length
scales typical of most turbulence experiments. Our results
shed new light onto the different nature of Kolmogorov and
Vinen turbulent flows.

The plan of the paper is the following: First we review
the difference between Vinen and Kolmogorov turbulence
regimes (Sec. II) and recall the mesoscale description of turbu-
lence provided by the VFM (Sec. III). In Sec. IV we introduce
the definition of mesoscale helicity H for a superfluid. To
better understand the physical meaning of H, in Sec. V we
determine H for simple vortex configurations, before measur-
ing it in two distinct turbulent flows (Sec. VI). Section VII
discusses how the values of H distinguish Vinen from Kol-
mogorov regimes. Section VIII draws the conclusions.

II. VINEN VERSUS KOLMOGOROV

Kolmogorov turbulence [23] is characterized by the same
energy spectrum Ê (k) ∼ k−5/3 observed in classical turbu-
lence in its simplest (homogeneous, isotropic, statistically
steady) form. The energy spectrum Ê (k) describes the distri-
bution of turbulent kinetic energy E = ∫ ∞

0 Ê (k)dk over the
length scales 2π/k (where k is the wave number). The k−5/3

scaling is interpreted as the manifestation of an energy cas-
cade from large to small eddies taking place over the inertial
range kD = 2π/D � k � kη = 2π/η where D is the (large)
length scale of the energy injection and η is the (small) length
scale of the viscous dissipation. In quantum turbulence, kη

must be replaced by k� = 2π/� where � is the average dis-
tance between the vortex lines [24]; at length scales shorter
than � (k � k�), individual vortex line dynamics (such as
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Kelvin waves and phonon emission) becomes significant and
leads to a departure from classical hydrodynamic turbulence.
Numerical simulations [25,26] reveal that the k−5/3 scaling
observed for k � k� in superfluids arises from the partial
polarization of the vortex tangle: vortex lines align locally,
forming energy-containing bundles [27,28] which can induce
flow at large scales. Further evidence of classical behavior
arises from the temporal decay of the kinetic energy E (t )
and the vortex line density L(t ) which are observed when
the forcing which sustains the turbulence in a steady state is
removed [29–31]: E (t ) ∼ t−2 and L(t ) ∼ t−3/2, where L(t ) is
defined as the vortex length per unit volume at time t .

The second limiting form of turbulence, Vinen turbulence,
has different signatures. Its energy spectrum Ê (k) lacks the
k−5/3 scaling and may peak at the intermediate scales around
k� rather than at the large scales kD; at larger wave numbers it
displays the characteristic k−1 behavior of an isolated vortex.
The last feature suggests that Vinen turbulence is a random-
like flow with a weak or absent energy cascade [32] (indeed
the velocity correlation functions become negligible for dis-
tances larger than � [19,20]). If the forcing is removed, Vinen
turbulence decays more slowly than Kolmogorov turbulence:
E (t ) ∼ t−1 and L(t ) ∼ t−1. For the sake of completeness,
it is important to note that in Vinen turbulence observed in
counterflow channels, one-point turbulent velocity statistics
(PDFs) are Gaussian (as in classical turbulence) or exhibit
quantum peculiar power laws, depending on whether the mea-
surement region � is � � � or � � �, respectively [33–35].

III. VORTEX FILAMENT MODEL

Since our concern is experiments in helium-II at nonzero
temperatures, we use the vortex filament model (VFM)
[36,37]. The VFM is based on the separation of length scales
a0 � � � D typical of experiments, where a0 = 10−10 m is
the vortex core radius, � ≈ 10−5 to 10−3 m is the average
distance between vortex lines, and D ≈ 10−2 to 10−1 m is the
system size. In the range of length scales � < � < D relevant
to turbulence, the VFM describes vortex lines as three di-
mensional, oriented, reconnecting space curves, s(ξ, t ), where
ξ is arclength, carrying one quantum κ of circulation. The
curves have infinitesimal thickness, unlike quantum vortices
described by more microscopic approaches such as the Gross–
Pitaevskii equation (GPE) [1] or N-body quantum mechanics
[38]; in other words, the VFM is a mesoscopic model which
neglects density variations at the scale of the vortex core.
At each time t , the VFM describes the vortex tangle as a
collection of Nv oriented curves of length Li (i = 1, . . . , Nv),
where Nv , Li and the total vortex length L = ∑Nv

i=1 Li vary with
t . The velocity field v(r) which all vortex lines induce at a
point r �= s (i.e., a point which is not on a vortex line) is given
by the Biot-Savart law [39]

v(r, t ) = κ

4π

∫
T

dξ
s′(ξ, t ) × [r − s(ξ, t )]

|r − s(ξ, t )|3 , (1)

