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Induced order and collective excitations in three-singlet quantum magnets
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The quantum magnetism in a three-singlet model (TSM) with singlet crystalline electric field states interacting
on a lattice is investigated, motivated by its appearance in compounds with 4 f 2 and 5 f 2 electronic structures.
Contrary to conventional (semiclassical) magnetism, there are no preformed moments above the ordering
temperature Tm. They appear spontaneously as induced or excitonic moments due to singlet-singlet mixing at Tm.
In most cases, the transition is of second order, however, for large matrix elements between the excited states,
it turns into a first-order transition at a critical point. Furthermore, we derive the excitonic mode spectrum and
its quantum critical soft mode behavior, which leads to the criticality condition for induced order as expressed
in terms of the control parameters of the TSM, and discuss the distinctions to the previously known two-singlet
case. We also derive the temperature dependence of order parameters for second- and first-order transitions and
the exciton spectrum in the induced magnetic phase.
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I. INTRODUCTION

In ordinary (semiclassical) magnets, the individual mag-
netic moments at every lattice site already exist above the
ordering temperature Tm [1]. This holds even in strongly
frustrated local-moment systems which may have a vanish-
ing ordering temperature when fine-tuned to a spin-liquid
regime where quantum fluctuations destroy the moment of
the ground state but nevertheless the Curie-Weiss signature
of local moments remains for elevated temperatures [2–4].
There are, however, true quantum magnets which do not have
freely rotating magnetic moments above Tm in the semiclassi-
cal sense as witnessed by an absence of the Curie-Weiss-type
susceptibility for some region above Tm. In these compounds
with partly filled 4f or 5f electron shells, the degenerate ground
state with integer (non-Kramers) total angular momentum J,
created by spin-orbit coupling splits due to the local crys-
talline electric field (CEF) into a series of multiplets [5]. They
belong to irreducible representations �i which may comprise
singlets, doublets, or triplets, depending on the symmetry of
the CEF and the concrete CEF potential. For tetragonal or
lower symmetry, it is possible that the ground state and low-
est excited states are all singlets without magnetic moments,
meaning 〈�i|J|�i〉 = 0. Nevertheless, magnetic order occurs
below the transition temperature Tm. This order cannot be
interpreted in the usual semiclassical way as an alignment of
preexisting moments which then have collective semiclassical
spin-wave excitations as Goldstone modes. In the latter case,
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quantum effects enter only through the possible reduction of
the saturation moment due to zero point fluctuations leading
to spin-wave contribution to the ground-state energy.

For CEF systems with split-singlet low-lying states, the
local moments instead appear only simultaneously with the
magnetic order as a true quantum effect due to the mixing of
singlet states caused by intersite exchange interactions. This
induced or excitonic magnetic order has been observed pri-
marily in various Pr (4 f 2) and U (5 f 2) compounds with two
f electrons, which lead to CEF schemes with singlet ground
states and possibly also low-energy excited singlets. However,
it can also be found in f-electron compounds with even higher
f occupations, like, e.g., Tb (4 f 8). In the cubic (Oh) symmetry
cases with singlet ground states, the excited states must be de-
generate as in fcc Pr [6,7], PrSb [8], Pr3Tl [9], and TbSb [10]
(singlet-triplet). Examples with hexagonal (D6h) structures
are metallic Pr (singlet-doublet) [5,11–13] and UPd2Al3 [14]
(singlet-singlet). Tetragonal (D4h) cases are Pr2CuO4 [15]
(singlet-doublet) and URu2Si2 [16–18] (three singlets). The
lower the symmetry, the more likely one can have multiple
low-energy singlets. The most promising class in this respect
has orthorhombic symmetry (D2h, D2) which has only singlets
left as in PrCu2 [19,20], PrNi [21,22], Tb3Ga5O12 [23], and
Pr5Ge4 [24]. In the U compounds, however, the situation may
be more complicated due to only partial localization of 5f
electrons [25,26]. Since there is no degeneracy in the local 4f
or 5f basis states, there can also be no continuous symmetry
for the exchange Hamiltonian. Therefore, the collective ex-
citations in the ordered phase may not be interpreted as spin
waves resulting from coupled local spin precessions but rather
as dispersive singlet-singlet (or singlet-doublet and singlet-
triplet) excitation modes due to intersite exchange, commonly
termed magnetic excitons. These are already present above
the ordering temperature. The ordering is characterized by
a softening of one of these modes at Tm and a subsequent
stiffening again further below.
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This type of excitonic magnetism has been considered ana-
lytically primarily within the two-singlet model [5,14,27,28].
A fully numerical treatment for a multilevel CEF system
is also possible [29]. However, for a deeper understanding
of induced excitonic moment ordering and their finite tem-
perature properties, analytical investigations are desirable. In
particular, the influence of physical parameters like splittings,
nondiagonal matrix elements, and exchange, which define
dimensionless control parameters on the transition temper-
ature, saturation moment, and mode softening are rendered
understandable only when explicit analytical expressions can
be derived. This becomes quite involved beyond the two-
singlet model. The latter is, however, an oversimplificiation
as very often more levels, in particular, another singlet state
are present, as, e.g,. in PrNi, PrCu2, and URu2Si2.

Therefore, in this paper, we give a detailed analytical
treatment of induced moment behavior in the physically im-
portant three-singlet model (TSM) relevant for non-Kramers
f-electron systems in lower than cubic symmetry; in partic-
ular; we investigate the case of orthorhombic symmetry. We
will focus on the mode spectrum, transition temperature, and
saturation moments and how they are influenced by the larger
set of control parameters of this extended model. We show
that under suitable conditions, temperature variation induces
hybridization of exciton modes in addition to the changes of
intensity pattern. Furthermore, we derive an algebraic equa-
tion that completely determines the transition temperature for
the effective two control parameters and arbitrary splitting
ratio of the TSM. In the symmetric TSM, explicit closed
expressions for Tm are presented. Furthermore, we give a
comparative treatment of the exciton mode dispersions within
random phase approximation (RPA) response function for-
malism and Bogoliubov quasiparticle picture and show that
they give largely equivalent results, also for the phase bound-
ary between disordered and excitonic phases. Finally, within
the RPA formalism, we will investigate the change of mode
dispersions and intensity in the induced moment phase. This
paper is mainly theoretically motivated with the aim to ana-
lyze and understand the TSM and its significance for excitonic
magnetism in detail.

II. THE THREE-SINGLET MODEL

We keep the specifications of the TSM illustrated in the
inset of Fig. 1 as general as possible, as far as splittings and
magnetic matrix elements of Jz are concerned. However, hav-
ing orthorhombic CEF systems in mind, the latter are assumed
to be of uniaxial character due to 〈�i|Jx,y|� j〉 = 0 [Sec. II A,
Eq. (4)]. The three singlets are denoted by |i〉 (i = 1 − 3)
with increasing level energies Ei = 0,�,�0, or shifted ener-
gies Êi = Ei − � = −�, 0, �̃, which are more convenient for
finite-temperature properties; here we defined �̃ = �0 − �.
The CEF Hamiltonian in can be written in terms of standard
basis operators Li j = |i〉〈 j| as

HCEF =
∑

i

Ei|i〉〈i|. (1)

The total angular momentum component Jz in this representa-
tion is given by Jz = ∑

i j〈i|Jz| j〉Li j . Without restriction, this
leaves us with three possible independent matrix elements

FIG. 1. Inset: Designations of the general TSM with singlet
states |i〉 (i = 1 − 3) and respective energies Ei or Êi = Ei − �, here
�̃ = �0 − �. Matrix elements of Jz are denoted by α, β, α̃ (one of
them must vanish in the nonmagnetic state) and boson excitation
operators by a†, b†, c†. The special fully symmetric TSM is defined
by r = �̃/� = 1 and α̃ = α. Transition arrows correspond to the
thermal occupation differences pi j shown in the main figure. Here
r = 0.5, the energy scale is �0 in all figures.

