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The key to unraveling intriguing phenomena observed in various Kitaev materials lies in understanding the
interplay of Kitaev (K) interaction and a symmetric off-diagonal � interaction. To provide insight into the
challenging problems, we study the quantum phase diagram of a bond-alternating spin- 1

2 gx-gy K-� chain by
density-matrix renormalization-group method where gx and gy are the bond strengths of the odd and even bonds,
respectively. The phase diagram is dominated by even-Haldane (gx > gy) and odd-Haldane (gx < gy) phases
where the former is topologically trivial while the latter is a symmetry-protected topological phase. Near the
antiferromagnetic Kitaev limit, there are two gapped Ax and Ay phases characterized by distinct nonlocal string
correlators. In contrast, the isotropic ferromagnetic (FM) Kitaev point serves as a multicritical point where two
topological phase transitions meet. The remaining part of the phase diagram contains three symmetry-breaking
magnetic phases. One is a sixfold degenerate FMU6 phase where all the spins are parallel to one of the ±x̂, ±ŷ,
and ±ẑ axes in a six-site spin-rotated basis, while the other two have more complex spin structures with all the
three spin components being finite. Existence of a rank-two spin-nematic ordering in the latter is also discussed.
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I. INTRODUCTION

The enigmatic quantum spin liquid (QSL) has drawn a
lot of attention ever since the seminal work of Anderson
in 1973 [1]. In 2006, Kitaev proposed an exactly solvable
spin- 1

2 model on the honeycomb lattice and demonstrated that
its ground state is an exotic QSL with emergent Majorana
fermion excitations [2]. The past decade has witnessed a surge
of interest in realization of the Kitaev honeycomb model on
real materials with 4d or 5d magnetic ions, which includes
iridates and α-RuCl3 (see Refs. [3–5] and referees therein).
However, because of the inevitable non-Kitaev interactions,
e.g., the Heisenberg interaction and a symmetric off-diagonal
exchange � interaction [6], these materials are shown to
display magnetic orders at lowest temperatures [7–10]. Nev-
ertheless, it is believed that the effective K-� model is the
dominant ingredient to describe α-RuCl3 [11].

From a theoretical point of view, although the quantum
phase diagram of the K-� model on a honeycomb lattice
is elusive, several magnetically ordered phases and distinct
QSLs are demonstrated to exist [6,12–16], indicating the
strong quantum fluctuation enhanced by competing interac-
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tions. Given the notorious difficulty in two dimension, it is
beneficial and constructive to reduce the dimensionality where
many full-fledged analytical and numerical methods capable
of addressing problems in one-dimensional (1D) quantum
spin chains are available. Recently, the phase diagram of the
isotropic K-� chain has been studied by the density-matrix
renormalization-group (DMRG) method and the non-Abelian
bosonization technique [17,18]. It is shown that about 2/3 of
the phase diagram is occupied by a gapless Luttinger liquid
(LL). The ferromagnetic (FM) Kitaev limit is merely a transi-
tion point, while a critical segment near the antiferromagnetic
(AFM) Kitaev limit is identified. Two symmetry-breaking
phases termed the FMU6 phase and the M2 phase (see Fig. 2 for
the nomenclature of the magnetically ordered phases) are also
reported. Later on, it is found that FM and AFM Heisenberg
interactions could open up a wide region of the FMU6 phase
and the LL, respectively [19]. However, how to enlarge the
territory of the puzzling M2 phase is still unclear. Aligning
with this effort, a two-leg K-� ladder under a [111] magnetic
field is also studied, revealing a rich phase diagram with
several emergent phases [20].

Aside from the exotic phases and quantum criticality,
quantum spin chains also provide an excellent platform
for theoretical studies of various quantum phase transitions
(QPTs) [21], of particular interest is the topological QPT that
is beyond Landau’s paradigm. The topological QPT occurs
between two different phases without any explicit symmetry
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breaking [22–25]. The Haldane phase is such an example
of symmetry-protected topological (SPT) phase [26], which
possesses a nonlocal string order parameter (SOP) due to a
hidden Z2 × Z2 symmetry breaking [27,28]. Dating back to
1992, Hida originally pointed out that the bond-alternating
spin- 1

2 Heisenberg chain could host the Haldane phase due to
the imbalance of the neighboring coupling intensities, leading
to the formation of either total spin 0 or 1 out of the two
spin- 1

2 degrees of freedom [29]. Therefore, bond alternation
is a practical route to legalize the validity of the SPT phase
in spin- 1

2 chains [30]. We also note that the anisotropic Kitaev
spin chain hosts two disordered phases which undergo a direct
transition at the isotropic point [31,32]. These observations
motivate us to investigate the ground-state properties of the
K-� chain by altering the bond strength of adjacent sites.

In this paper, we study the phases and QPTs of a bond-
alternating S = 1

2 K-� chain. When � = 0, it is the Kitaev
spin chain, otherwise known as the exactly solvable 1D
quantum compass model (QCM) [31,32]. Beyond that it is
nonintegrable except for some special points and lines when
|K| = |�|. Therefore, we resort to the DMRG method [33–35]
to map out the quantum phase diagram. The phase boundaries
are determined by various quantities including the energy gap
and entanglement entropy. The central charge is calculated to
distinguish the universality class of a continuous QPT.

The structure of the paper is as follows: In Sec. II we
introduce the theoretical model under investigation, analyze
the symmetry properties, and present the phase diagram of
interest. Following this, we study two topological QPTs in
Secs. III and IV. Section V presents the magnetic order
parameters of symmetry-breaking phases. In Sec. VI we
study the transitions between the left and right panels of the
phase diagram. We conclude with a summary in Sec. VII.
Finally, a brief review of the diagonalization of QCM and
some other useful contents are presented in the Supplemental
Material [36].