where the line integral extends over the entire vortex config-
uration T and s′ = ∂s/∂ξ is the unit tangent vector at the
point s. At nonzero temperature, the motion of vortex lines

is determined by Schwarz’s equation [36]:

ds
dt

= v(s, t ) + αs′ × w(s, t ) − α′s′ × [s′ × w(s, t )], (2)

where w(s, t ) = vn(s, t ) − v(s, t ), vn(s, t ) is the velocity of
the normal fluid at s, and α and α′ are temperature-dependent
friction coefficients [40] accounting for the interaction be-
tween normal fluid and vortex lines. Without a core structure,
the Biot-Savart integral, Eq. (1), would diverge if evaluated
at a point r = s on a vortex line, and must be de-singularized
in a standard way [36] which takes into account the vortex
core’s finite size a0 and the minimum Lagrangian discretiza-
tion along the vortex lines, �ξ . The total superfluid velocity
v of the vortex line at the point s(ξ, t ) can thus be decom-
posed into near, far, and external contributions, i.e., v(s, t ) =
vfar(s, t ) + vnear(s, t ) + vext (s, t ). The far contribution is

vfar(s(ξ, t ), t ) = κ

4π

∫
T ′

dξ ′ s
′(ξ ′, t ) × [s(ξ, t ) − s(ξ ′, t )]

|s(ξ, t ) − s(ξ ′, t )|3 ,

(3)

where now the integral extends to all vortex lines present in
the tangle (the line through the point s as well as all other
vortex lines) but excludes the neighborhood of the point s
(this is the meaning of the symbol T ′). The near contribution,
accounting for this neighborhood, is

vnear(s, t ) = κ

4π
ln

(Rc

a0

)
s′ × s′′. (4)

Note that vnear(s, t ) is directed in the binormal direction
and (neglecting the dependence on the slow varying loga-
rithmic term) is inversely proportional to the local radius of
curvature Rc = 1/|s′′| at the point s, where s′′ = ∂2s/∂ξ 2.
Finally, the external contribution vext (s, t ) describes any ir-
rotational flow which is externally applied, for example by
bellows or a heater.

IV. MESOSCALE HELICITY

The classical definition of helicity H is [41]

H =
∫∫∫

V
ω(r) · v(r)d3r, (5)

where v is the velocity field, ω = ∇ × v is the vorticity field,
r is the position, and V is the volume containing the fluid.
An ideal fluid evolving without viscosity according to the
classical Euler equation conserves both energy and helicity;
helicity conservation freezes the flow’s topology in time. In
real fluids, viscous dissipation destroys both energy and he-
licity. Helicity is important in turbulence: a large value of
H weakens the nonlinearity of the governing Navier-Stokes
equation, reducing the direct cascade of energy from large to
small length scales [42]. Spontaneous reflectional symmetry
breaking, implying nonzero net helicity, has been reported in
turbulent flows with initial and boundary conditions which
are symmetric [43,44]. Recent work [45] has also shown
that the interaction of helical modes of the same sign favors
three-dimensional inverse energy transfer and the generation
of large length scales. In astrophysics, helicity quantifies the
lack of mirror symmetry of the flow which favors the gen-
eration of magnetic field by dynamo action [46]. It is now
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possible to directly measure the helicity of thin-cored vortices
[47], boosting the interest in the role kinetic helicity plays in
constraining the hydrodynamics.

The superfluid component of helium-II has zero viscosity
and can thus be considered as the closest physical realiza-
tion of the mathematical concept of the classical ideal fluid
obeying the Euler equation. On the other hand, quantized vor-
tex lines can reconnect modifying the flow topology which,
hence, is not frozen, in contrast with ideal classical fluids.
Questions naturally arise: is there an analog of classical he-
licity in superfluid helium and other quantum fluids? What is
its physical meaning? And, is it conserved?

These issues are currently debated in the context of the
Gross–Pitaevskii equation (GPE). In GPE theory [1], the vor-
tex centerline (the vortex axis) is a nodal line of the wave
function surrounded by a thin tubular core region of depleted
density. Since the GPE vorticity, ω, is a Dirac δ function on
the centerline (where the velocity v diverges), a definition of
superfluid helicity based on Eq. (5) requires a careful limiting
procedure for r → 0, where r is the radial distance to the
centerline [48], and raises the question as to whether H, thus
defined, is conserved. An alternative approach is to define the
superfluid helicity using the classical decomposition [49] of H
for thin vortex tubes into writhe, link and twist, in which case
superfluid helicity is zero at all times [50–52]. The second
approach has a subtle aspect: the twist has an intrinsic com-
ponent which relies upon the construction of a second vortex
line along the vortex centerline in order to define a ribbon; this
creates a difficulty in the context of GPE theory where there
is only one vortex line in the core, the centerline δ function.