α = 〈0|Jz|1〉, β = 〈0|Jz|2〉, and α̃ = 〈1|Jz|2〉 (Sec. II A). The
latter only plays a role at finite temperature T when ex-
cited states are populated with population numbers pi =
Z−1 exp(−Ei/T ) where Z = ∑

j exp(−Ej/T ) is the three-
singlet partition function. The Nf = 3 CEF wave functions
may each be gauged by an arbitrary phase factor exp(iφn)
(n = 1..Nf ). Furthermore, there are 1

2 Nf (Nf − 1) = 3 exci-
tation matrix elements between those states. Therefore, in
the TSM, all matrix elements α, β, α̃ may be chosen as real
without loss of generality. We will pay particular attention to
the special case of the (fully) symmetric TSM which is defined
by �̃ = �; α̃ = α in Fig. 1. The magnetic properties of the
model are characterized by the three possible dimensionless
control parameters,

ξα = 2α2Ie

�
, ξβ = 2β2Ie

�0
, ξα̃ = 2α̃2Ie

�̃
, (2)

which characterize the intersite-coupling strengths of the three
transitions with Ie(q) denoting the Fourier transform of the
intersite exchange in Eqs. (9) and (10) at the wave vector
of incipient induced order where it is at maximum value. It
may be q = 0 ferromagnetic (FM), general incommensurate
or q = Q = (π, π, π ) antiferromagnetic (AF). In the follow-
ing, we focus on the latter case. As we shall see now in
the paramagnetic phase, one of the three matrix elements or
control parameters must vanish due to the requirements of
time-reversal symmetry. This leaves us with the three possible
cases of TSMs depicted in Fig. 2.

A. The orthorhombic three-singlet model

To realize the general TSM in a concrete CEF for given
J is not so straightforward as it may seem. This is connected
with the angular momentum structure of CEF eigenstates and
their behavior under time reversal. As already indicated in
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FIG. 2. Three possible arrangements of dipolar (Jz ) transition
matrix elements (α, β, α̃) in the orthorhombic TSM consisting
of (�1, �

(1,2)
4 ) or (�4, �

(1,2)
1 ) representations. In the paramagnetic

phase, only two elements (thick lines) can be nonzero due to 	

invariance. Transitions with dashed lines vanish because they con-
nect states with equal 	; they are, however, induced and nonzero in
the magnetic state. Similar diagrams hold for the representation pair
(�2, �3) [cf. Eq. (4)]. There always have to be two (inequivalent)
representations of the same type in the TSM for the Jz structure
presented.

the Introduction, cubic symmetry does not allow the TSM.
In tetragonal D4h symmetry, the TSM is only realized in
one specific form [Fig. 2(c)] (see discussion in Appendix A).
Therefore, we relax to orthorhombic symmetry D2h, where all
the CEF states have to be singlet �i, (i = 1–4) representations
and the TSM is naturally possible. As mentioned before, there
are several physical realizations in the orthorhombic symme-
try class. The decomposition, e.g., for J = 4 leads to nine
(3�1 ⊕ 2�2 ⊕ 2�3 ⊕ 2�4) singlets. They may be grouped
according to their behavior under time-reversal symmetry
operation 	 [30]. For a CEF state |ψ〉 written as linear combi-
nation |ψ〉 = ∑

M cM |M〉 (|M| � J ) for a given J, the action
of 	 is defined as |ψ〉K = 	|ψ〉 = ∑

M c∗
M (−1)J−M | − M〉.

The orthorhombic singlets for J = 4 may be expressed as [23]
linear combinations of |M〉± = |M〉 ± | − M〉 with only real
coefficients according to

|�1〉 =
∑

M=0,2,4

bM |M〉+, |�2〉 =
∑

M=1,3

a′
M |M〉−,

|�3〉 =
∑

M=1,3

aM |M〉+, |�4〉 =
∑

M=2,4

b′
M |M〉−. (3)

This means that |�1,2〉K = |�1,2〉 are even 	 = 1) and
|�3,4〉K = −|�3,4〉 are odd (	 = −1) under time reversal.
Because Jz is also odd, it has matrix elements only among
singlets with opposite 	. From those, only two are different
from zero:

〈�1|Jz|�4〉 = 2
∑

M=2,4

MbMb′
M ,

〈�2|Jz|�3〉 = 2
∑

M=1,3

MaMa′
M . (4)

At the same time, one observes that 〈�1|Jx,y|�4〉 =
〈�2|Jx,y|�3〉 = 0 so we can restrict to Jz in the model for inter-
site interactions (Sec. III B). If the singlet representations in
the TSM would all be different, then only one matrix element
of Jz could be nonzero. However, in the J = 4 D4h decompo-
sition given above, each singlet representation occurs at least

twice. Then two matrix elements of the TSM containing two
singlets with equal symmetry can be nonzero. Because these
have necessarily equal 	, the third Jz matrix element is always
zero as long as time-reversal symmetry holds. In the induced
magnetic phase when 	 is broken, it will also be nonzero as
shown in Appendix B [Eq. (B7)]; this is essential to obtain the
proper temperature dependence of order parameter and soft
mode energy.

In the paramagnetic phase, we are then left with the three
possible cases of dipolar matrix element sets (α, β, α̃) as illus-
trated in Fig. 2. Since the orthorhombic CEF is characterized
by nine arbitrary CEF parameters, one may reasonably expect
that every sequence in Fig. 2 and similar ones with (�2, �3)
singlets can in principle be realized. We note that in the
higher D4h symmetry, only the model type of Fig. 2(c) seems
possible (Appendix A). Rather than discussing each possible
case presented in Fig. 2 individually, it is more economic to
treat the general TSM (inset of Fig. 1), keeping in mind that
always one in the set of matrix elements (α, β, α̃) must vanish
to reproduce any of the possible cases in Fig. 2 allowed by 	.

III. RESPONSE FUNCTION FORMALISM, MAGNETIC
EXCITON BANDS, AND INDUCED TRANSTION

A. Local dynamic susceptibility of the TSM

The most direct way to understand the magnetic ordering
in the TSM is provided by the response function formalism,
the resulting magnetic exciton bands, and their soft-mode
behavior. The dynamic response function for the isolated TSM
is, in general, given by

χ0(iωn) =
∑

i j

|〈i|Jz| j〉|2(p j − pi )

Ei − Ej − iωn
, (5)

defining the occupation differences of levels by pi j = pi − p j .
This is evaluated explicitly as (�0 = � + �̃),

χ0(iωn) = 2

[
α2�p01

�2 − (iωn)2
+ α̃2�̃p12

�̃2 − (iωn)2
+ β2�0 p02

�2
0 − (iωn)2

]
,

(6)

where the pi j are given by

p01 = tanh �
2T

1 − f01
, p02 = tanh �0

2T

1 + f02
, p12 = tanh �̃

2T

1 + f12
, (7)

with

f01 = 1

2

(
cosh

�̃

T
− sinh

�̃

T

)(
tanh

�

2T
− 1

)
,

f02 = 1

2

(
cosh

�

T
− sinh

�

T

)(
tanh

�0

2T
+ 1

)
,

f12 = 1

2

(
cosh

�

T
+ sinh

�

T

)(
tanh

�̃

2T
+ 1

)
. (8)

The occupation differences fulfill the relation p12 = p02 −
p01. For T � �,�0 when p01, p02 � 1, this means p12 �
p01, p01. For the two-singlet model (i, j = 0, 1), one simply
has pi j = tanh β

2 �i j . In the TSM, the expressions fi j in the
denominators of Eq. (7) are a correction, taking into account
the presence of the third level in the partition function.
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B. Collective magnetic exciton modes

The relevant part of the intersite exchange interaction of
three-singlet states is given by (l, l ′ denote lattice sites Rl , R′

l )

Hex = −1

2

∑
ll ′

Ill ′Jz(l )Jz(l ′)

= −1

2

∑
q

Ie(q)Jq
z J−q

z ,

(9)

with the Fourier component Jq
z = N− 1

2
∑

l exp(iqRl )Jl
z . The

transverse Jq
x , Jq

y do not contribute to the collective mode
dispersion because of their vanishing matrix elements in
the orthorhombic TSMs of Fig. 2. The Fourier transform of
the exchange interaction may be expressed (assuming only
next neighbor coupling I0) as

Ie(q) = 2I0γq, γq =
D∑

n=1

cos qn (10)

in the simple orthorhombic lattice of dimension D = 3 and
coordination z = 2D. The momentum units are 1

a , 1
b , and 1

c
parallel to the respective orthogonal axes. For the AF case
with I0 < 0 on which we focus, we also introduce the effective
AF exchange Ie ≡ Ie(Q) = −zI0 > 0 where Q = (π, π, π )
denotes the AF wave vector. Then, within RPA approximation
[5], the collective dynamic susecptiblity (zz component only)
of coupled three singlet levels is obtained as

χ (q, iωn) = [1 − Ie(q)χ0(iωn)]−1χ0(iωn). (11)

Its poles, as defined by 1 − Ie(q)χ0(iωn) = 0, give the dis-
persive collective magnetic exciton modes of the TSM which
are determined by a cubic equation in ω2. We first derive its
general solution and then a more intuitive restricted one for
the low-temperature case.