II. MODEL AND METHOD

We consider a bond-alternating spin- 1
2 K-� chain with

H =
L/2∑
l=1

gxH(x)
2l−1,2l (θ ) + gyH(y)

2l,2l+1(θ ), (1)

where L is the chain length, gx (gy) is the odd (even) bond
strength, and

H(γ )
i, j (θ ) = KSγ

i Sγ
j + �

(
Sα

i Sβ
j + Sβ

i Sα
j

)
. (2)

Here, K and � are the Kitaev interaction and the off-diagonal
exchange interaction, respectively. γ could be either x or y
and it specifies the spin direction associated with the referred
bond, see Fig. 1(a). For each γ bond, α and β are the two
remaining mutually exclusive spin directions. In what follows
we parametrize K = sin θ and � = cos θ with θ ∈ (−π, π ].

Before carrying out numerical calculation, let us analyze
the symmetries in the parameter space which will reduce
the computational cost. Akin to the transverse-field Ising
model [37], the model (1) owns a duality relation which
could be seen by applying the spin rotation transforma-
tion (Sx

i , Sy
i , Sz

i ) → (−Sy
i ,−Sx

i ,−Sz
i ). This implies that each

FIG. 1. (a) Sketch of the bond structure in the original form.
Here, x (red) and y (green) stand for the γ index and the width is
proportional to the bond strength. (b) Pictorial bond structure of the
Hamiltonian in the rotated basis. The overhanging bond at each site is
determined by the remaining one along the chain. The shaded region
represents the six-site unit cell.

eigenvalue E of H satisfies the relation

E (g) = gE (1/g), (3)

where g ≡ gy/gx is the relative bond strength. On the other
hand, by virtue of a global spin rotation around the z axis by π ,
(Sx

i , Sy
i , Sz

i ) → (Sy
i ,−Sx

i , Sz
i ), the Kitaev interaction remains

uninfluenced whereas the sign of the � interaction is altered
[17]. We thus instantly find that

E (K, �) = E (K,−�), (4)

or, equivalently, θ �→ π − θ . These relations in Eq. (3) and
Eq. (4) allow us to focus on the phase diagram primarily in the
reduced parameter range θ ∈ [−π/2, π/2] and g = gy/gx ∈
[0, 1] and then map out the whole phase diagram shown in
Fig. 2.

Using a site-ordering cross decimation rotation with a pe-
riodicity of six sites, all the cross terms of Sα

i Sβ
j with α �= β

in Eq. (2) will vanish [17]. This U6 transformation is given by

sublattice 1 : (x, y, z) → (x̃, ỹ, z̃),

sublattice 2 : (x, y, z) → (−x̃,−z̃,−ỹ),

sublattice 3 : (x, y, z) → (ỹ, z̃, x̃),
(5)

sublattice 4 : (x, y, z) → (−ỹ,−x̃,−z̃),

sublattice 5 : (x, y, z) → (z̃, x̃, ỹ),

sublattice 6 : (x, y, z) → (−z̃,−ỹ,−x̃),

where γ [=x(x̃), y(ỹ), z(z̃)] denotes the spin component of
Sγ (S̃γ ). Under this transformation the original Hamiltonian
acquires the following form [17]:

H̃(γ )
i, j (θ ) = −KS̃γ

i S̃γ
j − �

(
S̃α

i S̃α
j + S̃β

i S̃β
j

)
, (6)

in which the bonds γ = x̃ (red), z̃ (blue), and ỹ (green) cir-
cularly, as depicted in Fig. 1(b). S̃ = (S̃x

i , S̃y
i , S̃z

i ) is the spin
operator in the rotated basis. Such a U6 transformation does
not alter the energy spectra (i.e., energy and its degeneracy)
but simplifies the spin-spin correlation functions. Therefore,
we will preferentially focus on the rotated Hamiltonian in
Eq. (6) unless stated explicitly otherwise. The exceptions
are Secs. IV and VI, where it is convenient to calculate
the correlation functions in the original basis. In addition,
combining Eq. (4), it is apparent that Eq. (6) has an SU(2)
symmetric structure when |K| = |�|. Specifically, in the range
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FIG. 2. Quantum phase diagram of the bond-alternating spin-
1
2 K-� chain with K = sin θ and � = cos θ . The green thick line
marked by circled1 is the isotropic K-� chain, and the black solid
circles at θ = π/4 and −π/4 represent the hidden SU(2) FM and
AFM Heisenberg chains, respectively. The asterisk (∗) in the vertical
line represents a multicritical point. There are seven distinct phases
in the right panel which are the main focus of the paper. The EH-OH
transition and Ax-Ay transition are continuous with a central charge
of c = 1 and 1

2 , respectively. The nature of the magnetically ordered
states, the FMU6 phase, the M1 phase, and the M2 phase, are clarified
in a six-site U6 rotated basis. See the main text for details.

θ ∈ [−π/2, π/2], the point θ = −π/4 and π/4 corresponds
to an AFM and FM Heisenberg chain, respectively.

The numerical calculations are performed by the DMRG
method [33–35], which is a powerful technique for 1D many-
body problems. Periodic boundary conditions (PBCs) are
preferred to weaken the finite-size effect and open boundary
conditions (OBCs) are also adopted occasionally for compar-
ison. We keep up to 2000 states so as to ensure a typical
truncated error of ≈10−7 or less. The chain length L is strictly
considered to be the multiple of six, consistent with the struc-
ture of the unit cell and the U6 transformation.

The resultant phase diagram is shown in Fig. 2, which has a
salient feature of mirror (left-right) symmetry. Focusing on the
right half circle, it harbours seven distinguishing phases. Four
of them, i.e., the even-Haldane (EH) and odd-Haldane (OH)
phases and the Ax and Ay phases [2], are disordered and could
be characterized by nonlocal SOPs of different kinds. The rest
are three magnetically ordered phases named the FMU6 phase
and the M1 and M2 phases. The FMU6 phase is collinear in
the rotated basis and exhibits sixfold degeneracy. The M1 and
M2 phases show more complex spin patterns where all three
spin components are finite. For the M1 phases, it is stabilized
at the region where g � 1/

√
3 or g �

√
3 and one of the spin

components is dominantly the biggest. For the M2 phases, it
locates around the very isotropic line of g 
 1 where K/� > 1
and two of its spin components are almost the same and is
larger than the third.

