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Thermal signature of the Majorana fermion in a Josephson junction
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Possible signatures of “Majorana end states” are discussed by combining information extracted from subgap
Cooper pair transport and transport of heat by excited quasiparticles above the gap across a thermally biased
Josephson junction setup formed out of a one-dimensional (1D) topological superconductor hosting Majorana
end states. We show that the presence of Majorana end states results in two sets of testable relations: (i) the
ratios between the various multiterminal thermal conductances is independent of the Josephson phase bias, and
(ii) the phase independence of the ratios of “ratios of the phase derivative of multiterminal thermal conductance
and the corresponding Josephson current”, in a three-terminal setup. We contrast out findings with a Josephson
junction setup composed of a 1D topological superconductor hosting “Andreev type end states” and show that
they violate the above-mentioned relations. We also discuss how the presence of nonequilibrium noise in thermal
current influences our predictions.
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I. INTRODUCTION

Maki and Griffin [1,2] carried out a theoretical study of
heat transport across a Josephson junction in 1965 and since
then there have been several studies pertaining to thermal
transport across Josephson junctions [3–7] including some
recent developments involving two- and three-dimensional
topological insulators [8,9]. On the experimental side, the
theoretical predictions [1,2] were confirmed in a remark-
able experiment by Giazotto and Martínez-Pérez in 2012
[10] which led to steady experimental progress in this field
[11–22].

Proximity-induced superconductivity in spin-orbit
nanowire and the helical edge state of quantum spin Hall
[23] state allow for two distinct realizations of topological
superconductivity and localized Majorana end states (MESs)
[24–37]. In the case of a nanowire, these MESs are expected
to appear at the two ends of the wire [38] while for helical
edge state of the quantum spin Hall state, localized MESs
form at the junction of a proximity-induced superconducting
region and a region exposed to the Zeeman field [39,40].
It is pertinent to note that experimental realization of
Josephson junctions of one-dimensional (1D) topological
superconductors hosting Majorana end states has been
achieved both in the context of nanowire setup [41] and the
helical edge state of a quantum spin Hall state setup [42].
These experimental advances call for a renewed look at how
to exploit a combination of electrical and thermal means to
detect and manipulate the MES.

As far as the detection of MESs via the Josephson effect is
concerned, observation of the 4π Josephson effect [39,43] is
considered as one of the hallmarks of MESs which primarily
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relates to subgap physics. The central focus of this paper is
to establish that the above-gap transport of thermally excited
bulk quasiparticles across a Josephson junction also carries
distinctive signatures of MESs. This can be understood as
follows.

It is known that the thermal current across a Josephson
junction in the weak tunneling limit can be expressed as a
sum of contribution due to quasiparticle tunneling, Cooper
pairs tunneling (which is usually negligible [44]), and the
interference of the two [1,2,45]. For a Josephson junction with
arbitrary transparency, these interferences simply lead to zero
in the denominator of transmission probability of quasipar-
ticles at energies (denoted by ω0) at which Andreev bound
states [46–49] are formed in the Josephson junction. Remark-
ably, the phase bias (φ) of the Josephson junctions of 1D
topological superconductor hosting Majorana end states (we
name these junctions as Majorana-Josephson junction) enters
the quasiparticle transmission probability solely via the de-
pendence of subgap bound states energy [ω0(φ)] on φ which
is very distinct from the φ dependence of the transmission
probability of the non-Majorana 1D Josephson junction (see
Appendix A and Sec. IV E) irrespective of the fact that they
are topological [50] or nontopological [4]. Now we recall that
the Josephson current is dominated by contributions from the
φ derivative of the subgap bound state energy, ω0(φ), in the
short junction limit [47]. Hence, both the heat current carried
by the thermally excited quasiparticles and Josephson current
carried by Cooper pairs acquire their φ dependence primarily
from the dependence of ω0 on φ for the Majorana-Josephson
junction. This fact should lead to a distinctive correlation
between these two independently measurable quantities when
measured simultaneously as a function of φ. A distinctive
correlation between the Josephson current and the heat current
is also expected as a function of the normal-state transmission
probability (τ ) of the Josephson junction owing to the depen-
dence of subgap bound state energy (ω0) on τ .
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In what follows, we study the correlation between Joseph-
son current, thermal conductance, and the corresponding
normal-state electrical conductance of a thermally biased
three-terminal Majorana-Josephson junction as a function of
(φ, τ ) in the short junction limit. We derive a set of relations
[see Eqs. (31) and (32)] between them, which is unique to the
1D Majorana-Josephson junction. We show that the validity
of these relations owes its existence to the presence of MESs
at the junction and hence can be employed for extracting
the smoking gun signature of MESs. We point out that the
three-terminal topological Josephson junction setup [51,52] is
expected to host a single MES pinned at zero energy [53] and
therefore is of particular importance as a testing ground for
our theoretical study.

The paper is organized as follows: In Sec. II we define
the thermal conductance matrix (κn,m) for the multiterminal
Josephson junction. In Sec. III we discuss the thermal con-
ductance of the two-terminal Majorana-Josephson junction
and signatures of MESs and also point out the possibility
of other topological bound states mimicking such signa-
tures. In Sec. IV we study the thermal conductance of the
three-terminal Majorana-Josephson junction and establish the
relation given in Eqs. (31) and (32), which are the central
results of this paper. In Sec. IV D we show that these re-
sults are violated as we move away form the short junction
limit. Then in Sec. IV E we demonstrate that the results of
Eqs. (31) and (32) cannot be mimicked by other topologi-
cal non-Majorana end states discussed in Ref. [50]. Then in
Sec. IV F we demonstrate the degree of deviation for our pre-
diction when the Majorana-Josephson trijunction in the short
junction limit is replaced by a trijunction of nontopological
1D superconductors in the short junction limit. In Sec. V we
discuss how noise in thermal currents could challenge the
verification of Eqs. (31) and (32) and map out the optimal
parameter regime supporting large suppression of noise. In
Sec. VI we conclude with a discussion on the advantages,
disadvantages, and differences of our proposal over other
known signatures of MES, such as the 4π Josephson effect,
the quantized Majorana conductance, and the zero-bias peak
experiments.

II. MULTITERMINAL THERMAL CONDUCTANCE

For a multiterminal junction, heat currents driven by
temperature bias within linear response theory can be
expressed as

IH
n =

∑
m �=n

κn,m(Tn − Tm), (1)

where κn,m is the thermal conductance between terminals m
and n and Tn, Tm are the temperatures of terminals n and m,
respectively. We consider a general multiterminal junction of
superconducting leads (described by a Bogoliubov–de Gennes
Hamiltonian [54]) connected via a common normal region. An
incident electronlike quasiparticle in mth lead (with energy
ω) results in a reflected electronlike and holelike quasiparticle
within the same lead with probabilities, say Rm,m

e,e and Rm,m
h,e ,

respectively, along with transmitted electronlike and holelike
quasiparticles in the nth lead (n �= m) with probabilities T n,m

e,e
and T n,m

h,e , respectively. Probability conservation ensures that

FIG. 1. Pictorial representation of two-terminal Josephson junc-
tion hosted on a helical edge state where a backscatterer S is
introduced at x = 0.

(Rm,m
e,e + Rm,m

h,e ) + ∑
n(T n,m

e,e + T n,m
h,e ) = 1. We denote T n,m =

T n,m
e + T n,m

h = (T n,m
e,e + T n,m

h,e ) + (T n,m
h,h + T n,m

e,h ). The multi-
terminal linear response thermal conductance between leads
m and n is then given by [8]

κn,m(φ j ) =
[

1

h

∫ ∞

�0

dω ω {T n,m}df (ω, T )

dT

]
T =Tavg

, (2)

where f (ω, T ) is the Fermi distribution function at tempera-
ture T , �0 is the superconducting gap (taken to be the same
of all leads), and Tavg is the average junction temperature.

III. TWO-TERMINAL MAJORANA-JOSEPHSON
JUNCTION IN HELICAL EDGE STATE

A. The model

We consider a Josephson junction in helical edge state
where the junction is defined by an |x| < L/2 region and we
have a finite pair potential �0eiφr ([r ∈ {1, 2}]) for ∞ > |x| >

L/2 (see Fig. 1). Our setup is described by a Bogoliubov–
de Gennes (BdG) Hamiltonian [39,55] in the Nambu basis
(� = [(ψ↑, ψ↓), (ψ†

↓,−ψ
†
↑ )]T ) [56] given by

H = (vF p̂xσz − μ)τz + �(x)(cos φrτx − sin φrτy), (3)

where �(x) = �0[�(−x − L/2) + �(x − L/2)], and σ and
τ represent spin and particle-hole degrees of freedom, respec-
tively. We focus on the highly doped regime given by the
chemical potential μ � �0 and at the short junction limit
given by L � ξ , where ξ = h̄vF /�0 is the superconducting
coherence length. We also assume a scattering matrix (for the
electron) at x = 0, given by

Se =
(

r11 t
t r22

)
. (4)

Here rii represents the amplitude of back-reflection within
the terminal i and t represents the amplitude of transmission.
The scattering matrix Se is taken to be symmetric, which
ensures that there is no time-reversal breaking phase leading
to anomalous Josephson effect. For simplicity, the matrix ele-
ments of Se are assumed to be energy independent.

For energy ω < �0 (measured with respect to μ), the con-
dition for the formation of an Andreev bound state is given by
[47,57]

det[I − a2(ω)SeeiShe−i] = 0, (5)

where the scattering matrix for hole is given by

Sh =
(−r∗

11 t∗
t∗ −r∗

22

)
(6)
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and a(ω) = ( ω
�0

− i
√

�2
0−ω2

�0
) and  is the diagonal matrix

with diagonal elements {φ1, φ2}. Hence, the Andreev bound
state energies are obtained as [39]

ω±
0 = ±�0

√
τ cos(φ/2), (7)

where φ = φ2 − φ1 and τ = |t |2.