If we had only one of each contribution in Eq. (6), we
would obtain isolated exciton modes given by

ω2
e (q, T ) = �

[
� − 2α2

T Ie(q)
]
,

ω2
e′ (q, T ) = �0

[
�0 − 2β2

T Ie(q)
]
, (12)

ω2
e′′ (q, T ) = �̃

[
�̃ − 2α̃2

T Ie(q)
]
,

where we used the effective T-dependent transition strengths
defined by

α2
T = α2 p01, β2

T = β2 p02, α̃2
T = α2 p12. (13)

These uncoupled modes are hybridized into new eigenmodes
when more matrix elements are present. We already derive
these expressions in sight of the magnetic case of Sec. VI B
where all the α′2

T , β2
T , α̃′2

T as modified by the molecular field
are nonzero. The hybridized modes may be expressed in terms
of the following auxiliary quantities:

ε1 = −[
ω2

e (q) + ω2
e′ (q) + ω2

e′′ (q)
]
,

ε2 = ω2
e

(
�2

0 + �̃2
) + ω2

e′ (�2 + �̃2) + ω2
e′′

(
�2

0 + �2
)

−(
�2�2

0 + �2�̃2 + �2
0�̃

2
)
, (14)

ε3 = 2�2�2
0�̃

2 − (
ω2

e�
2
0�̃

2 + ω2
e′�

2�̃2 + ω2
e′′�

2�2
0

)
,

with the definition of

P = ε2 − 1

3
ε2

1 ; Q = 2

27
ε3

1 − 1

3
ε1ε2 + ε3,

φ = cos−1

[
− Q

2

( |P|
3

)− 3
2
]
. (15)

The dispersions of of the coupled modes (i = 1, 2, 3) are
given by

ω2
i (q) = 2

( |P|
3

) 1
2

cos

(
φ

3
+ φi

)
− ε1

3
, (16)

where φ1 = 0, φ2 = 2π
3 , φ3 = 4π

3 . These expressions give
the RPA mode dispersions for any splittings and matrix el-
ements of the TSM and also for arbitrary temperatures. In
terms of these modes, the collective RPA susceptibility may
be written as

χ (q, ω) = χ0(ω)[
ω2 − ω2

1(q)
][

ω2 − ω2
2(q)

][
ω2 − ω2

3(q)
] . (17)

This leads to a spectral function which determines the struc-
ture function in inelastic neutron scattering (INS),

1

π
Imχ (q, ω + iη) =

∑
λ

Rλδ[ω − ωλ(q)], (18)

with the momentum and temperature-dependent intensities Rλ

(λ = 1 − 3) of exciton modes given by

Rλ(q, T ) = Z (ωλ(q))

2ωλ(q)�μ 	=λ

[
ω2

μ(q) − ω2
λ(q)

] ,

Z (ωλ(q)) = 2
[
α2

T �(ωλ(q)2 − �̃2)
(
ωλ(q)2 − �2

0

)

FIG. 3. Magnetic exciton dispersions along (111) direction, qi

is in units of π/a, π/b, π/c and T/�0 = 0.1. Dotted black lines:
Uncoupled modes where the upper one has stronger dispersion due
to β > α. Full blue/red lines are the coupled RPA modes [Eqs. (20)
and (16)]. The flat band (dashed green) corresponding to 1 ↔ 2
excitations has vanishing intensity (Fig. 4). The hybridization gap
is determined by the cross coupling ∼αβ [Eq. (22)]. Dash-dotted
blue/red lines show the dispersion for the main ω1,2 modes in
Bogoliubov approach [Eq. (36)]. Inset: Crossing wave number qc.
Here r = 0.3, ξα = 0.2, ξβ = 0.71 (ξs = 0.91 < 1 subcritical), ξα̃ =
0 [scheme as Fig. 2(a)].
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+ α̃2
T �̃(ωλ(q)2 − �2)

(
ωλ(q)2 − �2

0

)
+β2

T �0(ωλ(q)2 − �2)(ωλ(q)2 − �̃2)
]
. (19)

At low temperatures, we can find an approximate and more
intuitive solution for the dispersions: For T � �,�0 when
p12 � p01, p02 we can neglect the second term in Eq. (6),
i.e., the influence of transitions starting from the thermally
excited states on the dynamics. Then the mode dispersions are
obtained in concise form as

ω2
1,2(q) = 1

2

(
ω2

e + ω2
e′
) ± [

1
4

(
ω2

e − ω2
e′
)2

+ (2αT βT )2(Ie�av)2
] 1

2 , (20)

with �av = (��0)
1
2 . The two dispersive modes stemming

from the ground- to excited-state transitions may anticross
if their dispersion is sufficiently strong, i.e., if I0 intersite
exchange is sufficiently large and matrix element α or β large
and sufficiently different. This happens when the decoupled
dispersions fulfill ωe(qc) = ωe′ (qc) ≡ ωc. For q = (q, q, q)
along �R in the orthorhombic BZ where dispersion is max-
imal, one obtains

qc(T ) = cos−1
( 1

12I0

�2
0 − �2

β2
T �0 − α2

T �

)
(21)

FIG. 4. Spectral density (log scale) of χ (q, ω) along scaled or-
thorhombic BZ path X(π, 0, 0), �(0, 0, 0), R(π, π, π ), X(π, 0, 0)
for two temperatures, using the residua given in Eqs. (19) and (23).
Bright/dark colors correspond to large/small intensities. Left col-
umn: Scheme as Fig. 2(a), parameters as Fig. 3. Hybridizing modes
ω1,2 with anticrossing are shown. For T/�0 = 0.5, dispersions are
moderate, at T/�0 = 0.1 an incipient soft mode from ω1(q) ap-
pears at the AF point (R) Q = (π, π, π ) (cf. Fig. 3). Right column:
Scheme as Fig. 2(b), parameters r = 0.3, ξβ = 0.94, ξα̃ = 0.66, ξα =
0. For T/�0 = 0.1, a thermally excited flat mode (ω3) appears. At
T/�0 = 0.1, the latter is absent due to p12 � 1 and dispersion of
ω2(q) shows incipient soft mode behavior. A spectral broadening of
η = 0.025 is used.

if the modulus of the argument is smaller than one. At the
anticrossing point qc of the two exciton modes (Figs. 3 and 4),
the splitting obtained from Eq. (20) is then given by

δωc = ω1(qc) − ω2(qc) = 2|αT βT ||Ie(qc)|�av

ωc
. (22)

The anticrossing happens because both inelastic transitions
start from the same ground state and the splitting is therefore
∼|αT βT |. The dispersion as well as the splitting decrease
with increasing T due to the reduction of effective transition
strengths αT ∼ p01 and βT ∼ p02 (Fig. 1). The intensities
determining the spectral functions now take on the simplified
form

Rλ(q, T ) = Z (ωλ)

2ωλ(q)
[
ω2

λ̄
(q) − ω2

λ(q)
] ,

Z (ωλ) = 2
[
α2

T �
(
ωλ(q)2 − �2

0

) + β2
T �0(ωλ(q)2 − �2)

]
,

(23)

where λ̄ = 2, 1 for λ = 1, 2, respectively. A discussion of
exciton mode dispersions and intensities is given at the end
of Sec. IV.