III. EVEN-HALDANE–ODD-HALDANE TOPOLOGICAL
QUANTUM PHASE TRANSITION

Straightforwardly, when θ = −π/4, Eqs. (1) and (6)
turn out to be a bond-alternating AFM Heisenberg chain
[29,38–41]. It is well-established that there is a topological
EH-OH transition at g = 1 with a central charge c = 1 [40].
For either g < 1 or g > 1, the ground state could be char-
acterized by a SOP which is nonzero inside the phase but
vanishes otherwise (see Sec. II in the Supplemental Material
[36]). Specifically, the two phases could be distinguished by
the even- and odd-SOPs which are defined as [29]

Oα
e = lim

| j−i|→∞
Oα (2i, 2 j + 1), (7)

and

Oα
o = lim

| j−i|→∞
Oα (2i − 1, 2 j), (8)

where

Oα (p, q) = −4

〈
S̃α

p

( ∏
p<r<q

eiπ S̃α
r

)
S̃α

q

〉
. (9)

Here, α = x, y, z. The even-SOP Oα
e is calculated from an

even site (2i) to an odd site (2 j + 1) while the odd-SOP
Oα

o is measured from an odd site (2i − 1) to an even site
(2 j). At the critical point g = 1, both SOPs are identical and
decay as Oe/o ∼ L−1/4 [42]. From a topological perspective,
the EH phase is trivial while the OH is a SPT phase which
is isomorphic to the ground state of the spin-1 Heisenberg
chain [24]. For the OH phase, its ground state is unique under
PBC but has a fourfold degeneracy under OBC because of
two edge spin 1

2 s. In addition, the degeneracy of the lowest-
lying entanglement spectrum is twofold (fourfold) under OBC
(PBC) [43].

As shown in Fig. 2, the EH and OH phases extend to a large
region of the parameter space. To demonstrate it, we focus on
the line of θ = 0, which is the �-chain limit. We begin by
studying a so-called bulk entanglement gap �S [44], which
comes from the even-odd oscillation of the entanglement en-
tropy SL(l ) = −Tr(ρl ln ρl ) where ρl is the reduced density
matrix of the subsystem with a contiguous spatial segment
l [45]. Depending on whether l  1 is odd or even, SL(l )
saturates to a constant value of S1 and S2, respectively. The
bulk entanglement gap is thus defined as �S = S2 − S1 [44].
Figure 3(a) shows S1 (open symbols) and S2 (fill symbols)
for the chain length L = 48, 96, and 144. For these lengths
chosen, S1 corresponds to cut one strong valence bond consis-
tently, while S2 stands for cutting a strong valence bond zero
time or twice when g < 1 or g > 1, respectively. This implies
that the bulk entanglement gap �S/ ln 2 tends to be −1 or
1 in the limiting case where g → 0 or g → ∞, respectively
[see Fig. 3(b)]. Near the critical point, S1 
 S2 and thus
�S 
 0. Moreover, defining δ = g−1

g+1 , the quantity scales as

�S ∼ ln 2 − (1 − |δ|)2 when away from criticality, whereas
�S ∼ −δ ln |δ| when close to criticality [44]. Therefore, the
value of �S is bounded to ± ln 2 and its sign W = sgn(�S )
could be used to characterize the corresponding topological
sector. The sign change (e.g., from W = −1 to 1) is a signal
for the topological QPT.
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FIG. 3. (a) Entanglement entropy S1 (open symbols) and S2

(filled symbols) of different cuts for the gx-gy � chain with θ =
0.00π . The chain length L is 48 (red circles), 96 (green triangles),
and 144 (blue squares). (b) Bulk entanglement gap �S in the same
region as in panel (a). W = −1 and 1 are the sign of �S when g < 1
and g > 1, respectively.

To further reveal the nature of phases at different topolog-
ical sectors, we measure the even-SOP Oz

e [see Eq. (7)] and
odd-SOP Oz

o [see Eq. (8)]. It is clearly shown in Fig. 4(a) that
Oz

e (Oz
o) is finite when g < 1 (g > 1) and is vanishingly small

FIG. 4. (a) SOPs of the even type Oz
e (open symbols) and odd

type Oz
o (filled symbols) for the gx-gy � chain with θ = 0.00π . The

inset shows the asymptotic decay of SOP O at gx = gy. (b) Energy
gap �L in the same region as in panel (a). Inset shows the linear
extrapolation of the energy gap at gx = gy.

FIG. 5. (a) Behavior of the energy density w = Eg(L)/L for the
isotropic � chain under OBC (black) and PBC (red). The inset shows
the six-site periodicity of w under PBC. Panels (b) and (c) show
the estimate of eg for the isotropic � chain under OBC and PBC,
respectively. The roman numerals I (green and red) and II (blue)
mark two different methods illustrated in the text.

otherwise. The finite-size effects of Oz
e and Oz

o are very weak,
except for a narrow window that is close to the critical region.
As shown in the inset, both types of SOPs Oz

e and Oz
o decay

algebraically as L−α where the critical exponent α ≈ 0.26,
which is fairly close to the value of 1/4 at θ = −π/4 [42].
For an infinite-size system, SOPs Oz

e and Oz
o scale as δ1/6

[29]. As a result, the critical exponent is given as β = 1/12
because O ∝ δ2β . Hence, this topological QPT belongs to the
Gaussian universality class. We also calculate the excitation
gap �T , which is defined as the energy difference between
the first-excited state and the ground state. Figure 4(b) shows
that �T is very robust when g �= 1. Near g = 1, it has a
pronounced drop with size increased. As shown in the inset,
�T is zero when L → ∞, showing that the ground state of the
isotropic � chain is critical. To extract the central charge c, we
calculate the von Neumann entanglement entropy SL(L/2) for
a series of chain length L and the central charge is fit by SL =
c
3 ln(L/π ) + c′. Our best fitting suggests that c 
 0.997(5)
(not shown), which is very close to 1 of the LL.