For energies ω > �0, we calculate the total quasiparticle
transmission probability (T i, j ) from terminal i to terminal
j (i, j ∈ {1, 2} and i �= j). We first consider an electronlike
quasiparticle incident on the superconducting lead 1. It will
give rise to a reflected electronlike and holelike quasiparticle
within the same lead with amplitudes, say, ree and rhe, respec-
tively, and transmitted electronlike and holelike quasiparticles
in superconducting lead 2 with amplitudes, say, t2,1

ee and t2,1
he ,

respectively. The BdG wave functions in different regions are
given by

�S1 = exp
[
i
(μ+

√
ω2−�2

0

h̄vF

)
x
]

√
2 cosh(θ )

⎛
⎜⎜⎝

eθ/2eiφ1/2

0
e−θ/2e−iφ1/2

0

⎞
⎟⎟⎠ + ree exp

[ − i
(μ+

√
ω2−�2

0

h̄vF

)
x
]

√
2 cosh(θ )

⎛
⎜⎜⎝

0
eθ/2eiφ1/2

0
e−θ/2e−iφ1/2

⎞
⎟⎟⎠

+ rhh exp
[
i
(μ−

√
ω2−�2

0

h̄vF

)
x
]

√
2 cosh(θ )

⎛
⎜⎜⎝

e−θ/2eiφ1/2

0
eθ/2e−iφ1/2

0

⎞
⎟⎟⎠, (8)

�S2 = t2,1
ee exp

[
i
(μ+

√
ω2−�2

0

h̄vF

)
x
]

√
2 cosh(θ )

⎛
⎜⎜⎝

eθ/2eiφ2/2

0
e−θ/2e−iφ2/2

0

⎞
⎟⎟⎠ + t2,1

he exp
[ − i

(μ−
√

ω2−�2
0

h̄vF

)
x
]

√
2 cosh(θ )

⎛
⎜⎜⎝

0
e−θ/2eiφ2/2

0
eθ/2e−iφ2/2

⎞
⎟⎟⎠, (9)

�N (1,2) = p(1,2) exp

[
i

(
μ + ω

h̄vF

)
x

]⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ + q(1,2) exp

[
− i

(
μ + ω

h̄vF

)
x

]⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ + r(1,2) exp

[
i

(
μ − ω

h̄vF

)
x

]⎛
⎜⎝

0
0
1
0

⎞
⎟⎠

+ s(1,2) exp

[
− i

(
μ − ω

h̄vF

)
x

]⎛
⎜⎝

0
0
0
1

⎞
⎟⎠, (10)

where θ = arccosh(ω/�0). The subscripts S(N )i denote the
superconducting (normal) region in the ith (i ∈ {1, 2}) termi-
nal. The coefficients pi, qi, ri, and si denote the right-moving
electronlike, left-moving electronlike, left-moving holelike,
and right-moving holelike probability amplitudes for the
quasiparticle wave functions within the normal region, in ter-
minal i (i ∈ {1, 2}). Note that, in Fig. 1, if we divide the edge
into left and right halves by drawing an imaginary line across
the x = 0 point, then the left and right halves will be labeled
as terminal 1 and terminal 2, respectively. By demanding con-
tinuity of the wave functions at the boundaries and assuming
that the amplitudes of the incoming and the outgoing waves
at x = 0 are related by the scattering matrices (4) and (6),
we evaluate T 2,1

e,e = |t2,1
ee |2 and T 2,1

h,e = |t2,1
he |2. Similarly, for

a holelike quasiparticle incident on the first superconducting
lead, we calculate T 2,1

e,h = |t2,1
eh |2 and T 2,1

h,h = |t2,1
hh |2. Note that,

for short junction limit T i, j
e = T i, j

h . The total quasiparticle
transmission probability across the Josephson junction de-
scribed by Eq. (3), T 2,1, can be obtained as

T 2,1(ω, τ, φ)=τ

[
2(ω2 − �2

0)(ω2 − |ω±
0 |2)∏

ω0
(ω − ω0)2

]
�

(|ω|2 − �2
0

)

= 2τ

[
ω2 − �2

0

ω2 − |ω±
0 |2

]
�

(|ω|2 − �2
0

)
. (11)

The expression of bound state energy [Eq. (7)] and corre-
sponding T 2,1 given above are valid for the 1D Majorana-
Josephson junction based on either (a) 1D Dirac fermions
with proximitized s-wave superconductivity discussed above
or for (b) 1D spinless electrons with quadratic dispersion and
proximitized p-wave superconductivity [57,58].

However, the general form for T in the case of the 1D
Josephson junction in the short junction limit can be expressed
as

T 2,1(ω, τ, φ) = τ

[
2

(
ω2 − �2

0

)
f(ω, τ, φ)

(ω2 − |ω±
0 (τ, φ)|2)2

]
�

(|ω|2 − �2
0

)
.

(12)

For the Majorana-Josephson junction, f(ω, τ, φ) = (ω2 −
|ω±

0 (τ, φ)|2), which cancels with its square appearing in
the denominator and hence leading to a φ dependence of
T solely via the φ dependence of energy of the Andreev
bound state (ω±

0 ) appearing in the denominator. Also, the τ

dependence of T enters solely via ω0(τ, φ) except for the
expected overall multiplicative dependence on τ as shown
in the right-hand side of Eqs. (11) and (12). In contrast, for
the nontopological Josephson junction, f(ω, τ, φ) = (ω2 −
�2

0 cos φ − τ�2
0 sin2 φ/2) [4,5], which leads to a complicated
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FIG. 2. (a) Plot of thermal conductance κ for φ = 0 in units of GQ as a function of τ for a normal junction (nonsuperconducting) and
the corresponding nontopological and topological Josephson junctions. (b) Three-dimensional surface plot of the difference between the
topological and nontopological cases in the (1-τ )-(kBTavg/�0 ) plane.

(φ, τ ) dependence of T . We will show the above discussed
observations pave the way to the identification of a distinctive
correlation between the electrical and thermal currents of a
three-terminal Majorana-Josephson junction which carry sig-
natures of isolated MESs.

B. Signatures of Majorana end state in two-terminal
thermal conductance

We first discuss signatures of the Majorana-Josephson
junction pertaining to its τ dependence in thermal con-
ductance in the simplest case of φ = 0. For a non-
Majorana Josephson junction, T 2,1(ω, τ, φ = 0) = 2 τ (see
Appendix A), thus the thermal conductance of such a Joseph-
son junction in the absence of phase bias is given by [using
Eq. (2)] κ = 2 τ [GQ − ∫ �0

0 dω ω df (ω, T )/dT ]T =Tavg where
GQ = π2k2

BT/(3h) is the quantized thermal conductance of
a single ballistic channel and the factor of 2 represents the
doubling due to contributions from particle and hole channels.
Hence it equals two times the normal-state thermal conduc-
tance suppressed up to the gap [4,5] [see Fig. 2(a)]. But for the
Majorana-Josephson junction, T 1,2(ω, τ, φ = 0) = 2 τ (1 −
α) where α = �2

0[(1 − τ )/(ω2 − τ�2
0)], which implies an

additional suppression proportional to α with respect to the
nontopological Josephson junction. This contrast between the
Majorana and the non-Majorana case stems from the fact that
at zero phase bias (φ = 0) the Andreev bound state energy
stays pinned at ω±

0 = ±�0 and hence is independent of trans-
missivity (τ ) of the junction for the non-Majorana case. On the
contrary the bound state energy |ω±

0 | < �0 for the Majorana
case for φ = 0 depends on τ . Hence this additional suppres-
sion of the thermal conductance of the Majorana-Josephson
junction at φ = 0 [see Fig. 2(b)] is a direct manifestation
of MESs. Here we have assumed that each supercondcutor
participating at the junction is a topological superconductor
which hosts an end state that can either be Majorana or not
Majorana. An example of a topological zero-energy end state
which is not a Majorana was recently discussed by Marra and
Nitta [50]. Hence a Josephson junction constructed from such
a junction will also show suppression of thermal conductance.
This is due to the fact that both the MESs and the nontrivial

Andreev bound states, although being topologically inequiv-
alent, have similar spectral signatures, i.e., with the decrease
in transmissivity (τ ) the Andreev bound state energies tend
toward zero energy. This results in a decreasing density of
states for the BdG quasiparticles thereby suppressing thermal
conductance across the junction. However, a clear distinction
can be made between topologically nontrivial Andreev type
end states and the MESs, once we focus on a three-terminal
Josephson junction, which is the next topic of discussion in
this work.