IV. DIAGONALIZATION BY BOGOLIUBOV
TRANSFORMATION AND EXCITONIC BLOCH STATES

The response function formalism leads to a transparent
picture for the excitonic mode dispersions, however, it gives
no information on the Bloch functions of these modes. For
that purpose, a direct (approximate) diagonalization of the
Hamiltonian using pseudounitary Bogoliubov and subsequent
unitary transformations may be performed that also contain
the eigenvectors of exciton modes. Therefore, we also apply
this alternative approach to the problem. In this context, the
local CEF excitation standard basis operators |i〉〈 j| in the
TSM are mapped to bosons (although the former have more
complicated commutation relations). This can be justified
as long as the temperature fulfills T � �,�0 and only the
two excitations from the ground state have to be considered
[27,31], corresponding to the TSM of Fig. 2(a). Defining
a†

i = |1〉〈0| and b†
i = |2〉〈0| and using the Fourier transforms

x†
k = (1/

√
N )

∑
i exp(−ikRi )x

†
i (x = a, b), the Hamiltonian

H = HCEF + Hex may be written in its bosonic form by using
the definition ψ

†
k = (a†

k, a−k, b†
k, b−k ) as H = ∑

k ψ
†
khk�k +

1
2 N (� + �0), where (k suppressed on right side)

hk = 1

2

⎛
⎜⎜⎜⎝

�a −α2Ie −αβIe −αβIe

−α2Ie �a −αβIe −αβIe

−αβIe −αβIe �b −β2Ie

−αβIe −αβIe −β2Ie �b

⎞
⎟⎟⎟⎠. (24)

Here we defined

�a
k = � − α2Ik

e , �b
k = �0 − β2Ik

e . (25)

This Hamiltionian may be approximately diagonalized by
pseudounitary Bogoliubov transformations in each particle-
hole subspace of a, b-type operators and a subsequent unitary
rotation in the space of isolated A, B normal modes. The
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former are given by

Ak = cosh θa
k ak + sinh θa

k a†
−k,

Bk = cosh θb
kbk + sinh θb

kb†
−k,

(26)

which preserve the bosonic commutation relations for the
Ak, Bk. The above transformation diagonalizes each diagonal
2 × 2 block in Eq. (24) when the conditions

tanh 2θa
k = −α2Ik

e

�a
k

= �a
k − �

�a
k

,

tanh 2θb
k = −β2Ik

e

�b
k

= �b
k − �0

�b
k

(27)

are fulfilled. This leads to the transformed Hamiltionian (in
A,B particle space only) in terms of A,B uncoupled normal
mode coordinates given by

H = E0 +
∑

k

(A†
k, B†

k )

(
ωA

k 2λ̃k

2λ̃k ωB
k

)(
Ak
Bk

)
,

E0 = 1

2

∑
k

[(
ωA

k − �
) + (

ωB
k − �0

)]
. (28)

Here ωA
k and ωB

k are the uncoupled normal mode frequencies,

ωA
k = [

�
(
� − 2α2Ik

e

)] 1
2 ; ωB

k = [
�0

(
�0 − 2β2Ik

e

)] 1
2 ,

(29)
which are indeed equivalent to the uncoupled exciton modes
ωe, ωe′ , respectively, of the RPA response function approach
in Eqs. (12) for the low-temperature limit. Furthermore, they
satisfy the relations

�a2
k − ωA2

k = (
�a

k − �
)2

, �b2
k − ωB2

k = (
�b

k − �0
)2

.

(30)
The coupling term in Eqs. (28) obtained through the transfor-
mation described by Eq. (26) is given by

λ̃k = − 1
2 (αβ )Ik

e

(
ua

k − va
k

)(
ub

k − ub
k

)
, (31)

with ua,b
k = cosh θa,b

k , va,b
k = sinh θa,b

k . It may be evaluated
using Eq. (27) as

λ̃k = −1

2
αβIk

e

�2
av

ωA
kωB

k

. (32)

Now a further unitary transformation in A, B particle space
can be employed according to

χ1k = cos φkAk + sin φkBk,

χ2k = − sin φkAk + cos φkBk. (33)

These are the normal mode exciton coordinates that diagonal-
ize the Hamiltonian in Eq. (24) (up to residual two-exciton
interactions), provided the condition

tan 2φk = 4λ̃k

ωA
k − ωB

k

= ±
[(

ω1k − ω2k

ωA
k − ωB

k

)2

− 1

] 1
2

(34)

is fulfilled, leading to

H = E0 +
∑

k

[ω1kχ
†
1kχ1k + ω2kχ

†
2kχ2k], (35)

where the exciton mode frequencies are finally given by

ω(1,2)k = 1
2

(
ωA

k + ωB
k

) ± [
1
4

(
ωA

k − ωB
k

)2 + 4λ̃2
k

] 1
2 , (36)

which essentially corresponds to the RPA result of Eq. (20)
for zero temperature. Obviously, the direct diagonalization
route to obtain the exciton modes is more elaborative than the
response function formalism. On the other hand, it also pro-
vides the Bloch functions χ

†
1,2k|0〉 whose creation operators

are, according to Eqs. (26) and (33), explicitly given by

χ
†
1k = cc̃aa†

k + cs̃aa−k + sc̃bb†
k + ss̃bb−k,

χ
†
2k = −sc̃aa†

k − ss̃aa−k + cc̃bb†
k + cs̃bb−k,

(37)

where we defined s = sin φk, c = cos φk and s̃a,b =
sinh θa,b

k , c̃a,b = cosh θa,b
k . They fulfill the standard bosonic

commutation relations [χnk, χ
†
n′k′] = δnn′δkk′ (n = 1, 2).

We can give explicit expressions for the transformation
coefficients in Eq. (37) in terms of the various isolated and
coupled eigenmode frequencies by eliminating the angles θa,b

k
and φk. Using Eqs. (27) and (34), we obtain

c̃a,b =
[

1

2

(
�a,b

k

ωA,B
k

+ 1)

] 1
2

, s̃a,b =
[

1

2

(
�a,b

k

ωA,B
k

− 1

)] 1
2

(38)

for the Bogoliubov transformation coefficients. Likewise,
we get

c =
[

1

2

(
1 +

∣∣ωA
k − ωB

k

∣∣
|ω1k − ω2k|

)] 1
2

,

s =
[

1

2

(
1 −

∣∣ωA
k − ωB

k

∣∣
|ω1k − ω2k|

)] 1
2

(39)

for the coefficients of the subsequent unitary transformation.
The comparison of the low excitonic modes at low tem-

perature as obtained from response function and Bogoliubov
approach is shown in Fig. 3 for the (111) direction. Control pa-
rameters are chosen such that a crossing of uncoupled modes
(dotted lines) of Eqs. (12) and (29) occurs at wave number
qc. Their hybridization leads to an anticrossing of the coupled
modes [Eqs. (16), (20), and (36)]. The full line represents
the RPA result of Eqs. (16) and (20). The inset depicts the
increase of the crossing wave number with temperature. Once
it has reached the zone boundary, the modes become gradually
decoupled due the suppression of their dispersion. At the AF
zone boundary vector Q(q/π = 1), the lower mode ω1(q)
shows incipient softening. The dash-dotted line is obtained
from the Bogoliubov result in Eq. (36) and is rather close to
the full line. There are, however, distinct differences close to
the AF point: Because the effective hybridization λ̃k [Eq. (32)]
is enhanced by a feedback effect due to the mode softening,
the latter happens more rapidly in the Bogoliubov approach.
This will also lead to a difference in the phase boundary for
the two techniques (inset of Fig. 5).

The temperature dependence of spectral functions for
TSMs of Figs. 2(a) and 2(b) obtained from RPA theory
[Eqs. (19)] is presented in Fig. 4 (left and right columns,
respectively) and shows distinctive features. Left: (i) With in-
creasing temperature, the anticrossing region moves to larger
wave vectors, concomitant with qc(T ) in Fig. 3. (ii) With de-
creasing temperature, ω1(q) becomes an incipient soft mode.
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FIG. 5. The critical temperature for induced TSM order as func-
tion of control parameters ξs for ξa < 1 and splitting ratio r = �̃/�.
Here full lines correspond to ξa = 0, dashed/dashed-dotted lines to
ξa = −0.2, 0.2 (black), and ξa = −0.3, 0.3 (blue and red, respec-
tively). Inset: PM/AF phase boundary Tm(ξα, ξβ ) = 0 for symmetric
case r = 1 from RPA (black) and Bogoliubov (green) theories.