Figure 5(a) displays the energy density Eg/L of the
isotropic �-chain under OBC (black triangles) and PBC (red
circles). For the OBC case, Eg/L decreases smoothly and
saturates around −0.30 as L increases. In contrast, it is not
monotonically increasing but exhibits an oscillation with six-
site periodicity for the PBC (see inset). As a comparison,
we note that such an abnormal energy density behavior is
absent in the isotropic Kitaev spin chain (see Fig. 1 in the
Supplemental Material [36]). This phenomenon in the � chain
is striking and may be related to the unusual energy behavior
of the � model on the honeycomb lattice [15]. In Ref. [15]
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the total energy Eg is calculated on a series of honeycomb
clusters where OBC (PBC) is utilized on the Lx (Ly) direction
of cylinders. For any cylinder with fixed Ly, the energy den-
sity Eg/N (N = LxLy) varies linearly with 1/Lx. However, by
increasing the circumference of the cylinders with Lx/Ly = 2,
the energy density Eg/N is no longer monotonic and exhibits
a skew sawtooth behavior.

To round off the calculation, we give an estimate of the
ground-state energy per-site eg of the isotropic � chain. We
note that our � chain contains both x and y bonds [see Eq. (1)],
and there is no analytical solution so far. It is fundamentally
different from a z-bond � chain which could be solved exactly
via the Jordan-Wigner transformation [46]. At the quantum
critical point, the finite-size scaling of the ground-state energy
Eg(L) is known to be [47,48]

Eg(L) = Leg + εb − �b

L
+ O(L−2), (10)

where eg is the average bulk energy per-site, εb is the size-
independent surface energy which vanishes in the case of
PBC, and �b is the subleading correlation term. It is found
that �b = πc/6 (πc/24) for PBC (OBC) where c is the cen-
tral charge [47,48]. By definition we have eg = limL→∞ eL

where eL is the energy per-site of the chain with length L. For
the energy obtained under the OBC, there are two ways to ex-
trapolate it to the thermodynamic limit; one is eI

L = Eg(L)/L
and the other is eII

L = [Eg(L) − Eg(L − 2)]/2. It is easy to
check that convergence speed of the latter is faster than the
former. As shown in Fig. 5(b), the quadratic fittings of the
two give that eI

g = −0.299 593 62 and eII
g = −0.299 593 75,

yielding an estimate for the ground-state energy per-site in
the thermodynamic limit of eg = −0.299 593 7(1) with seven
significant digits. Meanwhile, we also extrapolate the energy
under PBC by using the solid points in Fig. 5(a) where L is
a multiple of six [see Fig. 5(c)]. Our result suggests that eg ≈
−0.299 594, which is fairly consistent with the high-precision
value revealed by the calculation under OBC.

IV. EXTENDED QUANTUM COMPASS MODEL

In the absence of the � interaction, Eqs. (1) and (2) are
reduced to the 1D Kitaev spin chain, which is also known
as the 1D QCM in some other contexts [31,32]. The QCM
could be solved exactly by Jordan-Wigner transformation,
and its dispersion relation is almost the same as that of the
transverse-field Ising model. There is a topological QPT be-
tween the gapped Ax and Ay phases at g = 1 [2]. However,
because of intermediate symmetries, the ground state of the
QCM possesses a huge number of degeneracy 2N/2−1 (2N/2)
under PBC (OBC) where N is the total number of sites
[31,49]. Equivalently, the QCM could be rewritten as a Majo-
rana fermion chain complemented by N decoupled Majorana
fermions. Since each Majorana fermion has

√
2 degrees of

freedom, the redundant Majorana fermions thus contribute a
ground-state degeneracy of O(2N/2) [50]. These degenerate
ground states are vulnerable and can be totally lifted by an
infinitesimal transverse field [51]. The entanglement [52–55],
energy dynamics [56], and the dissipative behavior [57] of the
QCM have been studied over the years.

FIG. 6. Kitaev-type SOP Ox/y
K of the gx-gy K-� chain for θ =

0.48π with chain length L = 48 (red circles) and 72 (green triangles).
The inset shows the behavior of Ox

K at the isotropic point g = 1.
Values at θ = 0.50π (blue squares) and θ = 0.48π (red cross) are
shown for several chain lengths L = 48, 72, 96, 144, and 216. The
sold line is the correlation function defined in Eq. (13).

Using the spin duality transformation, the topological Ax

and Ay phases, respectively, are shown to possess nonlocal
string correlators [50],

Ox
K (2r) = lim

r→∞

〈
2r∏

k=1

σ x
k

〉
(11)

and

Oy
K (2r) = lim

r→∞

〈
2r+1∏
k=2

σ
y
k

〉
, (12)

where σ x
k and σ

y
k are Pauli matrices, i.e., twice the spin- 1

2
operators in the original basis. Here, the nonlocal SOPs are
defined in the original basis embedded in Eq. (2). General-
ization of nonlocal SOPs to a two-leg Kitaev ladder has been
discussed in a recent work [58]. At the critical point g = 1,
these Kitaev-type SOPs vanish in an algebraic behavior at
long-distance limit n  1 [37],

Ox/y
K (n) = e1/421/12A−3n−1/4

(
1 − 1

64 n−2 + · · · ), (13)

where A 
 1.2824. For infinite-size case, they obey a scaling
law and Ox

K ∼ (1 − g2)1/4 when g → 1−.
Hereafter we show numerically that the topological Ax

and Ay phases are extended when θ is slightly deviated from
π/2 (AFM Kitaev point). We demonstrate this by calculating
the SOPs shown in Eqs. (11) and (12) for θ = 0.48π with
2r = L/2. As presented in Fig. 6, the SOPs change smoothly
and are very robust in each corresponding phase, showing the
validity of them in this region. When g = 1, the two have the
same value due to the self-dual relation and they decrease
visibly as L grows. To measure how the SOPs vary at this
point, we calculate Ox