Note that, for a junction between an odd number of 1D
topological superconductors, each of which is hosting Ma-
jorana fermions at its end, a generic tunnel coupling at the
junction will hybridize all the MESs leaving behind a single
zero-energy MES at the junction. This is not true for the
1D topological superconductors discussed in Ref. [50], and
this distinction forms the basis for exploring a three-terminal
Josephson junction. In this regard we would like to point out
that distinguishing signatures of MESs has been a topic of
intense research [59–63], though the focus has mostly been
on the nanowire realization of MESs rather than on the case
of helical edge states. Now we start focusing on quantifying
the correlation between κ and the Josephson current discussed
above. From (2) and (12) we note that the thermal conduc-
tance of a topological Josephson junction can be expressed as

κ = σ N

[
2

e2β(T )

∫ ∞

�0

dω ω

(
ω2−�2

0

)
[ω2−|ω±

0 (τ, φ)|2]

df (ω, T )

dT

]
T=Tavg

,

(13)

where σ N = (e2τ/h)β(T ) is Landauer-Buttiker con-
ductance [64,65] at finite temperature where β(T ) =∫ ∞
−∞(−∂ f /∂ω)dω = (4kBT )−1

∫ ∞
−∞ [cosh( ω

2kBT )]−2dω is the
thermal broadening factor. We also note that the Josephson
current (IJ ) at temperature T is given by [47]

IJ = −2e

h̄

∂|ω±
0 |

∂φ
tanh

( |ω±
0 |

2kBT

)
. (14)

Now it is straightforward to note that the Josephson cur-
rent can be related to the corresponding thermal conductance
of the topological Josephson junction via the relation (see
Appendix B)

∂φκ = σ N IJ

[−h|ω±
0 |

πe3

{
1

β(T )
coth

( |ω±
0 |

2kBT

)}∫ ∞

�0

dω ω
ω2 − �2

0

(ω2 − |ω±
0 |2)2

df (ω, T )

dT

]
T =Tavg

, (15)
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FIG. 3. Pictorial representation of an effective three-terminal
Josephson junction depicted on a helical edge state of quantum spin
Hall bar geometry where S represents scattering at x = 0 due to
the quantum point contact. Mσ⊥ represents a local magnetic field
perpendicular to the spin-quantization axis of the helical edge state.

which directly exploits the fact that the φ dependence in
both IJ and κ stem from the φ dependence of ω0. We show
next that the three-terminal thermal conductance also follows
the same relation between ∂φkl κi, j and corresponding σ N

i, j , IJ
i, j

(i, j = 1, 2, 3) owing to the presence of topologically pro-
tected MESs at the trijunction. This fact leads to our central
result presented in Eqs. (31) and (32).

IV. THREE-TERMINAL MAJORANA-JOSEPHSON
JUNCTION IN HELICAL EDGE STATE

A. The model

We consider a standard Hall bar type geometry (see Fig. 3)
hosting a quantum spin Hall state comprising an upper and a
lower helical edge state with opposite helicity, which are ex-
tended from x = −∞ to x = +∞, and additionally a quantum
point contact is considered at the x = 0, which enables local
coherent scattering between the upper and the lower edge. The
BdG Hamiltonian describing the edges is given by

Hη = Hedge + HZeeman

= {(ηvF p̂xσz − μ)τz + �(x)(cos φrτx − sin φrτy)}
+ {(η − 1)/2}M(x)σ⊥, (16)

where σ and τ have their usual meaning as defined ear-
lier, η defines the helicity of the edge state, η = 1 for the
lower edge and η = −1 for the upper edge, and we have
assumed the proximity-induced s-wave superconductivity to
be present on the edges in the interval (x = ±∞,±L/2] [i.e.,
�(x) �= 0] where each of the superconductors may have in-
dependent phase for their respective order parameters given
by �0eiφr where [r ∈ {1, 2}] are labels for superconducting
patches on the lower edge corresponding to (x = ∓∞,∓L/2],
respectively, and [r ∈ {3, 4}] stands for the upper edge corre-
sponding to (x = ±∞,±L/2], respectively. A local Zeeman
field is assumed to be present at the upper edge such that
M(x) = M0�(x + L/2)�(−x) and M0 → ∞, which cuts off
the superconducting contact at r = 4 hence reducing it to a
three-terminal Josephson junction.

We also impose a scattering matrix, S, at x = 0, which
represents the quantum point contact and its elements are
such that |(S)i, j | = |(S) j,i| (i, j = 1, 2, 3) so that the scattering

matrix for electrons takes the form

Se =
⎛
⎝r11 t12 t13

t21 r22 t23

t31 t32 r33

⎞
⎠. (17)

Here rii represents the amplitude of back-reflection within the
terminal i and t ji represents the amplitude of transmission
from terminal i to terminal j. The derivation of such scattering
matrix within a tunneling Hamiltonian approach is provided in
Appendix C.

For energy ω < �0 (measured with respect to μ), the con-
dition for the formation of Andreev bound state is given by

det[I − a2(ω)SeeiShe−i] = 0, (18)

where a(ω) = ( ω
�0

− i
√

�2
0−ω2

�0
),  is the diago-

nal matrix with diagonal elements {φ1, φ2, φ3},
and Sh is the scattering matrix for hole and is
given by

Sh =

⎛
⎜⎝

−r∗
11 t∗

12 −t∗
13

t∗
21 −r∗

22 t∗
23

−t∗
31 t∗

32 −r∗
33

⎞
⎟⎠, (19)

which can be obtained by imposing the particle-hole sym-
metry (for details see Appendix C). After some algebraic
manipulations we obtain the bound state energies (ω0) given
by

ω0
0 = 0, (20)

ω±
0 = ±�0

√
τ12 cos2

φ12

2
+ τ13 sin2 φ13

2
+ τ23 cos2

φ23

2
,

(21)

where φi j = φ j − φi [66]. Insight into the form of subgap
bound state solution can be obtained by considering an ef-
fective Majorana Hamiltonian where each superconducting
terminal (i = 1, 2, 3) is expected to contribute one Majo-
rana each to the junction except the fourth terminal where
the Majorana has been pushed away owing to the Zeeman
gap. The effective Majorana Hamiltonian then takes the form
[39,67,68]

H = i

2

∑
1�a�b�4

ξabγaγb, (22)

where ξab = �0
2

√
τab cos ( φab

2 − χab

2 ) and γa is the Majorana
zero mode operator corresponding to terminal a = 1, 2, 3, 4.
We consider χii = χ13 = χ24 = π , which incorporates the ex-
cess Berry phase due to spin-flip scattering at the quantum
point contact. To mimic the three-terminal situation described
by Eq. (16) we take τi4 = τ4i = 0 for i �= 4 and hence ξ14 =
ξ24 = ξ34 = 0. This Majorana Hamiltonian readily provides
two zero-energy eigenvalues and the other two eigenvalues
being identical to ω±

0 given above. Note that three of these
eigenstates correspond to hybridized γ1, γ2, and γ3 resulting
in an MES that stays pinned to zero energy (ε = 0) and a pair
of Andreev bound states at energy ε± = ω±

0 while the fourth
zero-energy state corresponds to the MES, which stays away
from the junction due to the Zeeman gap.
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B. Three-terminal thermal conductance

Returning back to the Hamiltonian (16), for energies ω >

�0, we calculate the total quasiparticle transmission proba-
bility (T j,i ) from terminal i to terminal j. We first consider
an electronlike quasiparticle incident on the superconducting

lead 1. It will give rise to a reflected electronlike and holelike
quasiparticle within the same lead with amplitudes, say, ree

and rhe, respectively, and transmitted electronlike and holelike
quasiparticles in superconducting nth lead with amplitudes,
say, t n,1

ee and t n,1
he , respectively.

The wave functions for the three-lead problem can be written as

�S1 = exp
[
i
(μ+

√
ω2−�2

0

h̄vF

)
x
]

√
2 cosh(θ )

⎛
⎜⎜⎝

eθ/2eiφ1/2

0
e−θ/2e−iφ1/2

0

⎞
⎟⎟⎠ + ree exp

[ − i
(μ+

√
ω2−�2

0

h̄vF

)
x
]

√
2 cosh(θ )

⎛
⎜⎜⎜⎝

0
eθ/2eiφ1/2

0
e−θ/2e−iφ1/2

⎞
⎟⎟⎟⎠

+ rhh exp
[
i
(μ−

√
ω2−�2

0

h̄vF

)
x
]

√
2 cosh(θ )

⎛
⎜⎜⎝

e−θ/2eiφ1/2

0
eθ/2e−iφ1/2

0

⎞
⎟⎟⎠, (23)

�S2 = t2,1
ee exp

[
i
(μ+

√
ω2−�2

0

h̄vF

)
x
]

√
2 cosh(θ )

⎛
⎜⎜⎝

eθ/2eiφ2/2

0
e−θ/2e−iφ2/2

0

⎞
⎟⎟⎠ + t2,1

he exp
[ − i

(μ−
√

ω2−�2
0

h̄vF

)
x
]

√
2 cosh(θ )

⎛
⎜⎜⎝

0
e−θ/2eiφ2/2

0
eθ/2e−iφ2/2

⎞
⎟⎟⎠, (24)

�S3 = t3,1
ee exp

[
i
(μ+

√
ω2−�2

0

h̄vF

)
x
]

√
2 cosh(θ )

⎛
⎜⎜⎝

0
eθ/2eiφ3/2

0
e−θ/2e−iφ3/2

⎞
⎟⎟⎠ + t3,1

he exp
[ − i

(μ−
√

ω2−�2
0

h̄vF

)
x
]

√
2 cosh(θ )

⎛
⎜⎜⎝

e−θ/2eiφ3/2

0
eθ/2e−iφ3/2

0

⎞
⎟⎟⎠, (25)

�N (1,2) = p(1,2) exp

[
i

(
μ + ω

h̄vF

)
x

]⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ + q(1,2) exp

[
− i

(
μ + ω

h̄vF

)
x

]⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ + r(1,2) exp

[
i

(
μ − ω

h̄vF

)
x

]⎛
⎜⎝

0
0
1
0

⎞
⎟⎠

+ s(1,2) exp

[
− i

(
μ − ω

h̄vF

)
x

]⎛
⎜⎝

0
0
0
1

⎞
⎟⎠, (26)

�N3 = p3 exp

[
i

(
μ + ω

h̄vF

)
x

]⎛
⎜⎝

0
1
0
0

⎞
⎟⎠ + q3 exp

[
− i

(
μ + ω

h̄vF

)
x

]⎛
⎜⎝

1
0
0
0

⎞
⎟⎠ + r3 exp

[
i

(
μ − ω

h̄vF

)
x

]⎛
⎜⎝

0
0
0
1

⎞
⎟⎠

+ s3 exp

[
− i

(
μ − ω

h̄vF

)
x

]⎛
⎜⎝

0
0
1
0

⎞
⎟⎠, (27)

where θ = arccosh(ω/�0). The subscripts S(N )i denote the
superconducting (normal) region in the ith (i ∈ {1, 2, 3})
terminal. The coefficients pi, qi, ri, and si denote the probabil-
ity amplitude for the right-moving electronlike, left-moving
electronlike, left-moving holelike, and right-moving holelike
quasiparticle wave functions within the normal region, in ter-
minal i (i ∈ {1, 2, 3}).