For slightly larger ξβ , it would become unstable at lowest
temperature. Correspondingly, the dispersive width of ω2(q)
increases for lower temperatures. Right: (i) At larger tem-
peratures, the mostly flat ω3(q) low-energy mode originating
from transitions between thermally excited |1〉 and |2〉 states is
still visible, its flatness is caused by the always small thermal
population difference factor p12 (Fig. 1). For this reason, its
spectral weight also decays exponentially at low temperature
and therefore it has vanished from Fig. 4 (T/�0 = 0.1). (ii)
The ω2(q) mode now shows incipient soft mode behavior due
to slightly below-critical control parameters.

V. SOFT MODE BEHAVIOR AND CRITICAL
CONDITION FOR MAGNETIC ORDER

When temperature is lowered, the effective coupling pa-
rameters α2

T = α2 p01, β2
T = β2 p02 for the TSM of Fig. 2(a)

increase and with it the dispersive width of ω1, ω2 modes.
Eventually, one of them may touch zero at the wave vector q
where Ie(q) has its maximum, frequently (but not necessarily)
at zone center q = 0 or boundary Q = (π, π, π ). This mode
softening signifies the onset of induced excitonic FM, AF
quantum magnetism at Tm, respectively. In distinction to com-
mon magnetic order, the moments are not preformed already
at larger temperatures and order at Tm, since there are only
nonmagnetic singlet states available, but rather the creation
and ordering of moments happens simultaneously at Tm due
to off-diagonal virtual transitions between the singlets.

We first consider the soft mode condition within the
RPA response function formalism. According to Eq. (17),
it is equivalent to the divergence of the static susceptibility
χ (q, Tm)−1 → 0 which leads to the criticality condition

χ0(0, Tm) = 1

Ie(q)
. (40)

This means that the static (iωn = 0) single-ion susceptibility
given by Eq. (6) must reach a mininum value �1/Ie(q) to
achieve induced magnetic order at finite Tm. We focus on
the AF case (I0 < 0) where this is first fulfilled for the AF
wave vector q = Q. The procedure for FM (q = 0) or even
incommensurate cases are analogous.

As a reference, we recapitulate the well-known expression
for Tm in the two-singlet model [5,7,14,28] (e.g., taking off the
upper singlet-state |2〉 in Fig. 1). In this case, (Ie ≡ Ie(Q) =
−zI0 > 0):

Tm = �

2 tanh−1 1
ξα

, ξα = 2α2Ie

�
, (41)

where ξα is now the only dimensionless control parameter of
the model and at ξ c

α = 1 a quantum phase transition from para-
magnetic ξ < ξ c

α to magnetic ξ > ξ c
α ground state appears.

In the marginally critical case ξα = 1 + δ (0 < δ � 1), we
can expand Tm � �/ ln( 2

δ
) and thus the ordering temperature

vanishes logarithmically when approaching the critical value
ξ c
β (δ → 0) from above. This is a characteristic behavior of an

induced excitonic quantum magnet.
Now we consider the extended TSM cases of Fig. 2 with

generally possible parameter sets. The critical equation for Tm

[Eqs. (41)] may be written with the use of control parameters
of Eqs. (2) as

ξα p01(Tm) + ξβ p02(Tm) + ξα̃ p12(Tm) = 1. (42)

For convenience, we now define the splitting ratio r = �̃/�,
meaning � = �0/(1 + r). Then r = 1 corresponds to the
symmetric case with � = �̃ (Fig. 1) and r 	= 1 to the general
asymmetric case. Defining furthermore y = exp(�/T ), the
critical condition for induced order Eq. (40) can be written
as

(1 − ξs)yr+1
m + (1 − ξa)yr

m + (1 + ξs + ξa) = 0, (43)

then Tm = �/ ln ym is the ordering temperature with ym given
by the solution of the above algebraic equation. Note that even
in the general asymmetric TSM described by Eq. (43), there
are effectively two control parameters which are combina-
tions of the three possible parameters in Eqs. (2) according
to ξs = ξα + ξβ and ξa = ξα̃ − ξα , leading explicitly to the
expressions

ξs = 2Ie

�

(
β2

1 + r
+ α2

)
, ξa = 2Ie

�

(
α̃2

r
− α2

)
. (44)

We should remember that in the paramagnetic state, one of
the elements in the se (α, β, α̃) must be zero, corresponding
to the cases of Fig. 2. The solution of Eq. (43) for finite
Tm and general splitting ratio r is only possible numerically.
However, for discrete values like r = 1

2 , 1, 2, 3, explicit so-
lutions for Tm can be obtained but except for r = 1 are not
particularly instructive. We may also look at the limiting cases
r → 0,∞. The latter corresponds to the singlet-singlet model
and recovers the solution in Eqs. (41) while the former de-
scribes the singlet-doublet model [11] with splitting �. Its
Tm is also described by Eqs. (41) but with the replacement
ξβ → 2(α2 + β2)Ie/�.

Now we discuss two typical special cases of the TSM
model where the solution for Tm can be obtained in closed
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FIG. 6. Critical temperature as function of ξs for ξa = 2.5 > 1
for the weakly symmetric case (r = 1). Here full black line corre-
sponds to second-order transition obtained from physical solution of
Eq. (43) as in Figs. 5 and 7 and red symbols and dashed line denote
a first-order transition (cf. Fig. 8). Here T ∗ denotes the critical point.
The dashed blue line gives the lower unphysical solution of Eq. (43).
Inset: Phase diagram of induced AF order (weakly symmetric r = 1
TSM) in the control parameter plane (ξs, ξa ). For ξa < 1, the Tm = 0
phase boundary does not depend on ξa (cf. Fig. 5 and Sec. V). For
ξa > 1, T ∗ maps the line of critical points between first- and second-
order regimes and the red symbols trace the first-order transition line
Tm = 0. The blue lower corner corresponds to the inverse logarithmic
decrease of Tm/�0 evident from Fig. 5.

form from Eq. (43). These are considerably more complicated
to derive than for the two-level system but formally similar:

(i) Weakly symmetric TSM r = 1 but α̃ 	= α.
Then, Eq. (43) reduces to a quadratic equation and from its

two solutions y±
m the critical temperature may be obtained as

T ±
m = �

2 tanh−1 1
η±

s

,
1

η±
s

= y±
m − 1

y±
m + 1

. (45)

Explicitly, one obtains after some derivations,

1

η±
s

= 2ξs + ξa ± [(
4ξ 2

s − 3
) + 2ξa(2ξs − 3) + ξ 2

a

] 1
2

1 + 2ξa
,

where ξs, ξa are given by Eqs. (44) with r = 1. Instead of
directly having the control parameter ξs appearing in Tm as in
Eqs. (41), it is replaced by a function ηs(ξs, ξa). A solution for
finite T ±

m exists only when η±
s (ξs, ξa) � 1. The physical so-

lution is always Tm ≡ T −
m with ηs = η−

s . The second solution
T +

m does not exist for ξa < 1 and for ξa > 1 corresponds to the
unphysical branch with T −

m < Tm (blue dashed line in Fig. 6).
It is easy to show that η−1

s (1, ξa) = 1 for ξa � 1. Therefore,
the Tm and the phase boundary position ξs does not depend on
ξa in this case as is indeed demonstrated by Fig. 5 and inset of
Fig. 6.

(ii) Fully symmetric TSM r = 1 and α̃ = α.
This means that now ξa = 0 and only one effective control

parameter ξs remains. Tm is given by the same expression as

above but with the simplification

η−1
s = [

2ξs − [
4ξ 2

s − 3
] 1

2
]
,

ξs = 2
(
α2 + 1

2β2
)
Ie

�
,

(46)

where now ξs is the control parameter for the fully symmetric
TSM that contains both matrix elements and the splitting
� = �0/2. For a finite Tm, one must have ηs > 1 and hence
ξs > 1. In the marginal critical case ξs = 1 + δ the transition
temperature shows similar logarithmic behavior as before, but
with Tm � �/ ln( 1

δ
).