At the mesoscale level of description of superfluid tur-
bulence provided by the VFM, the definition of superfluid
helicity should not depend on the detailed nature of the vortex
core, provided the definition has not physical or mathemati-
cal inconsistencies. Although the GPE is a good quantitative
model of gaseous Bose-Einstein condensates, it is only a
qualitative model of helium-II, which is a liquid, not a weakly
interacting Bose gas. A many-body quantum-mechanical de-
scription of the helium vortex core accounts for rotons [53]
and a more structured vortex core [38] than predicted by
the GPE, revealing that the azimuthal velocity has the form
of a Rankine vortex with crossover from vθ ∼ r behavior to
vθ ∼ 1/r behavior at r ≈ a0, unlike the vortex solution of
the GPE which is vθ ∼ 1/r for all r �= 0. The vorticity ω is
therefore zero but in narrow tubes of approximately constant
cross section πa2

0 with magnitude ω = κ/(πa2
0) and direction

tangential to the centerline. This result justifies the application
of the classical definition of helicity, Eq. (5), to helium-II. At
the mesoscale level we find (see Appendix A)

H(t ) = κ

Nv∑
i=1

∫ Li

0

dξs′(ξ, t ) · vnon(s(ξ, t ), t ), (6)

where vnon(s(ξ, t ), t ) = vext(s(ξ, t ), t ) + vfar(s(ξ, t ), t ) is the
nonlocal velocity [17] induced at a point s along a line by
distant vortex line elements or by external means.

To compare different vortex configurations, the mesoscale
helicity H must be normalized by the vortex length L because,
if the helicity density h(ξ ) = s′(ξ ) · vnon(s(ξ )) is constant
along the vortex lines, H would simply be proportional to

L. If we divide H by κL, we find that the tangle-averaged
nonlocal velocity contribution in the direction of the vorticity
is the ratio of mesoscale helicity to the quantum of circulation
times the total vortex length, i.e.,

〈s′ · vnon〉 = H
κL

. (7)

Equation (7) provides a physical interpretation of
mesoscale helicity. We expect therefore that, if the vortex
lines are randomly oriented in space (Vinen turbulence), then
H will be approximately zero because the nonlocal velocity
contributions at a point s on a vortex line will tend to cancel
out each others. Vice versa, if the vortex tangle is partially
polarized via bundles of quasiparallel vortex lines within a
random tangle (Kolmogorov turbulence), H will be nonzero.
Notice that the existence of large-scale flows is not a sufficient
condition for large helical flows: for example, two straight
parallel vortex lines create a large-scale superflow but the total
mesoscale helicity is zero.

To test the interpretation of mesoscale helicity outlined in
the previous section, we perform numerical simulations using
the VFM. In Sec. V we examine the mesoscale helicity H of
simple vortex configurations. In Sec. VI we determine H for
two distinct turbulent vortex configurations.

V. SIMPLE VORTEX CONFIGURATIONS

To further understand the physical meaning of the
mesoscale helicity H defined in Eq. (6), we numerically com-
pute it for the following simple vortex configurations: (a) a
vortex line perturbed by a Kelvin wave; (b) a vortex line
perturbed by a Kelvin wave together with a second straight
vortex line placed alongside the first line and oriented in the
antiparallel direction; (c) a vortex line perturbed by a Kelvin
wave together with a second straight vortex line placed along-
side the first line and oriented in the parallel direction; (d)
a bundle of 13 parallel vortex lines all perturbed by Kelvin
waves. The four vortex configurations are displayed in Fig. 1,
where vortices are colored according to the value of the local
mesoscale helicity density h(ξ ) = s′(ξ ) · vnon(s(ξ )).

In all configurations (a)–(d), the Kelvin wave amplitude
is A = 8 × 10−3 cm, its wavelength is λ = 0.8 cm, the size
of the cubic computational box is D = λ, the spatial dis-
cretization along the vortex lines is �ξ = 1.5 × 10−3 cm and
periodic boundary conditions are employed. In cases (b) and
(c) the distance between the perturbed vortex line and the
straight vortex line is dlines = 4 × 10−2 cm, while in case (d)
12 vortex lines are arranged circularly around a central vortex
line at distance dKW = 2 × 10−2 cm. As a consequence, given
that dlines/D = 5 × 10−2 and dKW /D = 2.5 × 10−2, boundary
effects can be neglected.