K for L up to 216 sites and the results are
shown in the inset. The values at θ = 0.50π are also shown for
comparison. As revealed by Eq. (13), the leading term of Ox

K
is ∼1/L1/4, so its decay ratio is not very rapid for modest chain
length L as shown by the solid line in the inset. However, it is
constructive to note that Ox

K at θ = 0.48π and 0.50π are very
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FIG. 7. Estimate of the central charge c for the critical K-� chain
at (g = 1.00, θ = 0.48π ).

close but the curve of θ = 0.48π is shifted downward slightly
when compared with the latter. For θ = 0.50π it is known that
Ox

K vanishes at g = 1 when L → ∞ [50]. So it is reasonable
for us to believe that it will also go to zero ultimately for
θ = 0.48π . As a result, g = 1 is still inferred as the critical
point for the Ax-Ay transition.

To confirm the criticality at θ = 0.48π , we now turn to
calculate the central charge. The central charge is usually
extracted from the coefficient of the logarithmic correlation
in the entanglement entropy [45]. However, this method is
not optimal for the critical Kitaev phase because of the
macroscopic ground-state degeneracy [31]. As a result, it is
challenging to get a minimally entangled state which is essen-
tial for a reliable estimate of the central charge. The practical
way to handle this problem is by the energy scaling as shown
in Eq. (10). For the PBC, the central charge is given by the
following formula:

cL 
 6

π
[Leg − Eg(L)]L, (14)

where eg is the only relevant parameter. Following a similar
procedure illustrated in Fig. 5(b), we find eg ≈ −0.159 109 2
for θ = 0.48π , which is only slightly larger than that of
−1/(2π ) = −0.159 154 9 · · · for θ = π/2. We have also cal-
culated the ground-state energy Eg(L) for a series of chain
length L ranging from 24 to 144. The fitting central charge
via Eq. (14) is shown in Fig. 7. It can be found that the
central charge is very close to 1

2 and suffers from a tiny
finite-size effect. Therefore, we draw the conclusion that
the central charge c = 1

2 and the transition belongs to the
same universality class as that at θ = π/2 [59,60], confirming
the existence of an extended region of Ax and Ay phases and
the critical transition line between them.

V. THE SYMMETRY-BREAKING PHASES

A. Degeneracy and spin patterns

Like the AFM case shown in Sec. III, Eqs. (1) and (6) could
be reduced to the bond-alternating FM Heisenberg chain when
θ = π/4 (i.e., K = �). For this model its ground-state energy
Eg = −(1 + g)KL/8 with a (L + 1)-fold ground-state degen-
eracy [61]. Although it is inherently gapless, the system is not

FIG. 8. Low-lying energy levels Eυ for θ = 0.30π with chain
length L = 24. The ground-state degeneracy is sixlet and octuplet for
g = 0.80 (red circles, FMU6 phase) and g = 0.50 (green triangles, M1

phase), respectively.

conformally invariant. Specially, when g = 1 it is shown that
there is an effective central charge ceff = 3/2 [62]. Around
the isotropic SU(2) FM point by tuning θ along the line of
g = 1, there is an Oh → D4 symmetry-breaking phase which
has sixfold degenerate ground states along the ±x̂, ±ŷ, and
±ẑ spin directions [17]. In addition, the local magnetization,
say 〈S̃z

i 〉, shows a three-site periodicity where two of them are
equal,

〈S̃1〉 = cẑ, 〈S̃2〉 = aẑ, 〈S̃3〉 = aẑ, (15)

in which a and c are the strengths of the local magne-
tization. With the U6 transformation shown in Eq. (5) in
mind, it is easy to check that spins in the original basis
are (|Sz

1|, |Sy
2|, |Sy

3|; |Sz
4|, |Sx

5|, |Sx
6|) = (c, a, a; c, a, a). The in-

herent frustration in model (6) is accidentally eliminated
when θ = π/4. Away from this line, the interplay of bond
anisotropy and competing interactions would enhance quan-
tum fluctuations, giving rise to new type of magnetic
orderings. It is shown in Fig. 2 that there are three distinct
magnetically ordered states in the middle area where one is a
collinear FMU6 phase while the other two are dubbed M1 and
M2 phases.

To begin with, by reducing the strength of g along the line
of θ = 0.30π , we find that FMU6 phase could survive until g 
√

3/3 where the ground-state degeneracy changes from sixlet
to octuplet. Figure 8 show the first (L + 2) energy levels Eυ

(υ = 0 → 25) of a 24-site chain at g = 0.80 (red circles) and
0.50 (green triangles). One can readily recognize that there is
a energy step at the sixth (eighth) energy level for g = 0.80
(0.50). The energy barrier is ≈10−3, which is several orders
larger than the energy splitting within the degenerate ground
states. The energy step at the 24th energy level is extremely
steep, which is a reminiscence of the (L + 1)-fold degeneracy
at the SU(2) FM line of θ = π/4. We have checked the
ground-state degeneracies under spin chains of L = 48 and
72 as well, and the results remain unchanged in the DMRG
calculation with up to m = 4000 states kept.