The systematic variation of Tm(ξs, ξa; r) is shown in Fig. 5
for ξa < 1. The fully and weakly symmetric cases (r = 1) dis-
cussed in detail above correspond to the full and broken black
lines in Fig. 5, respectively. In the asymmetric case (r 	= 1),
the transition temperature Tm changes considerably with the
splitting asymmetry r = �̃/�, keeping the total splitting �0

constant. When r < 1, the central state |1〉 is shifted upward,
leading to an increased effectiveness because the occupation
difference p01 increases, therefore Tm increases. The reversed
argument holds for r > 1. Furthermore, when the asymmetric
control parameter ξa is larger or smaller than zero for a given
r, the value of Tm moderately increases or decreases, respec-
tively.

For ξa > 1, when the coupling of thermally excited states
becomes important, a surprising new situation occurs (Fig. 6):
First, the second-order transition temperature Tm now stays fi-
nite for ξs < 1 and, second, at a certain critical point Tm = T ∗
it changes into a first-order transition for Tm < T ∗. This is, of
course, no longer described by Eq. (43) and its special cases
since it was obtained from the divergence of the susceptibility
at Tm. Below T ∗, this is no longer true and Tm has to be deter-
mined by solving directly the self-consistency equations for
the order parameter (Sec. VI). The resulting line of first-order
transitions is shown by red symbols and dashed line in the
main Fig. 6 for ξa = 2.5. For this value, the first-order line
stops at ξs = 0.77.

Alternatively, this variation can be combined in a contour
plot of Tm in the (ξs, ξa) control parameter plane for fixed r,
taken as the symmetric case r = 1 in the inset of Fig. 6. First,
it shows that the sector of first-order transitions bounded by
the red symbols and broken line to the left and the T ∗ > 0
line to the right widens when ξa increases, i.e., the transitions
between thermally excited states become more important.
Second, it shows explicitly the ξs independence of the second
order PM/AF phase boundary defined by Tm(ξs, ξa; r) = 0 for
ξa < 1 as already noticed before. This property may be traced
back directly to the fundamental equation for Tm given by
Eq. (43).

In this respect, it is instructive to compare the predictions
of the soft mode conditions ω2(Q) = 0 at Tm = 0 for RPA
[Eq. (20)] and Bogoliubov [Eq. (36)] approaches for consis-
tency [in the case α̃ = 0 of Fig. 2(a)]. They cannot be identical
due to the slightly different expressions for the exciton mode
dispersions. In the RPA case, one simply obtains from the
equivalent Eq. (43) in the limit ym → ∞: ξs = ξα + ξβ = 1, in
accordance with the previous discussion of symmetric models
(inset of Fig. 6 for ξa < 1). This means the effect of the
two excitations is simply additive at the phase boundary. In
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comparison, the Bogoliubov case leads to the more compli-
cated relation:

[(ξα − 1)(ξβ − 1)] = (
1
4ξαξβ

) 1
3 . (47)

For the special case ξα = ξβ = ξ , we obtain ξ = 0.5 in the
RPA approach and ξ = 0.57 in the Bogoliubov approach.
Furthermore, in both cases the boundary points (ξα, ξβ ) =
(1, 0), (0, 1) are identical for both methods. The complete
comparison of PM/AF phase boundaries Tm(ξα, ξβ ) = 0 is
shown in the inset of Fig. 5 for both methods. It demonstrates
a rather close agreement between the two technically rather
different approaches.

VI. THE INDUCED ORDER PHASE
AND ITS EXCITATIONS

We now consider the phase with induced magnetic or-
der in the TSM. To be specific, we treat only the AF case
corresponding to the soft mode with at Q = (π, π, π ). The
more direct treatment is based on the RPA approach with
the inclusion of the mean field induced order. The alternative
would be the exciton condensation picture for Bogoliubov
quasiparticles. The latter is problematic to extrapolate to the
disordered phase with temperatures considerably above Tm

due to the influence of thermally populated CEF singlets.
This is no problem for the response function approach which
will therefore be used here. As a necessary basis, we need
the mean-field self-consistency equation for the induced order
parameter. The CEF molecular field Hamiltonian is given by

Hmf
CEF = HCEF −

∑
l

he(l )Jz(l ),

he(l ) =
∑

l ′
Ill ′ 〈Jz(l ′)〉,

(48)

with the exchange model of Eq. (10) the effective molecular
field on the two AF sublattices A, B is hA,B

e = Ie〈JB,A
z 〉 where

Ie = z|I0| (I0 < 0 for AF exchange) and 〈JA,B
z 〉 = ±〈Jz〉. The

associated difference in free energy per site between induced
moment state and paramagnetic state corresponding to Eqs.
(48,1) is given by

δF/N = −Ie〈Jz〉2 − T
∑

i

(p′
i ln p′

i − pi ln pi ) (49)

where the pi are the paramagnetic CEF level occupa-
tions (Sec. II) and p′

i the occupation of levels in the AF
state, renormalized by the molecular field. Explicitly, p′

i =
Z ′−1 exp(−E ′

i /T ) (Z ′−1 = ∑
i exp(−E ′

i /T )). The modified
molecular field CEF energies E ′

i and eigenstates |ψ ′
i 〉 are de-

rived and discussed in Appendix B.

A. Order parameter and saturation moment

Calculating the diagonal (elastic) matrix elements of Jz

within the mf eigenstates |ψ ′
i 〉 the selfconsistency equation of

the order parameter may be given as

〈Jz〉T = 2
∑

i

p′
i[βuiwi + vi(αui + α̃wi )]. (50)

The primed quantities generally refer to the mf values in
the ordered state with nonvanishing 〈Jz〉. The latter appears

FIG. 7. Temperature dependence of inverse normalized suscep-
tibility in the paramagnetic phase (black) and order parameter
(induced moment 〈Jz〉) in the AF phase (red) normalized to m0 =
(α2 + β2)

1
2 . The transition for ξs = 1.02 and ξa = −0.2 is of second

order (Fig. 5). The moment appears due to the mixing of excited |1〉
and |2〉 into the mf ground state |ψ0〉 [Eq. (B4)]. Their coefficients
v0, w0 are shown as broken blue lines[scheme as Fig. 2(a)].

implicitly in Eq. (50) through the mf energy levels E ′
i and

the coefficients (ui, vi,wi ), i = 0, 1, 2 of the wave functions
|ψ ′

i 〉. The resulting temperature dependence of the AF order
parameter 〈Jz〉 below Tm together with the paramagnetic in-
verse static RPA susceptibility χ−1(0, T ) above Tm is shown
in Fig. 7 for a value of ξa < 1 that results in a second-order
transition. The divergence of χ (0, T ) at Tm triggers the ap-
pearance of the induced moment 〈Jz〉. The latter is due to the
mixing of excited |1〉, |2〉 CEF states into the mf ground state
|ψ0〉 [Eq. (B4)]. The figure also displays the T dependence of
self-consistent admixture coefficients v0,w0 of excited states
|1〉, |2〉 into the molecular field ground state |ψ ′

0〉 according
to Eq. (B4). In contrast, the similar Fig. 8 presents the case
of the first-order transition (ξa > 1) for two different Tm.

FIG. 8. Same as Fig. 7, now for ξs = 0.85, 0.83(full and broken
black/red lines) and ξa = 2.5 when the transition is of first order
(Fig. 6) with jump in 〈Jz〉. Note that susceptibility above Tm does
not diverge due to first-order character. Ground-state admixture co-
efficients v0, w0 (broken blue lines) also jump to finite values at Tm

[scheme as Fig. 2(b)].
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FIG. 9. Normalized saturation moment 〈Jz〉T =0/m0 with m0 =
(α2 + β2)

1
2 , transition temperature Tm/�0, and their ratio as function

of ξs. Matrix elements α, β, α̃ as in Fig. 7 for weakly symmetric
case with r = 1. Here the interaction constant Ie is varied leading
to concomitant variation of ξs and ξa. The ratio shows steep decrease
close to quantum critical point [scheme as Fig. 2(a)].