To interpret the resulting values of H, listed in the caption
of Fig. 1, it is useful to decompose H into self-induced and
interaction contributions: H = Hself + Hint. The first contri-
bution, Hself, is the sum of the helicity of each vortex line
arising from the nonlocal velocity generated on the line by the
line itself (implying that Hself = 0 for a single straight vortex
line); the second contribution, Hint, is the helicity of the vortex
lines due to the nonlocal velocity field generated by the other
vortices. The mesoscale helicities of configurations (a)–(c)
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FIG. 1. The four simple vortex configurations (described in
the main text) used to illustrate the physical meaning of the
mesoscale helicity H defined in Eq. (6). The computed values of
H are as follows: (a) H/κ = 1.72 × 10−6 cm2/s, (b) H/κ = 1.96 ×
10−6 cm2/s, (c) H/κ = 1.48 × 10−6 cm2/s, (d) H/κ = −1.10 ×
10−5 cm2/s. Vortices are colored according to the local value of the
helicity density h(ξ ). Arrows indicate the orientation of the vortices.
The unit of length shown on the axes is 10−1 cm.

can therefore be written as H(a) = H(a)
self, H(b) = H(a) + H(b)

int ,
and H(c) = H(a) + H(c)

int .
We note that a Kelvin wave, arising from an instability of a

straight vortex line, has a natural orientation and rotates about
the initial unperturbed vortex in the direction opposite to the
superfluid velocity. We find that when we add an antiparallel
straight vortex line to the perturbed vortex the total mesoscale
helicity H/κ increases, while when we add a parallel straight
vortex line, the total mesoscale helicity H/κ decreases.

The reason of this behavior is twofold. First, H(c)
int = −H(b)

int
because the local helicity density h(ξ ) changes sign as the
orientation of the straight line is reversed. Second, H(b)

int > 0,
because in case (b) the line elements of the Kelvin wave which
are closer to the straight vortex mutually induce onto each
other a positive interaction helicity density hint whose value is
larger than the absolute value of the negative helicity density
hint resulting from the interaction of more distant line ele-
ments: the overall sum H(b)

int is thus positive. More precisely,
we find H(b)

int /κ = 2.4 × 10−7 cm2/s in case (b) and H(c)
int /κ =

−2.4 × 10−7 cm2/s in case (c), leading to the corresponding
total values reported in Fig. 1. If we repeat the computation of
Hint for two parallel vortex lines both perturbed by the same
Kelvin wave as in (a) and separated by the same distance dlines

as in (b) and (c), we obtain Hint/κ = −4.1 × 10−7 cm2/s.
As term of reference, if in case (a) we employ Eq. (7) to

estimate the magnitude of the tangle-averaged nonlocal ve-
locity contribution in the direction of the vorticity vnon, we
obtain vnon = 2.2 × 10−6 cm/s, which, in this configuration,
is significantly smaller than the self-induced velocity along
the Kelvin wave vnear = 7.6 × 10−4 cm/s, computed using
Eq. (4) and employing the radius of curvature of the Kelvin
wave.

The negative values of Hint in the circumstance of quasi-
parallel vortex lines is the reason why the overall mesoscale
helicity H is negative if the vortex configuration consists of a
bundle of Kelvin waves as in Fig. 1(d). In this configuration,
the ith vortex line has a self-induced helicity Hi

self = H(a) >

0, hence Hself = ∑N
i=1 Hi

self > 0. However, Hint is a large neg-
ative number because it is the sum of N (N − 1)/2 interaction
terms which are individually negative (here N = 13). Overall,
the total mesoscale helicity H = Hself + Hint is negative.

We conclude that, in superfluid turbulence, bundles of
quasiparallel curved vortex lines (which are responsible for
the existence of large-scale flows and quasiclassical Kol-
mogorov energy spectra [28]) possess negative helicity.

VI. TURBULENT VORTEX CONFIGURATIONS

In the following sections we determine the mesoscale he-
licity H of two distinct turbulent configurations which we
refer to as thermally driven turbulence and injection-driven
turbulence. In all numerical simulations of this section, the
computational domain is a cube of size D = 1 cm with
periodic boundary conditions. The Lagrangian spatial dis-
cretization along the vortex lines is typically �ξ = 1.5 ×
10−2 cm to 2.0 × 10−2 cm, the time step is �t = 4 ×
10−3 s to 5 × 10−3 s, and the time evolution is computed
using a third-order Runge-Kutta scheme. Vortex reconnec-
tions [54–56] are implemented algorithmically as described
elsewhere [36,57] and the Biot-Savart integral (1) is computed
via a tree approximation [58] to decrease the computational
cost of the calculations. All simulations start with a few seed-
ing vortex lines which quickly multiply, until, after an initial
transient, a statistical steady state of turbulence is achieved in
which the vortex line density L (or, equivalently, the vortex
length L = LD3) fluctuates around a mean value indepen-
dent of the initial condition, as shown by the blue curves
in Figs. 3 and 5, for the two experiments. In this steady-
state, a balance is reached between forcing and dissipation.
Forcing occurs via the Donnelly-Glaberson instability [59]
in thermally driven turbulence where T > 0, and via vortex
ring injection in injection-driven turbulence; dissipation takes
place via the friction in thermally driven turbulence and via
the finite discretization on the vortex lines which models the
damping of the shortest Kelvin waves by phonon emission in
injection-driven turbulence where T = 0.