By demanding continuity of the wave functions at the
boundaries and assuming that the amplitudes of the incoming
and the outgoing waves at x = 0 are related by the scat-
tering matrices (17) and (19), we evaluate T 2,1

e = |t2,1
ee |2 +

|t2,1
he |2 and T 3,1

e = |t3,1
ee |2 + |t3,1

he |2. Similarly, for a holelike
quasiparticle incident on the first superconducting lead, we

calculate T 2,1
h = |t2,1

hh |2 + |t2,1
eh |2 and T 3,1

h = |t3,1
hh |2 + |t3,1

eh |2.
The total quasiparticle transmission probability from terminal
1 to terminal 2 and terminal 3 across the Josephson junction
described by Eq. (16), T 2,1 and T 3,1, can be obtained, as
discussed in Sec. II:

T 2,1 = τ12

[
2 ω2

(
ω2 − �2

0

)
(ω2 − |ω±

0 |2)∏
ω0

(ω − ω0)2

]
�

(|ω|2 − �2
0

)

= 2τ12

[ (
ω2 − �2

0

)
ω2 − |ω±

0 |2
]

�
(|ω|2 − �2

0

)
, (28)
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T 3,1 = τ13

[
2 ω2

(
ω2 − �2

0

)
(ω2 − |ω±

0 |2)∏
ω0

(ω − ω0)2

]
�

(|ω|2 − �2
0

)

= 2τ13

[ (
ω2 − �2

0

)
ω2 − |ω±

0 |2
]

�
(|ω|2 − �2

0

)
, (29)

where ω±
0 is given by Eq. (21). With the same spirit we can

calculate other T i, j . In general, the total quasiparticle trans-
mission probability from terminal j to terminal i is given by

T i, j (ω, τi j, φi j ) = τi j

[
2
(
ω2 − �2

0

)
f(ω, τi j, φi j )∏

ω0
[ω − ω0(τi j, φi j )]2

]

× �
(|ω|2 − �2

0

)
, (30)

where [i, j ∈ {1, 2, 3}, j > i] and f = ω2(ω2 − |ω±
0 |2).

C. Signatures of Majorana end state in three-terminal
thermal conductance

The resulting expression of T n,m in Eq. (30) has
a perfect congruence with the two-terminal case (see
Eq. (12)] due to cancellation of ω2 in the numerator with
[ω − ω0(τi j, φi j )]2

ω0=ω0
0

in the denominator owing to the

MES at ω0 = ω0
0 = 0. This similarity immediately validates

Eqs. (13) and (15) for the three-terminal case also, where
κ → κi, j , φ → φi j , σ N → σ N

i, j , and IJ → IJ
i, j and hence leads

to the following relations given by

κi, j

κk,l
= σ N

i, j

σ N
k,l

, (31)

∂φkl κi, j/IJ
k,l

∂φpqκm,n/IJ
p,q

= σ N
i, j

σ N
m,n

. (32)

Here i, j, k, l ∈ {1, 2, 3} and j �= i, l �= k. The above two
equations constitute the central result of this paper. It is
remarkable that the ratios of normal-state multiterminal
conductance (σ N

i, j) equates the ratio of corresponding multiter-
minal thermal conductance (κi, j) for a topological Josephson
junction, though individually they are complicated functions
of Tavg, ω0, and �0. σ N

i, j being independent of φi, j , hence
the ratios of κi, j are also independent of φi, j though individ-
ually they are periodic functions of φi, j . This results from
the special τi, j dependence of T i, j which is solely via τi, j

dependence of ω0(τi, j, φi, j ) except for an overall multiplica-
tive dependence [see Eq. (30)]. It is also remarkable that the
ratio of Josephson current and the phase derivative of thermal
conductance [see Eq. (32)] leads to ratios which are inde-
pendent of Tavg, ω0, and �0 and the phase bias though both
phase-derivative of thermal conductance and the Josephson
current have strong dependence on these parameters.

We reemphasize that Eqs. (31) and (32) results form the
fact that expression for T n,m for the three-terminal case has
a perfect congruence with the corresponding expression for
the two-terminal case. This congruence results from the fact
that in both cases the subgap state in the short junction
limit corresponds to a pair of hybridized Majorana fermions
whose energy has an identical dependence on τ and φ. The
three-terminal case has an extra zero-energy state (the third
Majorana) which is insensitive to τ and φ hence does not

disturb this congruence. Hence this congruence and the result-
ing Eqs. (31) and (32) can be taken as a signature of Majorana
fermions. For a finite superconductor, it is expected that the
MES at the junction and their corresponding partner MES
on the other ends of the superconducting wires will have a
finite overlap and this fact might disturb the validity of our
results. But one needs to take into consideration the fact that
the overlap between all the MESs at the junction is expected
to be much stronger than the overlap between partner MESs
living on the other ends of the superconducting wire. If the
energy scale associated with the overlap of partner MESs
on the two ends of the superconductor is of the same order
as the kBTavg, then such effects will be of little consequence
and we expect our results to stay valid. The other important
question is, does the validity of Eqs. (31) and (32) neces-
sarily imply the presence of Majorana fermions or can they
be mimicked by other topological bound states appearing at
the ends of the superconductor and pinned zero energy which
we call the “Andreev end state,” for example, of the type
discussed in Ref. [50] as mentioned earlier? We have shown
in Sec. IV E via numerical analysis that, when such end states
are tunnel coupled at a three-terminal junction via a generic
tunnel coupling, it always results in full hybridization of these
zero modes leaving behind no zero-energy state unlike MESs
and hence spoiling the congruence in the expression for T n,m

between the two-terminal and three-terminal setup.

D. Short junction limit vs finite length junctions for
three-terminal Majorana-Josephson junction

Equations (31) and (32) are derived in the short junctions
(L � ξ ), hence it is important to study how violation of these
relations sets in as we move to the long junction limit. For
quantifying the violation we study the three-terminal Joseph-
son junction given in Fig. 3 based on helical edge states with
finite junction length L for the normal region on each arm of
the Josephson junction. We consider a scattering matrix (for
electrons) as provided in Eq. (17) with the scattering matrix
elements given by

r11 = r22 = −λ, (33)

r33 = 1 − 2λ, (34)

t12 = t21 = 1 − λ, (35)

t13 = t31 = −i
√

2λ(1 − λ) = t23 = t32, (36)

where 0 � λ � 1. Note that this scattering matrix is symmet-
ric between terminal 1 and terminal 2. With the scattering
matrix discussed above, we have calculated the transmission
probabilities T i, j following the discussed in Sec. IV A and
hence calculated κi, j , which has been plotted in Fig. 4. For
finite length junctions there are two contributions (I1 and I2)
to the Josephson current as discussed in Appendix B and it
is I2 which will be primarily responsible for the violation of
Eq. (32). To account for both the contributions we shall use
the Matsubara sum [69] such that the Josephson current is
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FIG. 4. The ratios (a) (κ1,3σ
N
1,2)/(κ1,2σ

N
1,3) and (b) [(∂φ13κ1,3)σ N

1,2IJ
1,2]/[(∂φ12κ1,2)σ N

1,3IJ
1,3] are plotted as a function of scattering matrix

parameter 0 � λ � 1 for different values of junction length L all for quantum point contact. Here ξ = h̄v f /�0 is the superconducting coherence
length. Here we have assumed φ12 = 0.880 850π and φ13 = 0.332 947π . For short junction limit these ratios are independent of scattering
matrix parameters and phase differences as expected from our predictions but start drifting away form unity as we move to finite length
junction limit. The average temperature is assumed to be kBTavg = 0.5�0.

given by

IJ
i, j = −2e

h̄
2kBT

∂

∂φi j

∞∑
n=0

ln det[I − a2(iωn)SeeiShe−i],

(37)

where a(ω) = ( ω
�0

− i
√

�2
0−ω2

�0
) and ωn = (2n + 1)πkBT are

the Matsubara frequencies. We have used Eq. (37) to
produce the plot as shown in Fig. 4(b). We have
evaluated the ratios (κ1,3σ

N
1,2)/(κ1,2σ

N
1,3) [Fig. 4(a)] and

[(∂φ13κ1,3)σ N
1,2IJ

1,2]/[(∂φ12κ1,2)σ N
1,3IJ

1,3] [Fig. 4(b)] numerically
with φ12 = 0.880 850π and φ13 = 0.332 947π for different
values of junction length L as a function of scattering matrix
parameter λ. It is clear from the plot that once we deviate

from the limit of L � ξ , we get large deviations from the
predictions of Eqs. (31) and (32).