There the susceptibility χ (0, T ) no longer diverges at Tm and
the order parameter 〈Jz〉 and admixture coefficients jump to a
finite value. From tracing 〈Jz〉 = 0 for different ξs, the first-
order transition line in the inset of Fig. 6 (red symbols) may
be obtained.

The saturation moment at zero temperature is obtained
from Eq. (50) as

〈Jz〉T =0 = 2u0(αv0 + βw0), (51)

where on the r.h.s the index zero refers to the ground state
|ψ ′

0〉. For the TSM, this equation cannot be solved explicitly
for 〈Jz〉 since the latter enters on the r.h.s in a complicated
manner in the mixing coefficients and associated mf energies
(see Appendix B). As a reference, we give the expression for
the two-singlet case (discarding the state |2〉 for the moment)
where it can be derived [14] explicitly as

〈Jz〉T =0 = α
1

ξα

(
ξ 2
α − 1

) 1
2 =

{
α ξα � 1

α(2δ)
1
2 ξα � 1 + δ.

(52)

Thus the saturation moment and its ratio to the transition
temperature (〈Jz〉T =0/α)/(Tm/�) = (2δ)

1
2 ln( 2

δ
) → 0 vanish

when the induced magnet is close to the quantum critical
point, i.e., δ → 0. This is in marked contrast to a conven-
tional semiclassical (degenerate S = 1

2 ) magnet [1] where the
corresponding ratio is constant, given by 〈Sz〉T =0/(Tm/Ie) = 1
in that case. This peculiar dependence of saturation moment
and its ratio with the transition temperature on the control
parameters is also apparent in the TSM [Eq. (51)] as presented
in Fig. 9. The saturation moment (now normalized to m0 =
(α2 + β2)

1
2 ) increases with square-root-like behavior above

the critical parameter ξ c
s = 1 approaching unity for ξs � 1.

Because Tm varies only logarithmically for ξs → ξ c
s the ratio

of both quantities (blue line) first increases and the rapidly
drops to zero.

FIG. 10. Exciton dispersions for three temperatures above, equal
and below the AF transition temperature at Tm � 0.175. The soft-
ening of the critical mode ω2(q) at the zone boundary AF point
Q = (π, π, π ) is reversed below Tm into a hardening with decreas-
ing temperature (cf. Fig. 11). Here we have above-critical values
ξs = 1.02, ξa = −0.2 [scheme as Fig. 2(a)].

B. Collective excitations in the AF phase

With 〈Jz〉 determined, we now may compute the renormal-
ized excitation spectrum in the RPA approach in the induced
moment phase. For this purpose, we need the renormalized
local CEF energy differences E ′

i j = E ′
i − E ′

j of molecular
field states [Eqs. (B2)] and the inelastic matrix elements
between them which lead to renormalized matrix elements
α′, β ′, α̃′, which are now generally all nonvanishing be-
cause 	 is broken (Appendix B). In addition, we define
modified effective temperature-dependent parameters α′2

T =
α′2 p′

01, β ′2
T = β ′2 p′

02, α̃′2
T = α̃′2 p′

12 analogous to Eqs. (13).
With the replacements (�,�0, �̃) → (E ′

10, E ′
20, E ′

21) and
(α2

T , β2
T , α̃2

T ) → (α′2
T , β ′2

T , α̃′2
T ), the exciton mode frequencies

in the induced AF ordered phase may be obtained from
Eqs. (12) and (16) by substitution.

An example of the temperature dependence of the exciton
dispersions ω1,2 is presented in Fig. 10 using the parameter
set of Fig. 7 (second-order case) for temperatures above, at,
and below Tm. The flat mode ω3 in Fig. 3 which has vanishing
intensity is not shown here. The ω1 dispersion displays the
typical soft-mode behavior when temperature is lowered down
to Tm (dashed, full lines). However, immediately below Tm, the
dispersion shifts to finite frequency again (dash-dotted).

The corresponding continuous temperature dependence for
the Q = (πππ ) soft mode with the same parameter set and
another subcritical one for comparison is shown in Fig. 11.
In the latter (broken lines), the zone boundary ω1(Q) mode
softens but then stays flat with lowering temperature while
the upper mode ω2(Q) is practically constant, see also Figs. 3
and 4. When ξs is above critical value (as in Fig. 10), ω1(Q)
now actually hits zero, triggering the onset of AF order shown
in Fig. 7. Once the molecular field he becomes finite and
increases the splittings between renormalized levels at E ′

i , the
critical mode ω1(Q) is again stabilized to finite frequencies al-
ready seen in Fig. 10 for T < Tm. On the other hand, the upper
mode for the parameters used shows very little temperature
effect. It is certainly possible to fine tune the parameters such
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FIG. 11. Temperature dependence of zone boundary exciton
modes ω1,2(Q) for subcritical value ξs = 0.8 (broken lines) and
above-critical value ξs = 1.02 (ξa = −0.2 for both). The critical
mode ω1 (connected with the |1〉 ↔ |2〉 transition) softens at Tm but
rebounds immediately below. The upper mode is hardly affected by
AF order (cf. Fig. 10) [scheme as Fig. 2(a)].

that both modes of the TSM become critical or closely so, but
this seems rather artificial and, physically, one normally has to
deal with just one critical mode as is the case, e.g., in the cubic
singlet-triplet system Pr3Tl [9]. From the above discussion, it
is clear that the softening of the critical mode in the case of a
first-order transition is arrested at a finite energy value.

VII. SUMMARY AND CONCLUSION

In this paper, we have given a complete survey of a
most general extended TSM of induced moment quantum
magnetism. It consists of three nonmagnetic CEF singlets
coupled by nondiagonal matrix elements of one of the an-
gular momentum components constrained by time reversal
	. Such low-lying TSM configurations occur frequently in
rare earth or actinide compounds with 4 f 2 or 5 f 2 or other
even occupation f-electron configurations. The model may be
characterized by three individual (ξα, ξβ, ξα̃ ) but effectively
two (ξs, ξa) dimensionless control parameters, involving the
CEF splittings, nondiagonal matrix elements, and intersite
exchange.

We used two approaches to calculate the elementary ex-
citation spectrum as a function of control parameters; the
response function RPA formalism and the Bogoliubov quasi-
particle approach. They agree on the basic properties of the
magnetic exciton dispersions and their soft mode behavior as
function of (ξs, ξa). While the latter approach is only practical
at low temperature ranges but gives the Bloch states of exciton
bands, the RPA formalism covers all temperatures and, in
particular, the mode softening as a function of temperature and
the criticality condition for the onset of induced magnetism as
function of (ξs, ξa).

As an aspect of the TSM, we showed that for suitable con-
trol parameters a temperature-induced hybridization of modes
takes place with an anticrossing of the two exciton dispersions
resulting from excitations out of the ground state. On the other

hand, a possible thermally excited mode stays dispersionless
and is only visible at elevated temperatures.

The criticality condition leads to an equation for the depen-
dence of ordering temperature on control parameters which
may be solved explicitly for Tm in the weakly and partly
symmetric cases. For ξa < 1, the condition for a finite induced
ordering temperature is always given by ξs > 1, independent
of the values of ξa and the splitting ratio r. Furthermore, in
this case, the transition is always of second order as evi-
denced by the calculation of paramagnetic susceptibility and
temperature-dependent order parameters.

Another possibility not observed in the singlet-singlet
case arises for the phase diagram and magnetic ordering
temperature Tm(ξs, ξa) for ξa > 1, which means that the ther-
mally excited nondiagonal processes are important. Then the
second-order transition at Tm extends to control parameter
ξs < 1 and finally turns into a first-order transition at the criti-
cal point T ∗, as demonstrated by the behavior of susceptibility
and order parameter temperature dependence.

The latter is obtained from the mean-field self-consistency
equations. The resulting molecular field enters into the dy-
namics via renormalized local CEF energies and nondiagonal
matrix elements. Their influence leads to a resurgent stiffening
of the soft mode immediately below Tm, which mimics the or-
der parameter. The stiffening is continuous when the transition
at Tm is of second order and has a jumplike behavior for the
first-order transitions.