A. Thermally driven turbulence

In this numerical simulation, we assume a uniform thermal
counterflow velocity vns = vn − vext in Eq. (2), and simulate
Vinen turbulence driven thermally by a small heat flux in a
large channel [17] at nonzero temperature. We choose tem-
perature T = 1.9 K (corresponding to α = 0.206 and α′ =
0.009) and |vns| = 0.08 cm/s.

144503-4



MESOSCALE HELICITY DISTINGUISHES VINEN FROM … PHYSICAL REVIEW B 103, 144503 (2021)

FIG. 2. Thermally driven turbulence. Snapshot of turbulent vor-
tex tangles driven by uniform normal fluid (Vinen regime) at t =
2400 s. The vortex lines are color-coded according to the local
mesoscale helicity density h(ξ ) = s′(ξ ) · vnon(s(ξ )).

In Fig. 2 we report a snapshot of the vortex tangle after
the initial transient, where vortex lines are color-coded ac-
cording to the local value of the mesoscale helicity density
h(ξ ) = s′(ξ ) · vnon(s(ξ )). It emerges that in the Vinen regime
the mesoscale helicity density h(ξ ) is essentially zero every-
where. This reflects in the temporal evolution of the integrated
mesoscale helicity H divided by κL (reported in Fig. 3),
where H performs small oscillations around zero when the
statistically steady state is achieved.

B. Injection-driven turbulence

In this numerical experiment we generate turbulence at
T = 0 (no normal fluid) by injecting vortex rings of radius
R = D/2 at random positions and with random orientation at
the constant rate L̇ = 5.6 cm−2/s (a similar setup was used
in the laboratory by Walmsley and Golov [8]). The snapshot
of the vortex tangle in the statistically steady-state colored
according to the local mesoscale helicity density h(ξ ) (Fig. 4)
shows that locally |h(ξ )| achieves significantly larger values
if compared with Vinen turbulence (Fig. 2). Furthermore,
regions with negative h(ξ ) seem to prevail over regions with
positive h(ξ ). This visual suggestion is confirmed by the

FIG. 3. Thermally driven turbulence. Temporal evolution of vor-
tex line density L(t ) (cm−2, blue curve) and mesoscale helicity H
divided by κL (cm/s, red curve) for thermal counterflow. Time t is
indicated in seconds.

FIG. 4. Injection-driven turbulence. Snapshot of turbulent vortex
tangles driven by constant vortex ring injection at zero temperature
at t = 175 s. The vortex lines are color-coded according to the local
mesoscale helicity density h(ξ ) = s′(ξ ) · vnon(s(ξ )).

temporal evolution of H/(κL) reported in Fig. 5 which shows
that, after a transient, H/(κL) is negative and its magnitude
is larger than the one reported for Vinen turbulence (shown in
Fig. 3).

VII. DISCUSSION

We interpret the observed behavior of the magnitude of
H/(κL) in thermally driven and injection-driven turbulence
as follows. In thermally driven (Vinen) superfluid turbulence
the vortex tangle configuration is a random arrangement of
vortex loops and lacks large-scale flows. This is confirmed by
the kinetic-energy spectrum Ê (k) which we report in Fig. 6,
which shows the characteristic Ê (k) ∼ k−1 behavior of an
isolated vortex at k ≈ k�, where k� = 2π/� and � = 1/

√
L is

the average intervortex spacing. The absence of large-scale
flows apparent in figure [Ê (k) decreases for k → kD] implies
that the nonlocal velocity contributions vnon in Eq. (6) are
small (as contributions from distinct vortices tend to cancel
out given the random configuration), leading to an overall
smaller value of H/(κL) observed in Fig. 3 with respect to
the value of H/(κL) calculated for injection-driven turbulence
(Fig. 5).

FIG. 5. Injection-driven turbulence. Temporal evolution of vor-
tex line density L(t ) (cm−2, blue curve) and mesoscale helicity H
divided by κL (cm/s, red curve) for superfluid turbulence driven
by constant vortex ring injection at T = 0. Time t is indicated in
seconds.
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FIG. 6. Thermally driven turbulence. Counterflow superfluid tur-
bulence at T = 1.9 K: energy spectrum Ê vs wave number k at
t = 2400 s; the dashed green line indicates the typical k−1 isolated
vortex scaling, while blue vertical lines indicate wave numbers cor-
responding to the size of the box D and the average intervortex
spacing �.