E. Possibility of fake signatures of Majorana by other
topological end state

In this section we will discuss a three-terminal Josephson
junction comprising three 1D topological supercondcutors,
each of which is described by a Hamiltonian given in Ref. [50]
where the Hamiltonian hosts one trivial phase and two distinct
topological phases of which one of the topological phases cor-
responds to the presence of a MES and the other topological
phase corresponds to the presence of a zero-energy Andreev

FIG. 5. Local probability density (ρ0) (up to some normalization N0) for an isolated arm of the trijunction is plotted in (b1) and (c1) for
the case when the superconductor is hosting Andreev end state and MES, respectively. For both the cases a system comprising 20 sites is
considered. The brown dots in (b1) and (c1) indicate the last site where the interwire tunneling is switched on while forming the junction.
Subgap energy spectrum of the Josephson trijunction of the 1D system in its trivial phase, phase hosting Andreev end state, and MES are
depicted in (a), (b2), and (c2), respectively. The tunneling strength at the junction is taken to be 0.6t .
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end state. The lattice Hamiltonian discussed above is given by

H = 1

2

∑
n

�†
n ·

[−μσ0 + �bn · �σ �iσy

−(�iσy)∗ μσ0 − (�bn · �σ )∗

]
· �n

− 1

2

∑
n

�†
n ·

[
tσ0 − λiσy 0

0 −(tσ0 − λiσy)

]
· �n+1

+ H.c., (38)

where �†
n = [c†

n,↑, c†
n,↓, cn,↑, cn,↓] is the Nambu spinor, n is

the site index of the 1D lattice, λ is the intrinsic spin-orbit
coupling, t is the hopping parameter, and �bn · �σ = bσz +
δb sin(nθ + χ )σx + δb cos(nθ + χ )σz is the total Zeeman
field at each site. We consider three copies of the above Hamil-
tonian to form a three-terminal junction where � = �0eiφr

and φr is the superconducting phase in lead r (r = 1, 2, 3).
A tunneling proportional to tσ0 is switched on among the
leads. We have taken the parameters t, θ, μ, and �0 to be the
same as that provided in Ref. [50], i.e., t = 1, θ = π/2, μ =
−2t cos(θ/2), �0 = λ = t/2. With these parameter values
we perform an exact diagonalization of junction comprising
three arms, each of which has 20 lattice sites and the results
of our analysis are plotted in Fig. 5. By setting b = δb = 0
we obtain the trivial phase; setting δb = 1.5t , b = 2.5t (χ ≈
1.205π or ≈1.295π ) we get nontrivial Andreev end states
while by setting δb = 1.5t , b = 0.25t (χ = 0) we obtain the
state hosting MES. Figure 5(b1) shows the appearance of
Andreev end states while Fig. 5(c1) shows the appearance
of MES obtained from diagonalization of a Hamiltonian for
an isolated arm of the trijunction of 20 lattice sites. We note

from Fig. 5(c2) that the subgap spectrum for the topologi-
cal Josephson trijunction hosting MES, the zero-energy state
survives through the parameter regime considered in the plot
while from Fig. 5(b2) we see that the Andreev end states
completely hybridize and move away from the zero energy.
This fact essentially leads us to the conclusion that topological
end states of 1D superconductors which are distinct from MES
will not lead to the results in Eqs. (31) and (32) in the short
junction limit.

F. Topological vs nontopological three-terminal Josephson
junction in short junction limit

Now we will demonstrate that the three-terminal Josephson
junction of the 1D superconductor in nontopological phase
shows large deviation from the results of Eqs. (31) and (32).
To demonstrate this fact with an example, we consider a
Josephson junction based on 1D electrons with quadratic dis-
persion and proximity-induced s-wave superconductivity. The
superconducting leads of such a junction can be described by
using the BdG Hamiltonian given below [57,70]:

H =
(

− h̄2

2m

∂2

∂x2
− μ

)
τz + �(x)[cos φiτx − sin φiτy],

(39)

where τn are the Pauli matrices acting on particle-hole basis;
�(x) = �0�(x − L) and φi is the superconducting phase of
the ith superconducting lead. The system comprises three
copies of the Hamiltonian given above which form the three
superconducting leads and they extend from infinity to a dis-
tance L from the center of the junction and hence the junction

FIG. 6. Thermal conductances of a Josephson trijunction in the presence of zero-energy MES (a) κ1,2, (b) κ1,3, (c) κ2,3, and in the absence
of zero energy (d) κ1,2, (e) κ1,3, (f) κ2,3 for the scattering matrix given in Eq. (40). Here the average temperature is assumed to be kBT = 0.5i�0.
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FIG. 7. The ratio (κ1,3σ
N
1,2)/(κ1,2σ

N
1,3) plotted in (a) and [(∂φ13κ1,3)σ N

1,2IJ
1,2]/[(∂φ12κ1,2)σ N

1,3IJ
1,3] plotted in (b), as a function of scattering matrix

parameter 0 � λ � 1 for different values of the independent phase differences φ12 and φ13. For the topological case this ratio is independent
of scattering matrix parameter(s) as well as phase differences and is pinned to unity as expected from our prediction unlike the nontopological
case. Here the average temperature is assumed to be kBTavg = 0.5�0.

itself comprises three normal regions of length L on each arm.
These three arms are then stitched together using a unitary
scattering matrix given below to form the junction. Note that

we also consider the superconductors to be highly doped
and the scattering matrix (for electrons) at the junction to be
symmetric and it is given by [71]

Se =
⎛
⎝ 0.496 333 − 0.307 063i 0.292 369 + 0.312 308i −0.324 052 − 0.609 377i

0.292 369 + 0.312 308i 0.588 738 + 0.394 712i 0.008 877 01 + 0.560 799i
−0.324 052 − 0.609 377i 0.008 877 01 + 0.560 799i 0.446 798 + 0.097 199 4i

⎞
⎠ (40)

(Sh = Se∗) at the junction and we calculate the transmis-
sion probabilities and hence the thermal conductances κi, j as
discussed in Sec. IV B. We perform all these calculations nu-
merically as the analytic expressions for the T n,m in this case
are cumbersome unlike the topological case discussed above.
Using the scattering matrix in Eq. (40), we calculate the T i, j

and the corresponding thermal conductances κi, j . The thermal
conductances κi, j for the Majorana-Josephson junction dis-
cussed in the previous section and the present nontopological
case are plotted together in Fig. 6. As can be clearly seen,
in the case of a nontopological Josephson trijunction, apart
from the overall suppression due to τi, j , thermal conductances
κi, j , in general, have a very different pattern in the parameter
space of φ12 and φ13 (lower row of Fig. 6) whereas the ex-
act same pattern (apart from overall suppression) of thermal
conductances, in the case of a Majorana-Josephson trijunction
(upper row of Fig. 6) arises. Now to quantify the deviation
from the prediction of Eqs. (31) and (32) which is induced via
the variation of the pattern mentioned above, we plot the ratio
(κ1,3σ

N
1,2)/(κ1,2σ

N
1,3) and [(∂φ13κ1,3)σ N

1,2IJ
1,2]/[(∂φ12κ1,2)σ N

1,3IJ
1,3]

in Fig. 7 where the scattering matrix at the junction is given
in Eqs. (33)–(36). It is clear from the plot that there is a large
deviation from our prediction for most of the parameter space
in the case of nontopological superconductors. Here all the
calculations for the Josephson current have been carried out
using the Matsubara sum given in Eq. (37).

V. NOISE IN HEAT CURRENT

As our proposal involves the measurement of thermal con-
ductance which in turn requires the measurement of heat
current, it is important to understand the fluctuation in the
heat current which if dominant can ruin the possibility of

checking the validity of our predictions made in Eqs. (31) and
(32). The noise in the heat current can be decomposed into
equilibrium noise which will be dictated by the average tem-
perature and will be consistent with the fluctuation-dissipation
relation while the additional nonequilibrium noise is due to
the finite temperature bias and the amplifier noise used to
measure the noise itself. The amplifier noise will depend on
the particulars of the experimental setup and is beyond the
scope of our work. In the following sections we shall focus on
the zero-frequency thermal noise for a two- and three-terminal
Josephson junction.

A. Noise in heat current: Two-terminal case

For a two-terminal Josephson junction, the zero-frequency
noise in heat current can be written as [72,73]

SH (0) = 1

h

∑
α∈{e,h}

∫ ∞

�0

dω ω2
(
T 2,1

α { f (ω, T1)[1 − f (ω, T1)]

+ f (ω, T2)[1 − f (ω, T2)]}
+ T 2,1

α

(
1 − T 2,1

α

)
[ f (ω, T1) − f (ω, T2)]2

)
. (41)

The first two terms in the above equation correspond to the
equilibrium noise, whereas the third term corresponds to shot
noise which is finite only when T is different from unity or
zero. The corresponding error in the heat current measured
within a frequency bandwidth of �f can be expressed as

δIH =
√

SH (0)�f. (42)

We have calculated the percentage error ([(δIH/IH )/
√

�f])
and plotted it for both nontopological and Majorana-
Josephson junctions in Fig. 8 for lead temperatures T1 = 1.1 K
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FIG. 8. Percentage error per
√

Hz in the heat current for a Josephson junction with (a) quadratic dispersion and proximity-induced s-wave
superconductivity and (b) helical edge state of quantum spin Hall state as a function of normal-state transmissivity τ and superconducting
phase difference φ. Temperatures of left and right leads are assumed to be T1 = 1.1 K and T2 = 0.9 K, respectively. The superconducting
pairing potential is assumed to be �0 = 2kBTavg ≈ 172.347 μeV.

and T2 = 0.9 K and superconducting pairing potential �0 ≈
172.347 μeV in the parameter space (φ, τ ). These parameter
values are motivated from the experiments of Ref. [74]. As can
be seen, the percentage fluctuation in the heat current stays
reasonably small for a thermal bias which is of the same order
as used in Ref. [74], hence we do not expect thermal noise to
pose any serious hindrance to the experimental conformation
of our result. At this point we would like to mention that
the possibility of fluctuation of fermion parity [39] owing to
the presence of fermion bath may lead to fluctuation of the
Josephson current and hence can make the observation of
Eq. (32) difficult but no such challenges are expected in the
case of Eq. (31). This is due to the fact that the presence of
the subgap bound state influences the thermal conductance di-
rectly but its occupancy does not unless Coulomb correlation
plays an important role at the junction. Taking Coulomb corre-
lation into account is beyond the scope of this paper. Also note
that the fluctuation-dissipation relation obtained from Eq. (41)
in the limit of zero thermal bias given by SH

eq(0) = 2κkBT 2 im-
plies that equilibrium noise in heat current will depict an extra
suppression for the case of a Majorana-Josephson junction as
opposed to the nontopological Josephson junction owing to
the results presented in Fig. 2 in the φ = 0 limit.