We then study magnetization distributions of the
symmetry-breaking phases. For the FMU6 phase, the spin
ordering is very similar to what is shown in Eq. (15) but with
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FIG. 9. Local magnetization S̃α
i (α = x, y, z) as a function of site

index i for a 24-site chain. (a) S̃z
i in the FMU6 phase at (g = 0.80,

θ = 0.30π ). (b) S̃x
i (red circles), S̃y

i (green triangles), and S̃z
i (blue

squares) in the M1 phase at (g = 0.50, θ = 0.30π ).

a six-site periodicity, see Fig. 9(a). It is observed that

(〈S̃1〉, 〈S̃2〉, 〈S̃3〉; 〈S̃4〉, 〈S̃5〉, 〈S̃6〉) = (c, b, b; c, a, a)ẑ, (16)

where a, b, and c are the magnitudes of the spin orderings
along the ẑ direction and a, b, c � S. There is a slight dif-
ference between a and b when g �= 1. That is, b < a (b > a)
when g < 1 (g > 1). They are equal at the isotropic case,
consistent with the group-theoretical argument [17]. As can
be seen from Fig. 9(a), c is the smallest value of the three,
albeit its difference to the penultimate value (it is b when
g < 1) becomes negligible as g is decreased. For the M1 phase
shown in Fig. 9(b), the z component of the magnetization still
shows the pattern in Eq. (16), except that c and b are very
close in value but are visibly smaller than a. Most importantly,
the x and y components of the spins in the M1 phase also
become nonzero and shows the permutation relation within
each even and odd sublattice. Following the η notation of
Rousochatzakis and Perkins [63], we find that

〈S̃1〉 =
⎛
⎝ηxa

ηyb
ηzc

⎞
⎠, 〈S̃3〉 =

⎛
⎝ηxc

ηya
ηzb

⎞
⎠, 〈S̃5〉 =

⎛
⎝ηxb

ηyc
ηza

⎞
⎠ (17)

and

〈
S̃2

〉 =
⎛
⎝ηxa

ηyc
ηzb

⎞
⎠,

〈
S̃4

〉 =
⎛
⎝ηxb

ηya
ηzc

⎞
⎠,

〈
S̃6

〉 =
⎛
⎝ηxc

ηyb
ηza

⎞
⎠. (18)

Here, a, b, c (�0) are the intensities of the magnetization,
while ηx, ηy, ηz (= ±1) are the Ising variables. It is worth
noting that a, b, and c in the M1 phase satisfy the restriction
(a2 + b2 + c2)1/2 � S, and it is quite different from these in
the FMU6 phase [see Eq. (16)]. All the three η are free to
choose either 1 or −1, accounting for the eightfold degeneracy
of the M1 phase shown in Fig. 8. In addition, by applying the

FIG. 10. The a (red circles), b (green triangles), and c (blue
squares) magnetization components of the FMU6 and M1 phases for
θ = 0.30π with chain length L = 48. The middle region is the FMU6

phase (0.5778 � g � 1.731) while the side ones are the self-dual M1

phases.

inversion U6 transformation, the spins in the original basis
have the following relation: (|Sx

υ |, |Sy
υ |, |Sz

υ |) = (a, b, c) for
1 � υ � L. The spin structure of the M1 phase is noncoplanar
in the rotated basis and it could be verified by the scalar spin
chirality defined as

χ̂i jk = S̃i · (S̃ j × S̃k ). (19)

It is easy to check that χ̂135 = χ̂246 ≡ χ̂0 and

χ̂0 = ηxηyηz(a3 + b3 + c3 − 3abc)

= η

2
(a + b + c)[(a − b)2 + (b − c)2 + (c − a)2], (20)

with η ≡ ηxηyηz. Equation (20) suggests that, as long as a, b,
and c are not all the same, which always holds as observed
from Fig. 9(b), χ̂0 will be nonzero, in line with the noncopla-
nar pattern of the M1 phase.

Figure 10 shows the (a, b, c) components of the mag-
netization along the line of θ = 0.30π . In the wide region
of 0.5778 � g � 1.731, the ground state is the FMU6 phase
where all the spins point along the z direction with an almost-
saturated moment. The three species a, b, and c are totally
different as long as g �= 1. The M1 phase takes over when
0.43 < g < 0.5778, and magnitudes of the magnetization are
suppressed approximately to 3/4 (for a) or 1

2 (for b, c) of the
saturated value.

For the M2 phase, the local magnetization is fragile and we
thus extract their values by calculating the spin-spin correla-
tion functions defined as

Cα
υ (l ) = 〈

S̃α
υ S̃α

υ+l

〉
, (21)

where α = x, y, z and υ is the reference site. For simplicity we
first consider the isotropic case (g = 1) which shows a three-
site periodicity in the rotated basis. The correlators Cx/y/z

at (g = 1.00, θ = 0.42π ) are calculated based on a 48-site
chain, see Fig. 11. These values are very stable when the
site distance l is larger than 10, and we estimate the local
magnetization as 〈S̃α

υ 〉 = [Cα
υ (L/2)]1/2 with L = 48. The local

magnetization 〈S̃υ〉 = (〈S̃x
υ〉, 〈S̃y

υ〉, 〈S̃z
υ〉)T within the three-site
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FIG. 11. Spin correlators Cα
υ (α = x, y, z) of a segment l for a

48-site chain. The reference site υ could be I (site 1), II (site 2),
III (site 3). Panels (a)–(c) are for Cx , Cy, and Cz in the M2 phase at
(g = 1.00, θ = 0.42π ), respectively.

unit cell is

(〈
S̃1

〉
,
〈
S̃2

〉
,
〈
S̃3

〉) =
⎛
⎝

⎡
⎣0.214

0.214
0.103

⎤
⎦,

⎡
⎣0.214

0.103
0.214

⎤
⎦,

⎡
⎣0.103

0.214
0.214

⎤
⎦

⎞
⎠.

When away from the isotropic line where g = 1, the unit cell
is doubled and there is a same magnetization distribution to
that one shown in Eqs. (17) and (18). It should be noted that
both M1 and M2 phases are eightfold degenerate and their
difference lies in the relative values among a, b, and c. For M1

phase we have c 
 b < a (when g < 1) or c 
 a < b (when
g > 1), while for M2 phase c is much smaller than a, b.