If the superfluid turbulence is driven by vortex ring injec-
tion instead, the energy spectra Ê (k) reveal a quasiclassical
Kolmogorov behavior, with Ê (k) ∼ k−5/3 for k � k�, as
shown if Fig. 7. This property implies that most of the en-
ergy is contained in large-scale eddies [Ê (k) increases for
k → kD]. Thus, vnon is significantly larger than in counter-
flow turbulence, accounting, see Eq. (7), for the observed
larger magnitude of H/(κL) when compared with thermally
driven turbulence. Furthermore, on the basis of the results
presented in Sec. V, we ascribe the negative value of H/(κL)
in injection-driven turbulence to the presence in the flow of
vortex-line bundles which are responsible for the observed
Kolmogorov spectrum [27,28]. For the sake of completeness,
in Appendix C we report the temporal evolution of mesoscale

FIG. 7. Injection-driven turbulence. Superfluid turbulence driven
by injection of vortex rings at T = 0: energy spectrum Ê vs wave
number k at t = 175 s; the dashed green line shows the slope of the
classical Kolmogorov k−5/3 scaling, while blue vertical lines indicate
wave numbers corresponding to the diameter 2R of the injected
vortex rings and the average intervortex spacing �.

helicity H in a numerical simulation of mechanically driven
superfluid turbulence [17,60].

The interpretation of the mesoscale helicity as a mea-
sure of the nonlocal contribution to the motion of the vortex
lines, Eq. (7), is confirmed by expressing H in units of
the characteristic self-induced velocity of the vortex lines in
the tangle, which can be estimated from Eq. (4) using R ≈
1/

√
L. For the thermally driven turbulence shown in Fig. 2,

we obtain vnon/vnear ≈ 0, as H fluctuates around zero; the
largest fluctuations suggest that vnon/vnear is at most 0.8%.
This is consistent with the early finding of Schwarz [36]
that the self-induced velocity alone is enough to generate
the observed intensity of thermally induced turbulence. For
the injection-driven turbulence shown in Fig. (4), we obtain
vnon/vnear ≈ 11%, a significant contribution to the total veloc-
ity, as expected. The model of mechanically driven turbulence
described in Appendix C (Fig. 10) yields vnon/vnear ≈ 1.3,
again as expected as this flow has the Beltrami property of
maximal helicity (cf. Appendix C for further details).

A final consideration concerns vortex reconnections. The
turbulence simulations involve thousands of reconnections. In
the VFM, the standard reconnection procedure [57] reduces
the vortex length (as proxy of energy) to model acoustic losses
revealed by more microscopic GPE simulations [61,62]. We
have therefore carefully monitored H before, during, and after
an individual vortex reconnection at zero temperature (no
friction). We have found (details are in Appendix B) that
H is initially conserved, consistently with theoretical [63],
experimental [64], and numerical [65] studies showing that
reconnections do not immediately affect the centerline helicity
(helicity of vortex tubes without twist contribution). However,
as the reconnection cusp relaxes and Kelvin wave packets are
released (a feature also observed in experiments [66]), the
relative proportions of near- and far-field velocity contribu-
tions change, resulting in an overall jump �H. In a turbulent
flow, these jumps (being either positive or negative) cancel
out in the statistical steady state. It is therefore unlikely that
the difference in H between Kolmogorov and Vinen regimes
is caused by the reconnection algorithm, more so since the
reconnection rate is larger for Vinen than Kolmogorov turbu-
lence [17] (polarized vortex lines suffer less reconnections).

VIII. CONCLUSIONS

We have shown that the classical definition of helicity can
be naturally generalized to the superfluid mesoscale context
of the VFM without inconsistency with the microscopic na-
ture of the helium vortex core. We have also shown that our
mesoscale definition of helicity H, Eq. (6), has the remarkable
property of quantifying the far-field velocity contributions
vnon, which are induced at a point along a vortex line by other
vortex lines (or by elements on the same vortex line which
are sufficiently far away), see Eq. (7); effectively H measures
the nonlocal contribution to the vortex motion, which in a
random vortex tangle is dominated by the locally induced
velocity vnear.

Our numerical experiments show that in Vinen-type tur-
bulence these nonlocal contributions tend to cancel out
(corresponding to vanishing H/(κL) and vnon/vnear), whereas
in quasiclassical, Kolmogorov-type turbulence they add up
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(corresponding to nonzero values of H/(κL) and vnon/vnear),
as the tangle becomes polarized and vortex bundles gener-
ate large-scale flows. Moreover, our numerical simulations
with simple vortex structures explain why in Kolmogorov
quasiclassical superfluid turbulence, mesoscopic helicity H is
negative, as a result of the presence of such vortex bundles,
although larger-scale simulations are needed to rule out the
role of any inhomogeneity and anisotropy of the vortex tangle
and check how helicity scales with the tangle’s size. This
helical property of quasiclassical superfluid turbulence is a
direct consequence of the concentration of superfluid vorticity
in one-dimensional vortex lines: quasiclassical turbulence in
superfluids is in fact directly linked to the existence of quasi-
parallel vortex bundles which carry negative helicity.