General expression of zero-frequency noise for a three-
terminal junction is algebraically lengthy to express in terms
of the elements of the scattering matrix, superconducting
phases, and the temperatures of the different leads. However,
we have confirmed that in the case of a three-terminal junc-
tion, if one of the leads is kept at a temperature T1 and the
other two leads at temperature T2, the expression of noise
reduces to a form similar to the two-terminal result, Eq. (41).
This indicates that even for a three-terminal case, the estimate
of thermal noise in heat current will be of the same order of
magnitude as it will be for the two-terminal junction and will
continue to be small.

Hence, we conclude that the thermal noise generated in a
realistic situation is not large enough to smear out the dis-

tinction between a Majorana and a non-Majorana Josephson
junction predicted by us.

VI. DISCUSSION

In this paper we derived a set of two closed-form relations
involving the thermal conductance, the Josephson current, and
the normal-state electrical conductance for a three-terminal
Josephson junction which emerge for the presence of a Ma-
jorana end state at the junction. We discussed our proposal in
the context of a helical edge state of the quantum spin Hall
state. In principle a similar proposal could also be discussed
in the context of the nanowire setup [26–31,41,63,75] but this
will be a more involved proposal which requires application of
controlled magnetic fields on each wire forming the Josephson
junction which will be explored in the future.

In general the signatures of the Majorana end state have
been explored primarily for two perspectives: (a) the 2e2/h
conductance peak [29,76–80] and (b) the 4π Josephson effect
[39,41,43]. Both the proposals exploit electrical current sig-
nals and they have their own caveats [59–63,81–84], hence it
is important to explore new routes for looking for signatures of
Majorana end states. Our approach puts heat and charge cur-
rent measurements together such that the signature is neither
based on observation of phase periodicity (like in the 4π ef-
fect) nor on an observation of a quantized tunnel conductance
of 2e2/h. In particular, note that our first result [Eq. (31)] only
depends on thermal conductance and normal-state electrical
conductance of the junction and hence is independent of pos-
sible fluctuation of Josephson current owing to fermion parity
fluctuations induced by fermionic bath coupled to the junction
[39].
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APPENDIX A: TOTAL QUASIPARTICLE TRANSMISSION PROBABILITY FOR NONTOPOLOGICAL
JOSEPHSON JUNCTION

For a nontopological two-terminal Josephson junction (s-wave superconductivity for 1D electrons with quadratic dispersion
[4,5]), we have

T 2,1
ee = τ

(
ω2 − �2

0

)(
ω2 − �2

0 cos2 φ/2
)

[
ω2 − �2

0(1 − τ sin2 φ/2)
]2 , (A1)

T 2,1
he = τ (1 − τ )

(
ω2 − �2

0

)(
�2

0 sin2 φ/2
)

[
ω2 − �2

0(1 − τ sin2 φ/2)
]2 , (A2)

and T 2,1
e = T 2,1

ee + T 2,1
he . Note that, at φ = 0, T 2,1

he = 0 and T 2,1
ee = τ so that T 2,1

e (φ = 0) = τ . We also have T 2,1
h = T 2,1

e and
thus at φ = 0, T 2,1(= T 2,1

e + T 2,1
h ) = 2τ .

APPENDIX B: THERMAL CONDUCTANCE, LANDAUER CONDUCTANCE, AND JOSEPHSON CURRENT OF A
TOPOLOGICAL JOSEPHSON JUNCTION

The electrical conductance for a single channel of spinless electron with transmission probability τ is given by the Landauer
formula [64,65,85]

σ N = e2τ

h
β(T ) = e2τ

h

∫ ∞

−∞

(
−∂ f (ω, T )

∂ω

)
dω = e2τ

h
(4kBT )−1

∫ ∞

−∞

[
cosh

(
ω

2kBT

)]−2

dω, (B1)

where e is the electronic charge and f (ω, T ) is the Fermi distribution function at temperature T . Now, the thermal conductance
can be expressed as [Eq. (2) in the main text]

κ (φ) =
[

1

h

∫ ∞

�0

dω ω {T 2,1}∂ f (ω, T )

∂T

]
T =Tavg

, (B2)

where Tavg is the average junction temperature.
Now using (11),

κ = 2τ

h

[∫ ∞

�0

dω ω
ω2 − �2

0

ω2 − |ω±
0 |2

∂ f (ω, T )

∂T

]
T =Tavg

= σ N

[
2

e2β(T )

∫ ∞

�0

dω ω
ω2 − �2

0

ω2 − |ω±
0 |2

∂ f (ω, T )

∂T

]
T =Tavg

, (B3)

where we have used the expression (B1).
Again we know, the Josephson current (at temperature T ) is given by [47]

IJ = I1 + I2 + I3, (B4)

I1 = −2e

h̄

∂|ω±
0 |

∂φ
tanh

( |ω±
0 |

2kBT

)
, (B5)

I2 = −2e

h̄
2kBT

∫ ∞

�0

dω ln[cosh(ω/2kBT )]
∂ρ(ω, φ)

∂φ
, (B6)

I3 = 2e

h̄

d

dφ

∫
d�r|�|2/|g|, (B7)

where g is the interaction constant of Bardeen-Cooper-Schrieffer theory. Here we have taken |�| to be independent of φ and
hence the contribution from I3 vanishes. I2 is the contribution from the density of states ρ(ω, φ) above the gap �0, which also
vanishes for short junction limit. Thus, IJ = I1, i.e., the contribution from bound states alone. With this, we have

∂κ

∂φ
= 2σ N

e2β(T )

∂

∂φ

[∫ ∞

�0

dω ω
ω2 − �2

0

ω2 − |ω±
0 |2

∂ f (ω, T )

∂T

]
T =Tavg

= 2σ N

e2β(T )

[∫ ∞

�0

dω ω
ω2 − �2

0

(ω2 − |ω±
0 |2)2

∂ f (ω, T )

∂T
(−1)

(
−2|ω±

0 |∂|ω±
0 |

∂φ

)]
T =Tavg
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FIG. 9. Tunneling between the upper and lower edge with opposite helicity. The blue lines correspond to up spin while the red lines
corresponds to down spin.

= 2σ N

e2β(T )

[∫ ∞

�0

dω ω
ω2 − �2

0

(ω2 − |ω±
0 |2)2

∂ f (ω, T )

∂T
(2|ω±

0 |)
{
− h̄IJ

2e
coth

( |ω±
0 |

2kBT

)} ]
T =Tavg

= σ N IJ

[−h|ω±
0 |

πe3

{
1

β(T )
coth

( |ω±
0 |

2kBT

)}∫ ∞

�0

dω ω
ω2 − �2

0

(ω2 − |ω±
0 |2)2

∂ f (ω, T )

∂T

]
T =Tavg

, (B8)

which is Eq. (9), used in the main text.

APPENDIX C: 3 × 3 SCATTERING MATRIX FROM TUNNELING HAMILTONIAN

To derive the scattering matrix at x = 0, we first write the Hamiltonian (H) as a sum of edge states Hamiltonian (Hedge) and
tunneling Hamiltonian (HT ) in second quantized notation.

H = Hedge + HT , (C1)

Hedge =
∫

dx{ψ†
↑(x)(−ih̄vF ∂x − μ)ψ↑(x) + ψ

†
↓(x)(ih̄vF ∂x − μ)ψ↓(x)

+ ψ
′†
↑ (x)(ih̄vF ∂x − μ)ψ ′

↑(x) + ψ
′†
↓ (x)(−ih̄vF ∂x − μ)ψ ′

↓(x)}, (C2)

HT = h̄vF

∫
dx δ(x){s ψ

†
↑(x)ψ↓(x) + u ψ

′†
↑ (x)ψ ′

↓(x) + t[ψ†
↑(x)ψ ′

↑(x) + ψ
†
↓(x)ψ ′

↓(x)] + v[ψ†
↑(x)ψ ′

↓(x) + ψ
†
↓(x)ψ ′

↑(x)] + h.c.}.
(C3)

Here ψ (x) and ψ ′(x) represents the lower edge (with helicity η = 1) and the upper edge (with helicity η = −1). For simplicity,
we have assumed the parameters {s, t, u, v} to be real. Apart from the overall factor of h̄vF , s and u are the backscattering
amplitude in the lower and the upper edge, respectively. Interedge spin-conserving tunneling strength is given by t while
the interedge spin-flip tunneling has strength v. Now we shall follow Ref. [86] to obtain the scattering matrix corresponding
to the above given tunnel Hamiltonian. We note that ψ ′

↑(0+), ψ ′
↓(0−), ψ↓(0+), and ψ↑(0−) denote the incoming waves towards

the junction, while ψ ′
↑(0−), ψ ′

↓(0+), ψ↓(0−), and ψ↑(0+) denote the outgoing waves from the junction (Fig. 9).
We represent the scattering matrix as⎛