These predicted features may play a role in real Pr-
and U-based singlet excitonic magnets and deserve further
experimental investigations. This also refers to pressure exper-
iments. The latter may change the CEF splittings and matrix
elements, and hence the control parameters, and therefore may
allow us to tune between the different phases found in this
TSM investigation.

APPENDIX A: EXAMPLE: THREE SINGLET MODEL
FROM TETRAGONAL (D4h) f 2 (J = 4) CEF STATES

As a concrete example for tetragonal D4h TSM, we discuss
a TSM-level scheme derived from the J = 4 ninefold degen-
erate total angular momentum multiplet relevant for 4 f 2 and
5 f 2 configurations. In the D4h point group CEF environment,
there are five singlets and two doublets [18,32]. This fact rests
solely on the symmetry reduction of the total angular momen-
tum representation of the full rotation group corresponding to
J = 4 to the D4h representations �

(1)
1 , �

(2)
1 , �2 [singlet group

s1(+1)], �3, �4 [singlet group s2(−1)], and (non-Kramers)
doublets �

(1)
5 , �

(2)
5 (0)) where the number in parentheses in-

dicates the character of the representation under C4 rotation.
The wave functions and sequences of singlet and doublet

energies in a concrete case are then to be obtained, in the
simplest manner, by a local CEF Hamiltonian derived from
a point charge model (PCM) [33,34] describing the crys-
tal environment and expressed in standard Steven’s operator
technique. Thereby, the PCM parameters are commonly con-
sidered as free parameters to be determined from experiment
(e.g., temperature dependence of susceptibility and INS peak
positions and intensities). The energies Ei and wave functions
|i〉 [i = 1...(2J + 1)] of CEF multiplets are then determined
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by the five Bmn (mn) = (20), (40), (44), (60), (64)) CEF pa-
rameters for D4h symmetry.

For example, in URu2Si2, it was originally proposed by
Santini and Amoretti [17] that the lowest states are the three
singlets of group s1. Explicitly, they are expressed in terms of
|Jz = M〉 free ion states (z refers to the tetragonal axis) as

∣∣�(1)
1

〉 = cos θc|0〉 + sin θc
1√
2

(|4〉 + | − 4〉),

∣∣�(2)
1

〉 = − sin θc|0〉 + cos θc
1√
2

(|4〉 + | − 4〉),

|�2〉 = 1√
2

(|4〉 − | − 4〉). (A1)

Within the PCM, their energies, referenced to the center of
gravity of the three singlets, are given by [18]

E
(
�

(1,2)
1

) = δ

(
1

3
± 1

cos 2θc

)
, E (�2) = −2

3
δ, (A2)

where δ is a splitting parameter and θc a �1 mixing parameter
(0 � θc � π

2 ) both determined by the Bmn. This means within
the local CEF-PCM, one should have two possible singlet
(s1) sequences |0〉 − |1〉 − |2〉 given by (1) �

(1)
1 − �2 − �

(2)
1

or inversely (2) �
(2)
1 − �2 − �

(1)
1 , depending on the size of θc

and the sign of δ. Therefore, �2 should always lie between the
two �

(1,2)
1 singlets. At the most, it can be accidentally degen-

erate with the lower (δ > 0) or upper (δ < 0) �
(1,2)
1 singlet

for θc = 0, π
2 . Recent NIXS experiments [32] advocate that

sequence 1 is realized with θc � π/2. On the other hand, an
alternative sequence with a �2 ground state and �

(1,2)
1 excited

singlets different from the simple CEF model has also been
proposed from both experiments and DMFT theory [26,35]. In
the above TSM, only Jz has matrix elements and for sequence
1 they are given by (cf. Fig. 1)

(α, β, α̃) = (4 sin θc, 0, 4 cos θc), (A3)

and α, α̃ interchanged for sequence 2. As in the orthorhombic
case (Sec. II A), the dipolar matrix element between states
with equal time-reversal symmetry (here �

(1,2)
1 with β =

〈0|Jz|2〉) vanishes. Thus, staying strictly within the PCM, the
tetragonal TSM can only support one of the possible dipolar
excitation models shown Fig. 2(c). Therefore, the more flex-
ible lower orthorhombic symmetry which should enable all
cases in Fig. 2 has been chosen in Sec. II A.

APPENDIX B: MOLECULAR FIELD ENERGIES, STATES
AND MATRIX ELEMENTS IN THE INDUCED AF PHASE

In this Appendix, we calculate the local mean-field ener-
gies, eigenstates, and matrix elements in the ordered AF phase
characterized by a self-consistent order parameter 〈Jz〉 =
〈Jz〉A = −〈Jz〉B given by Eq. (50) where A,B denote the AF
sublattices. The total local Hamiltonian of Eq. (48) may be
written explicitly as

Hmf
CEF =

⎛
⎝−� −αe −βe

−αe 0 −α̃e

−βe −α̃e �̃

⎞
⎠, (B1)

with αe = αhe, βe = βhe and α̃e = α̃he. Here he = Ie〈Jz〉 is
the molecular field and we abbreviate Ie = Ie(Q) = −zI0 > 0
with Q = (π, π, π ) the AF ordering vector. The eigenvalues
E ′

i (he) of the molecular field Hamiltonian are then again given
by the solutions of the cubic secular equations (i = 0, 1, 2):

E ′
i = 2

( |p|
3

) 1
2

cos

(
ϕ

3
+ ϕ0

)
− a

3
,

ϕ = cos−1

[
− q

2

( |p|
3

)− 3
2
]
, (B2)

where ϕ0 = 2π
3 , ϕ1 = 4π

3 , ϕ2 = 0, and p = 1
3 (3b − a2); q =

2
27 a3 − 1

3 ab + c; with the cubic secular equation parameters
defined by

a = � − �̃,

b = −[
��̃ + (

α2
e + α̃2

e + β2
e

)]
,

c = α2
e �̃

2 − α̃2
e � + 2αeα̃eβe. (B3)

We formally keep the last term in c although it must vanish
identically because one of the matrix elements has to be
equal to zero due to time-reversal symmetry (Sec. II A). The
phases ϕi are denoted such that for the paramagnetic case
with he = 0 we recover E ′

i = Êi = −�, 0, �̃ for i = 0, 1, 2
consecutively, corresponding to the sequence in Fig. 1. The
associated molecular field orthornormal eigenvectors are

|ψ ′
i 〉 = ui|0〉 + vi|1〉 + wi|2〉. (B4)

These coefficients may be obtained for the general model by
elimation from the eigenvalue equation Hmf

CEF|ψ ′
i 〉 = E ′

i |ψ ′
i 〉. It

is convenient to introduce the auxiliary factors

ρi = αe(�̃ − E ′
i ) + α̃eβe

E ′
i (�̃ − E ′

i ) + α̃2
e

, ρ̃i = βeE ′
i − α̃eαe

E ′
i (�̃ − E ′

i ) + α̃2
e

. (B5)

Then the coefficients of the mf eigenfunctions are given by

ui = (1 + ρ2 + ρ̃2)−
1
2 , vi = −ρiui; wi = ρ̃iui. (B6)

For the nondiagnonal matrix elements 〈ψi|Jz|ψ j〉 (i 	= j), we
obtain

α′ = α(u0v1 + v0u1)+ β(u0w1 + w0u1)+ α̃(v0w1 + w0v1),

β ′ = α(u0v2 + v0u2)+ β(u0w2 + w0u2)+ α̃(v0w2 + w0v2),

α̃′ = α(u1v2+ v1u2)+ β(u1w2 + w1u2)+ α̃(v1w2 + w1v2).

(B7)

We note that in the ordered state with 	 symmetry broken,
all (α′, β ′, α̃′) are nonzero due to the mixing of singlets by the
molecular field, although one element of the set (α, β, α̃) must
always vanish due to 	 symmetry in the nonmagnetic case.
In the discussion of numerical results in Sec. VI, we restrict
to the case α = 0 corresponding, e.g., to Fig. 2(b). From
these matrix elements, the renormalized effective T-dependent
matrix elements (α′2

T , β ′2
T , α̃′2

T ) (see Sec. VI) which appear in
the dispersions ω′

i(q) and spectral function of χ0(q, iωn) in the
AF-ordered phase may be calculated in analogy to Eqs. (13).
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