It is also worth emphasizing that the presence of nonzero
superfluid helicity in turbulence generated by vortex ring
injection at T = 0 demonstrates that helicity is not simply
injected in the superfluid flow by the normal fluid.

At the moment the superfluid helicity which we have de-
fined can only be determined in numerical simulations, where,
as we have seen, it is a useful monitor of vortex interac-
tions. It is natural to ask what is the outlook for experimental
measurements of helicity. Recent experiments on helicity in
classical fluid dynamics [47] show that very slender vortex
tubes are required for the experimental visualization and the
interpretation of helicity. Since there is no physical system
where vorticity is more concentrated in thin tubes than super-
fluid helium, the motivation to measure helicity in superfluid
helium is clear. A direct laboratory measurement of helicity
at cryogenics temperature is not as far-fetched as it may
seem. For example, Kelvin waves following superfluid vortex
reconnections have been observed in the laboratory [66]. To
reconstruct the evolution of the mesoscale helicity, what is
further needed is a three-dimensional image of the vortex
shape, which is potentially feasible in liquid helium as it is
done at room temperature.
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APPENDIX A: DERIVATION OF EQ. (6)

The Rankine-like velocity field observed in the many-body
calculations of the helium vortex [38,53] implies that the
vorticity ω is zero everywhere but in a narrow tube of ap-
proximately constant cross sectional area πa2

0 along the vortex
line (see Fig. 8) where its magnitude is ω = κ/(πa2

0), and its
direction is tangential to the centerline. At time t , the vortex
configuration consists of a collection of vortices of length Li

(i = 1, . . . , Nv), and Eq. (1) becomes

H(t ) =
Nv∑
i=1

∫ Li

0

dξ

∫
Dξ

ω(ξ, σ ) · v(ξ, σ )d2σ

= κ

πa2
0

Nv∑
i=1

∫ Li

0

dξ

∫
Dξ

s′(ξ ) · v(ξ, σ )d2σ,

FIG. 8. Schematic vortex tube with cross sections Dξ of area
πa2

0. The solid (black) line s(ξ, t ) is the centerline. The unit tangent
vectors s′ at s are the (red) arrows. The (blue) vector σ is the position
vector on each cross section. Within the vortex tube, the vorticity ω

is constant.

where

v(ξ, σ ) = vext (ξ, σ ) + vnear(ξ, σ ) + vfar(ξ, σ ).

Because of the large separation of length scales between D,
�, and a0, both the external superflow and the superfluid veloc-
ity field induced by all the other vortices are constant on the
disk Dξ and can be evaluated at s(ξ ). In addition, the typical
radius of curvature, Rc, is always much larger than the vortex
core radius: Rc ∼ 105a0. The neighborhood |ξ ′ − ξ | < δ on
the vortex line near a point s(ξ ) is thus effectively straight
and perpendicular to the disk Dξ at distances δ such that
a0 � δ � Rc (range which exists given the huge scale
separation characterizing the system). At such distances, the
superfluid velocity vnear(ξ, σ) induced by the closest vortex
line elements on Dξ is perpendicular to the unit tangent vector
s′(ξ ), yielding zero contribution to H. Concerning the line
element centered in s(ξ, t ), the only nonzero contribution to
H which arises from the vortex line going through s(ξ, t ) is
the contribution of elements of that line which are sufficiently
distant from Dξ , where the induced velocity is constant and
can be evaluated at s(ξ ). H thus reduces to Eq. (6) in the main
paper:

H(t ) = κ

Nv∑
i=1

∫ Li

0

dξs′(ξ ) · vnon(s(ξ )),
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FIG. 9. (a)–(c) Snapshots of two initially orthogonal vortices
undergoing a reconnection at T = 0. Vortex lines are color-coded
according to the local value of the magnitude of the mesoscale
helicity density |s′(ξ ) · vfar(s(ξ ))|. (d) Evolution of the vortex line
density L in cm−2 (blue) and volume-integrated mesoscale helicity
H/κ in cm2/s (red).

where

vnon(s(ξ )) = vext (s(ξ )) + vfar(s(ξ ))

is the superfluid velocity at a point s(ξ ) of a vortex line
induced by distant vortex line elements on that line and other
lines (vfar), added to the external potential superflow vext.