⎜⎜⎝
ψ↓(0−)
ψ↑(0+)
ψ ′

↓(0+)
ψ ′

↑(0−)

⎞
⎟⎟⎠ =

⎛
⎜⎝

SLR SLL SLL′ SLR′

SRR SRL SRL′ SRR′

SR′R SR′L SR′L′ SR′R′

SL′R SL′L SL′L′ SL′R′

⎞
⎟⎠

⎛
⎜⎜⎝

ψ↑(0−)
ψ↓(0+)
ψ ′

↑(0+)
ψ ′

↓(0−)

⎞
⎟⎟⎠, (C4)

which readily defines the elements of S.
Now, using the relation

lim
ε→0

∫ ε

−ε

dx′{ψ↑(x),H} = 0, (C5)

we get

−i(SRR − 1) + s

2
(SLR) + t

2
(SL′R) + v

2
(SR′R) = 0, (C6)

−i(SRL ) + s

2
(1 + SLL ) + t

2
(SL′L ) + v

2
(SR′L ) = 0, (C7)
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−i(SRL′ ) + s

2
(SLL′ ) + t

2
(1 + SL′L′ ) + v

2
(SR′L′ ) = 0, (C8)

−i(SRR′ ) + s

2
(SLR′ ) + t

2
(SL′R′ ) + v

2
(1 + SR′R′ ) = 0. (C9)

Similarly, from

lim
ε→0

∫ ε

−ε

dx′{ψ↓(x),H} = 0 (C10)

we get

i(1 − SLL ) + s

2
(SRL ) + t

2
(SR′L ) + v

2
(SL′L ) = 0, (C11)

i(−SLR) + s

2
(SRR + 1) + t

2
(SR′R) + v

2
(SL′R) = 0, (C12)

i(−SLR′ ) + s

2
(SRR′ ) + t

2
(SR′R′ + 1) + v

2
(SL′R′ ) = 0, (C13)

i(−SLL′ ) + s

2
(SRL′ ) + t

2
(SR′L′ ) + v

2
(SL′L′ + 1) = 0. (C14)

Using

lim
ε→0

∫ ε

−ε

dx′{ψ ′
↑(x),H} = 0 (C15)

we get

i(1 − SL′L′ ) + u

2
(SR′L′ ) + t

2
(SRL′ ) + v

2
(SLL′ ) = 0, (C16)

i(−SL′R′ ) + u

2
(SR′R′ + 1) + t

2
(SRR′ ) + v

2
(SLR′ ) = 0, (C17)

i(−SL′R) + u

2
(SR′R) + t

2
(SRR + 1) + v

2
(SLR) = 0, (C18)

i(−SL′L ) + u

2
(SR′L ) + t

2
(SRL ) + v

2
(SLL + 1) = 0. (C19)

Using

lim
ε→0

∫ ε

−ε

dx′{ψ ′
↓(x),H} = 0 (C20)

we get

−i(SR′R′ − 1) + u

2
(SL′R′ ) + v

2
(SRR′ ) + t

2
(SLR′ ) = 0, (C21)

−i(SR′L′ ) + u

2
(1 + SL′L′ ) + v

2
(SRL′ ) + t

2
(SLL′ ) = 0, (C22)

−i(SR′R) + u

2
(SL′R) + v

2
(SRR + 1) + t

2
(SLR) = 0, (C23)

−i(SR′L ) + u

2
(SL′L ) + v

2
(SRL ) + t

2
(1 + SLL ) = 0. (C24)

Solving the set of Eqs. (C6)–(C9), (C11)–(C14), (C16)–(C19), (C21)–(C24) scattering matrix elements Si j can be obtained.
Now, due to the presence of a large Zeeman field perpendicular to the spin-polarization axis (Mσ⊥) applied locally on the

helical edge corresponding to terminal 4, its spectrum will develop a gap leading to perfect back-reflection at the junction, i.e.,

ψ ′
↑(0−) = eiδ ψ ′

↓(0−), (C25)

where δ is the phase associated with the back-reflection. This enables us to write an effective 3 × 3 scattering matrix within the
terminals 1, 2, and 3 at x = 0 as ⎛

⎝ψ↓(0−)
ψ↑(0+)
ψ ′

↓(0+)

⎞
⎠ =

⎛
⎝r11 t12 t13

t21 r22 t23

t31 t32 r33

⎞
⎠

⎛
⎝ψ↑(0−)

ψ↓(0+)
ψ ′

↑(0+)

⎞
⎠. (C26)
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We define

Se =
⎛
⎝r11 t12 t13

t21 r22 t23

t31 t32 r33

⎞
⎠. (C27)

Here rii represents the amplitude of back-reflection within the terminal i and t ji represents the amplitude of transmission from
terminal i to terminal j. This matrix has the property ti j = t ji.

For completeness we write the explicit expressions as calculated,

r11 = 16i(t2 − su) − 4eiδ[s(4 + u2) − t (tu + 4iv) − uv2]

eiδ[4i + s(2 − iu) + 2u + i(t − v)2][−4 − 2iu + s(−2i + u) − (t + v)2] + 4[4u + s2u − 4itv − s(t2 + v2)]
, (C28)

r22 = 16i(su − v2) + 4eiδ[s(4 + u2) − t (tu + 4iv) − uv2]

ieiδ[−4 + 2iu + s(2i + u) − (t − v)2][−4 − 2iu + s(−2i + u) − (t + v)2] + 4[−4u − s2u + 4itv + s(t2 + v2)]
,

(C29)

r33 = 16 + 4s2 − 8t2 + t4 − 2st2u+4u2+s2u2+8istv−8ituv−8v2 − 2t2v2 − 2suv2 + v4 − 4ieiδ[4u + s2u − 4itv − s(t2 + v2)]

eiδ[−4 + 2iu + s(2i + u) − (t − v)2][−4 − 2iu + s(−2i + u) − (t + v)2] + 4i[4u+s2u − 4itv − s(t2 + v2)]
,

(C30)

t12 = − 4i[−4u + s2u − s(t2 + v2)] + eiδ[−4(4 + u2) + s2(4 + u2) + (t2 − v2)2 − 2s(t2u + 4itv + uv2)]

eiδ[−4 + 2iu + s(2i + u) − (t − v)2][−4 − 2iu + s(−2i + u) − (t + v)2] + 4i[4u + s2u − 4itv − s(t2 + v2)]
= t21,

(C31)

t13 = −16it + 4it3 − 4istu − 8sv + 8uv − 4itv2 + 4ieiδ[2it (s + u) + (−4 + t2 + su)v − v3]

eiδ[−4 + 2iu + s(2i + u) − (t − v)2][−4 − 2iu + s(−2i + u) − (t + v)2] + 4i[4u + s2u − 4itv − s(t2 + v2)]
= t31,

(C32)

t23 = 8t (−s + u) − 4i(4 + t2 + su)v + 4iv3 − 4ieiδ[t3 − 2i(s + u)v − t (−4 + su + v2)]

eiδ[−4 + 2iu + s(2i + u) − (t − v)2][−4 − 2iu + s(−2i + u) − (t + v)2] + 4i[4u + s2u − 4itv − s(t2 + v2)]
= t32.

(C33)

The corresponding scattering matrix for hole Sh can be evaluated by exploiting particle-hole symmetry [87] and it turns out
to be

Sh =
⎛
⎝−r∗

11 t∗
12 −t∗

13
t∗
21 −r∗

22 t∗
23−t∗

31 t∗
32 −r∗

33

⎞
⎠. (C34)

The expression for Sh, obtained using particle-hole symmetry, can be understood as follows.

�(x) =
∑
ω�0

ϕω(x)γω + [Cϕω](x)γ †
ω, (C35)

where �(x) = [ψ↑(x), ψ↓(x), ψ†
↓(x),−ψ

†
↑(x)]T is expressed in Nambu notation in terms of field operators ψ↑(↓), ϕω(x) =

[uω,↑(x), uω,↓(x), vω,↓(x), vω,↑(x)]T and the charge conjugation operator C = Kτy ⊗ σy with K being the complex conjugation.
The operators γ †

ω and γω are the creation and annihilation operators of a fermionic quasiparticle with energy ω, respectively.
From the fact that BdG Hamiltonian HBdG (which is assumed to be diagonal in the basis of γ †

ω and γω) anticommutes with
the charge conjugation operator C [{HBdG, C} = 0], it is straightforward to show that if ϕω is the solution of a BdG Hamiltonian
HBdG with energy ω, then [Cϕω] will be the solution of the same Hamiltonian HBdG with energy −ω. That implies that

⎛
⎜⎝

uω,↑(x)
uω,↓(x)
vω,↓(x)
vω,↑(x)

⎞
⎟⎠ =

⎛
⎜⎜⎝

−v∗
−ω,↑(x)

v∗
−ω,↓(x)

u∗
−ω,↓(x)

−u∗
−ω,↑(x)

⎞
⎟⎟⎠, (C36)

which is used in obtaining the expression for Sh. In Eq. (C36), we have not explicitly put indices corresponding to the different
leads but as expected this relation is individually true for each of the leads.