B. Magnetic orderings of M1 and M2 phases

This section is devoted to study the transitions to M1 and
M2 phases. We begin by considering the transitions to M1

phase along the path of g = 0.5. The SOPs of the Haldane-
type OH = Oz

e [via Eq. (6)] and the Kitaev-type OK = Ox
K

[via Eq. (2)] are plotted in Fig. 12(a). At θH ≈ 0.215π and
θK ≈ 0.383π , the two SOPs are discontinuous, indicating of
first-order transitions between the EH (Ax) phase and the in-
termediate M1 phase. The order parameter OM1 is shown in
Fig. 12(b). Here, only the c flavor of 〈Sz

i 〉 is chosen for the
sake of brevity. We find that it is very robust with a negligible
finite-size effects. In addition, there is also a nonvanishing
correlation of a rank-two spin-nematic (SN) ordering defined
in Eq. (23) (not shown). Notably, when crossing the line of
θ = π/4 where the ground state is the SU(2) FM phase, OM1

has a discontinuity because of the inherent difference of the
spin orientations.

FIG. 12. (a) SOPs of the Haldane-type OH (filled symbols) and
Kitaev-type OK (open symbols) for g = 0.5 with chain length L = 48
(green triangles) and 72 (blue squares). (b) Order parameter of the M1

phase OM1 (c component only) and (c) flux density 〈Wp〉 in the same
region as in panel (a).

Meanwhile, it is appealing to know how the flux
density 〈Ŵp〉,

Ŵp = 26S̃z
1S̃y

2S̃x
3S̃z

4S̃y
5S̃x

6, (22)

evolves in each different phase. Similar to the two-
dimensional counterpart [2], the quantity in Eq. (22) is the
product of spin operators on consecutive overhanging bonds
within the six-site unit cell [see Fig. 1(b)]. In Fig. 12(c), we
plot the flux density 〈Ŵp〉 versus θ in the whole region of
θ ∈ [0, π/2]. It is clearly shown that 〈Ŵp〉 is zero in the EH
phase. In the M1 phase, 〈Ŵp〉 starts from a nonzero value
and goes up with the increasing of θ except for θ = π/4
where 〈Ŵp〉 
 0. In the Ax phase, however, 〈Ŵp〉 decreases
from 0.17 or so and does not stop dropping until θ 
 0.50
where 〈Ŵp〉 < 0. Without doubt, the flux density 〈Ŵp〉 shows
a crucial difference among the three distinct phases. The jump
and kink are excellent probes for phase transitions involved.

We now turn to the transition around the M2 phase. It is
shown in the isotropic K-� chain that there is an intermediate
phase when 0.40π � θ � 0.466π [18]. This phase is now
recognized as the M2 phase with a nonzero magnetization, and
it could survive against small anisotropy where |g − 1| � 1,
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FIG. 13. (a) Correlations of the SN order [see Eq. (23)] for chain
length L = 48, 96, 144, and 192. The selected point at (g = 1.00,
θ = 0.42π ) is deep in the M2 phase. Inset shows the extrapolation of
the SN order to infinite-size system. (b) Order parameter OSN of the
M2 phase for θ = 0.42π with chain length L = 48 (red circles) and
72 (blue squares).

and then gives way to the conventional collinear FMU6 phase.
Although both phases are magnetically ordered, we appreciate
the rank-two SN ordering as a sensitive probe to capture the
phase transition. It is finite in the M2 phase while vanishes in
the FMU6 phase since the latter is collinear. The SN correlation
function in the long-distance limit is known as [18]

O2
SN = lim

| j−i|1

〈
S̃y

3i+1S̃z
3i+2 · S̃y

3 j+1S̃z
3 j+2

〉
. (23)

Since the species of spins in the correlator of Eq. (23) always
come in pairs, the sign of the correlation remains uninflu-
enced. In addition, on can infer from Eqs. (17) and (18) that
there is no difference of the magnetization among the degen-
erate ground states, indicating that all of them will produce a
same value of the order parameter. As a result, we do not need
to distinguish these states and the value of the order parameter
could be safely obtained via Eq. (23).

Figure 13 shows the order parameter OSN for θ = 0.42π .
To check for the finite-size effect, we consider the isotropic
case g = 1 and calculate the correlation function in Eq. (23)
with i = 0 and j = 0, 1, 2, . . . , L/6, see Fig. 13(a). It is found
that the correlators saturate to a finite value after several times
of oscillation. In what follows we shall define OSN ≡ OSN (i =
0, j = L/6). The inset shows the extrapolation of the SN order
parameter for chain length L = 48, 72, 96, 144, and 192, from
which we can clearly find that OSN is very robust against
L. We then extend the calculation of OSN for 0.8 � g � 1.2
and the results are summarized in Fig. 13(b). Deep into the
M2 phase, OSN is very stable, although there is a modest

suppression near the boundaries. The transitions between the
M2 phase and the collinear FMU6 phase are accompanied
by the jumps of OSN , from which the transition points are
determined as gt ≈ 0.945 and 1.065, respectively. It is worth
mentioning that the transition points satisfy the self-dual re-
lation shown in Eq. (3) since they are related as 0.945 

1/1.065.

Empirically, the ground-state energy per-site of the FMU6

phase is given by

e
FMU6
g = − 1

6 [K (a2 + gb2) + 2c�(b + ga)], (24)

where a, b, c are almost saturated [see Figs. 9(a) and 10]. For
example, at the hidden SU(2) FM point where K = � and
g = 1, we have a = b = c = 1

2 and the energy inferred from
Eq. (24) is −K/4, consistent with the analytical result [61].
For the M2 (and also M1) phase, the energy displays a very
similar form except that the prefactor ( 1

6 ) in Eq. (24) should
be 1

2 . In addition, (a, b, c) is subject to the constraint M ≡
(a2 + b2 + c2)1/2 � S. However, the total magnetization M of
the M2 phase is far from saturated, and it is only 0.320 with
(a, b, c) = (0.214, 0.214, 0.103) at (g = 1.00, θ = 0.42π ).
By adding the bond alternation with g �= 1, there is a slight
enhancement of M, lowering the ground-state energy and thus
opening a finite region of M2 phase.