APPENDIX B: HELICITY DURING RECONNECTION

Figure 9 illustrates a single reconnection of two initially
orthogonal vortex lines at zero temperature simulated using
the VFM in a periodic domain. The reconnection occurs at
t ≈ 48 s, where the total length suddenly decreases due to
the reconnection algorithm (on a longer time, the vortex lines
are slightly stretched). There is a small time delay between
the reconnection and the resulting jump �H of mesoscale
helicity caused by the relaxing vortex cusp (notice the Kelvin
waves which move away); this jump represents the changed
proportion of near- and far-field velocity contributions. Before
and after the reconnection, the mesoscale helicity is constant
(there is no friction, unlike the simulations presented in the
main paper).

APPENDIX C: MECHANICALLY DRIVEN TURBULENCE

In this Appendix, for the sake of completeness given pre-
vious studies reported in the literature [17,60], we perform a
third superfluid turbulence numerical simulation. In particular,
we consider superfluid helium at nonzero temperature driven
mechanically, e.g., by propellers, which induce turbulence in
the normal fluid. In this case, we model the coherent regions
of intense normal-fluid vorticity typical of classical turbulence

FIG. 10. Mechanically driven turbulence. Snapshot of turbulent
vortex tangle driven by ABC normal flow at t = 2700 s. The vortex
lines are color-coded according to the local mesoscale helicity den-
sity h(ξ ) = s′(ξ ) · vnon(s(ξ )).

by imposing a steady ABC normal-fluid flow [17,60] vn =
(vnx, vny, vnz ):

vnx = A sin (kz) + C cos (ky), (C1)

vny = B sin (kx) + A cos (kz), (C2)

vnz = C sin (ky) + B cos (kx), (C3)

with A = B = C = 0.03 cm/s, k = 2π cm−1, and temper-
ature T = 1.9 K. The scale of the forcing is the size the
computational box D. All numerical parameters of the simula-
tion (box-size, vortex-line spatial discretization and time-step)
coincide with the parameters illustrated in Sec. VI.

In Fig. 10 we report a helicity density colored snapshot of
the vortex tangle in the steady-state regime: it shows regions
of large magnitude of positive helicity density h(ξ ), if com-
pared with snapshots of the vortex tangle corresponding to
thermally driven and injection-driven turbulence (Figs. 2 and
4, respectively). This is reflected in the temporal evolution of
H/(κL) (shown in Fig. 11) which in the statistically steady-
state has a large positive value, one order of magnitude larger
than the value of H/(κL) observed in injection generated
superfluid turbulence (Fig. 5).

FIG. 11. Mechanically driven turbulence. Temporal evolution of
vortex line density L(t ) (cm−2, blue curve) and mesoscale helicity H
divided by κL (cm/s, red curve) for superfluid turbulence driven by
ABC normal flow. Time t is indicated in seconds.
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FIG. 12. Mechanically driven turbulence. Superfluid turbulence
driven by ABC normal flow: energy spectrum Ê vs wave number k
at t = 2700 s; the dashed green line shows the slope of the classical
Kolmogorov k−5/3 scaling, while blue vertical lines indicate wave
numbers corresponding to the size of the box D and the average
intervortex spacing �.

The fact that H/(κL) in mechanically driven turbu-
lence is larger than in thermally driven and injection-driven

turbulence is expected: the ABC flow has the Beltrami prop-
erty of maximal helicity, i.e., velocity and vorticity of the
normal fluid are locally aligned. As the imposed normal-
fluid velocity field, which forces the superfluid turbulence,
is stationary, superfluid vortex lines tend to align with the
normal-fluid vorticity [60] boosting the growth rate of helical
Kelvin waves arising from the Glaberson-Donnelly instability.
It is therefore possible to conclude that in mechanically driven
turbulence the large superfluid mesoscale helicity H is an
effect of the normal fluid via the mutual friction interaction.

This large value of H is consistent with the computed
average magnitude of nonlocal velocity contributions vnon, in
the spirit of Eq. (7). Indeed, if we calculate 〈|vnon|〉 in the sta-
tistically steady state we obtain 2.1 × 10−2 cm/s, larger than
the corresponding values evaluated for thermally driven and
injection-driven superfluid turbulence, respectively, 0.45 ×
10−2 cm/s and 0.96 × 10−2 cm/s. We stress that these com-
puted values of 〈|vnon|〉 for the three numerical simulations
of superfluid turbulence only show the qualitative behavior
of H/(κL) across the three distinct systems, as in Eq. (7)
only the tangential component of vnon is averaged over the
vortex tangle. To conclude this section, in Fig. 12 we report
the superfluid energy spectrum Ê (k) for this mechanically
driven superfluid turbulent flow. As a result of the stationary
forcing imposed at the largest scale of the flow (the box size
D = 1 cm), Ê (k) is peaked at the highest wave number kD,
producing a much steeper spectrum.
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