In this case, we have considered a scattering matrix which is independent of energy (ω). The full scattering matrix S can be
written as

S =
(

Se 0
0 Sh

)
(C37)
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and it connects the coefficients u and v as below⎛
⎜⎜⎜⎜⎜⎜⎝

u↓(0−)
u↑(0+)
u′

↓(0+)
v↓(0−)
v↑(0+)
v′

↓(0+)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

r11 t12 t13 0 0 0
t21 r22 t23 0 0 0
t31 t32 r33 0 0 0
0 0 0 −r∗

11 t∗
12 −t∗

13
0 0 0 t∗

21 −r∗
22 t∗

23
0 0 0 −t∗

31 t∗
32 −r∗

33

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

u↑(0−)
u↓(0+)
u′

↑(0+)
v↑(0−)
v↓(0+)
v′

↑(0+)

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C38)

Note that we have suppressed the subscript ω as S is independent of energy. Now under the transformation⎛
⎜⎝

u↑(x)
u↓(x)
v↓(x)
v↑(x)

⎞
⎟⎠ →

⎛
⎜⎜⎝

−v∗
↑(x)

v∗
↓(x)

u∗
↓(x)

−u∗
↑(x)

⎞
⎟⎟⎠

[Eq. (C36)], the scattering matrix S remains invariant confirming the particle-hole symmetry of S.

APPENDIX D: PARAMETRIZATION OF THE 3 × 3 SCATTERING MATRIX

In the scattering matrix discussed in Appendix C, we put s = 0, u = 0, δ = 0, v = t , then

r11 = r22 = −1 + 1

1 + 2t2
= −2t2

1 + 2t2
= −

(
2t2

1 + 2t2

)
, (D1)

r33 = −1 + 2

1 + 2t2
= 2

( −2t2

1 + 2t2

)
+ 1 = 1 − 2

(
2t2

1 + 2t2

)
, (D2)

t12 = t21 = 1

1 + 2t2
= 1 + 2t2 − 2t2

1 + 2t2
= 1 −

(
2t2

1 + 2t2

)
, (D3)

t13 = t31 = t23 = t32 = − 2it

1 + 2t2
= −i

(
2t

1 + 2t2

)
= −i

√
4t2

1 + 2t2

= −i

√
2

(
2t2

1 + 2t2

)(
1 − 2t2

1 + 2t2

)
. (D4)

Now we note that, for any real number t , 0 � 2t2

1+2t2 � 1. Thus, we can redefine 2t2

1+2t2 = λ and hence we obtain

r11 = r22 = −λ, (D5)

r33 = 1 − 2λ, (D6)

t12 = t21 = 1 − λ, (D7)

t13 = t31 = −i
√

2λ(1 − λ) = t23 = t32, (D8)

where 0 � λ � 1. Also note that this scattering matrix is symmetric between terminal 1 and terminal 2. We have used this
parametrization in Secs. IV D and IV F of the main text.

APPENDIX E: THREE-TERMINAL JOSEPHSON JUNCTION WITH QUADRATIC DISPERSION AND p-WAVE
SUPERCONDUCTIVITY

A Josephson junction based on 1D electrons with quadratic dispersion and proximity-induced p-wave superconductivity also
hosts Majorana bound states. We consider the scattering matrix for electrons Se at x = 0 to be of the same form as in (C27). In
this case the scattering matrix for hole will be Sh = Se∗. Such junctions can be described using the BdG Hamiltonian [70]

H =
(

− h̄2

2m

∂2

∂x2
− μ

)
τz − i

�(x)

kF

∂

∂x
[cos φiτx − sin φiτy], (E1)

where τn are the Pauli matrices acting on particle-hole basis; �(x) = �0�(x − L) and φi is the superconducting phase of the ith
superconducting lead (see Fig. 10).

For energies ω < �0, the solutions in different regions can be written as

�Si = ai exp[iκ ′
ex]

(
eiθ/2eiφ(2,3)/2

e−iθ/2e−iφ(2,3)/2

)
+ bi exp[−iκ ′

hx]

(
e−iθ/2eiφ(2,3)/2

−eiθ/2e−iφ(2,3)/2

)
, (E2)

�Ni = pi exp[ikex]

(
1
0

)
+ qi exp[−ikex]

(
1
0

)
+ ri exp[ikhx]

(
0
1

)
+ si exp[−ikhx]

(
0
1

)
, (E3)
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FIG. 10. Pictorial representation of a three-terminal Josephson junction based on 1D electrons with quadratic dispersion and with p-wave
superconductivity. The coordinate system is chosen in such a way that x = 0 at the junction of the three terminals and increases in the direction
of superconducting leads.

where θ = arccos(ω/�0). The subscripts S(N )i denote superconducting (normal) region in the ith (i ∈ {1, 2, 3}) terminal. We
consider the limit where owing to high doping limit (μ � �0, kBTavg) κ ′

e � κ ′
h � ke � kh � kF = (

√
2mμ)/h̄.

By demanding the continuity of the wave functions and their first derivatives across the boundaries and assuming that the
amplitudes of the incoming and outgoing waves are related at x = 0 by the scattering matrices Se and Sh = Se∗ we get the
condition for bound state

det[I − a2(ω)Se(−ei)She−i] = 0, (E4)

where a(ω) = ( ω
�0

− i
√

�2
0−ω2

�0
) and  is the diagonal matrix with diagonal elements {φ1, φ2, φ3}.

This gives the bound state energies ω0 and are given by ω = ω0
0, ω

±
0 [57] where

ω0
0 = 0, (E5)

ω±
0 = ±�0

√
τ12 sin2 φ12

2
+ τ13 sin2 φ13

2
+ τ23 sin2 φ23

2
(E6)

[φi j = φ j − φi; τi j = |ti j |2].
For energies ω > �0, we can calculate the total quasiparticle tunneling probability (T i, j ) from terminal i to terminal j. We

first consider an electronlike quasiparticle incident on the first superconducting lead. It will give rise to a reflected electronlike
and holelike quasiparticle within the same lead with amplitudes, say, ree and rhe, respectively, and transmitted electronlike and
holelike quasiparticles in superconducting nth lead with amplitudes, say, t n,1

ee and t n,1
he , respectively. The wave functions can be

written as

�S1 = exp[−iκex]

(
eθ/2eiφ1/2

−e−θ/2e−iφ1/2

)
+ ree exp[iκex]

(
eθ/2eiφ1/2

e−θ/2e−iφ1/2

)
+ rhe exp[−iκhx]

(
e−θ/2eiφ1/2

−eθ/2e−iφ1/2

)
, (E7)

�S(2,3) = t (2,3),1
ee exp[iκex]

(
eθ/2eiφ(2,3)/2

e−θ/2e−iφ(2,3)/2

)
+ t (2,3),1

he exp[−iκhx]

(
e−θ/2eiφ(2,3)/2

−eθ/2e−iφ(2,3)/2

)
, (E8)

�Ni = pi exp[ikex]

(
1
0

)
+ qi exp[−ikex]

(
1
0

)
+ ri exp[ikhx]

(
0
1

)
+ si exp[−ikhx]

(
0
1

)
, (E9)

where θ = arccosh(ω/�0). The subscripts S(N )i denote superconducting (normal) region in the ith (i ∈ {1, 2, 3}) terminal.
From the continuity of the wave functions and their first derivatives and using the scattering matrices Se and Sh = Se∗ we

evaluate the values of t2,1
ee , t2,1

he , t3,1
ee and t3,1

he . From these, we calculate

T 2,1
e = ∣∣t2,1

ee

∣∣2 + ∣∣t2,1
he

∣∣2 = τ12 ω2
(
ω2 − �2

0

)
(ω2 − |ω±

0 |2)

ω2(ω2 − |ω±
0 |2)2

= τ12 ω2
(
ω2 − �2

0

)
(ω2 − |ω±

0 |2)∏
ω0

(ω − ω0)2
, (E10)

T 3,1
e = ∣∣t3,1

ee

∣∣2 + ∣∣t3,1
he

∣∣2 = τ13 ω2
(
ω2 − �2

0

)
(ω2 − |ω±

0 |2)

ω2(ω2 − |ω±
0 |2)2

= τ13 ω2
(
ω2 − �2

0

)
(ω2 − |ω±

0 |2)∏
ω0

(ω − ω0)2
, (E11)

where ω±
0 = ±�0

√
τ12 sin2 φ12

2 + τ13 sin2 φ13

2 + τ23 sin2 φ23

2 i0 and (φi j = φ j − φi ).
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Similarly, for a holelike quasiparticle incident on the first superconducting lead we can calculate t2,1
eh , t2,1

hh , t3,1
eh and t3,1

hh and
can define

T 2,1
h = ∣∣t2,1

hh

∣∣2 + ∣∣t2,1
eh

∣∣2
, (E12)

T 3,1
h = ∣∣t3,1

hh

∣∣2 + ∣∣t3,1
eh

∣∣2
. (E13)

As expected we have that T 2,1
h = T 2,1

e and T 3,1
h = T 3,1

e and thus

T 2,1 = T 2,1
h + T 2,1

e = 2
τ12

(
ω2 − �2

0

)
ω2 − |ω±

0 |2 , (E14)

T 3,1 = T 3,1
h + T 3,1

e = 2
τ13

(
ω2 − �2

0

)
ω2 − |ω±

0 |2 . (E15)

Similarly one can calculate T 1,2, T 3,2, T 1,3, and T 2,3. As our scattering matrix represents (τi j = τ ji ), hence T i, j = T j,i. It can
be easily shown that T i, j can be written in general as

T i, j = 2
τi j ω

2
(
ω2 − �2

0

)
(ω2 − |ω±

0 |2)∏
ω0

(ω − ω0)2
= 2

τi j
(
ω2 − �2

0

)
ω2 − |ω±

0 |2 . (E16)

These expressions are same as that derived in Sec. IV A of the main text, which justifies the fact that the central results of
our paper, i.e., Eqs. (31) and (32) of the main text are not only true for a three-terminal Josephson junction based on a Dirac
type spectrum of helical edge states but also for a three-terminal Josephson junction made out of 1D electrons with quadratic
dispersion and proximity-induced p-wave superconductivity.
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