VI. TRANSITIONS AROUND THE FERROMAGNETIC
KITAEV LIMIT

So far, we have mainly concentrated on the right panel
of the phase diagram shown in Fig. 2. Phases in the left
panel could be obtained from the right part after a mirror
operation. However, little is known about the transition types
of the adjacent phases near the axis of symmetry. After an
inspection of the first-order energy derivative ∂eg/∂θ along
the line of g = 1, Yang et al. claimed that the transition at the
FM Kitaev point is of first order [17]. A variational Monte
Carlo study, amazingly, suggests that the Z2 QSL at that point
could survive up to a small � interaction [64]. Herein, we
find that the FM Kitaev point is a confluence point of two
transition lines, i.e., the Ax-Ay and the LL-LL′ transition lines.
It is thus a multicritical point which accounts for the difficulty
in determining the nature of transition (for an extended dis-
cussion, see Sec. III in the Supplemental Material [36]). By
virtue of an efficient bond-reversal method [65], we argue in
the following that the aforesaid topological QPT between the
two LLs is continuous. Nevertheless, away from the symmet-
ric line of g = 1, transitions at θ = −π/2 are of first order
without closing the gap at the transition points.

Here we illustrate how to use the bond-reversal method to
determine the transition type around the FM Kitaev point. By
tuning � from negative to positive, the ground-state energy
eg must be symmetric with respect to the � = 0 line (i.e.,
θ = −π/2) due to the symmetry relation of Eq. (4). When
θ is slightly away from −π/2, the sign of the � interaction
is changed, and local expectations of �x = 〈Sy

1Sz
2 + Sz

1Sy
2〉 and

�y = 〈Sz
2Sx

3 + Sx
2Sz

3〉 in the original basis must be reversed.
In this regard, we thus define the difference of bond strength
(DBS) D as

D = 1
2 (�x + �y). (25)
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FIG. 14. (a) DBS D of the gx-gy K-� chain for g = 1.0 with
chain length L = 24 (red circles), 48 (green triangles) and 72 (blue
squares). Inset shows a zoom-in of the DBS near the FM Kitaev limit
with � > 0. (b) DBS D for g = 0.5 (red circles), 1.5 (green triangles)
and 2.0 (blue squares) with chain length L = 24.

The DBS D is a sensitive probe for a first-order QPT because
it has a jump at the transition point. Oppositely, there is a
continuous QPT if D is smoothly changed [65]. We note
in passing that, physically, D is equivalent to the first-order
derivative of ground-state energy ∂eg/∂θ when g = 1. How-
ever, the energy derivative depends on the increment δθ which
may cause artificial oscillation. In this sense, the DBS D is
obviously superior and is more reliable.

Figure 14(a) shows the DBS D of the LL-LL′ transition
when g = 1.0. It is rather smooth without any jump in a wide
region of −0.55π � θ � −0.45π . The size-dependent behav-
ior is insignificant except for a narrow slit near the FM Kitaev
point. As can be seen from the inset of Fig. 14(a), the DBS D
shows a well-controlled scaling behavior for different chain
length L and does not have a jump although its slope becomes
sharp as L increases, indicative of a multicritical behavior. We
recall that such a multicritical point is analogous to the one
existing in a 1D transverse XY spin chain which owns an in-
tersection point of two transition lines of different universality
classes [66–68]. When shifting away from g = 1.0, the ground
state is occupied by gapped EH or OH phase. The DBS D
for three selected EH-EH′ transition (g = 0.5) and OH-OH′

transitions (g = 1.5 and 2.0) are shown in Fig. 14(b). For
all the cases there are appreciable jumps of D at θ = −π/2,
representing the hallmark character of the first-order QPT.

VII. SUMMARY AND DISCUSSION

We have numerically studied the phases and phase tran-
sitions in a bond-alternating spin- 1

2 K-� chain, which is an
excellent platform to reveal many aspects of one-dimensional
quantum magnetism. By calculating various conventional
symmetry-breaking order parameters and nonlocal SOPs, we

unveil a rich quantum phase diagram which contains seven
different phases. Near the AFM Kitaev spin chain limit, there
is a critical segment with a macroscopic ground-state degen-
eracy. It is unstable against bond alternation, resulting in two
gapped disordered Ax and Ay phases characterized by nonlocal
SOPs. The Ax-Ay topological QPT falls in the Ising univer-
sality class with a central charge c = 1

2 . On the other hand,
starting from the FM Kitaev spin chain limit by increasing the
� interaction, there are EH and OH phases in the inner circle
(g < 1) and outer circle (g < 1), respectively. The EH-OH
transition is determined by the SOPs which vanish alge-
braically at the transition boundary. It could also be captured
by the entanglement gap which undergoes a sign change when
crossing the critical point. This transition belongs to the Gaus-
sian universality class with a central charge c = 1, identical to
that of the bond-alternating spin- 1

2 AFM Heisenberg chain.
The FM Kitaev point is recognized as a multicritical point
converging several different phases. In addition, there are also
three distinct magnetically ordered states, named FMU6 , M1,
and M2 phases, in the presence of AFM Kitaev interaction.
The FMU6 phase has a sixfold degeneracy and is situated in
a wide region around the isotropic line of g = 1. The M1 and
M2 phases are highly spatially modulated and could have a
rank-two spin-nematic ordering.

The isotropic � chain is conformally invariant with a cen-
tral charge c = 1. While its ground-state energy smoothly
varies with the chain length under OBC, it surprisingly shows
an unconventional six-site periodicity under PBC. We remark
that this phenomenon has a profound relation to the abnormal
energy scaling in two-dimensional honeycomb lattice [15].
Given that there is an emergent SU(2) symmetry at this �

limit [17], we conjecture that the versatile Bethe ansatz may
be capable to give an exact solution of the isotropic � chain.

In closing, our work demonstrates the essential role played
by the bond alternation in enriching the underlying phase
diagram. The bond alternation is a relevant perturbation to
either open up the energy gap or rearrange the distribution
of magnetization, leaving the possibility for the emergence
of novel phases. Our study also highlights the richness of
Kitaev systems with AFM exchange interaction. Although the
K-� model is widely recognized as a cornerstone to describe
candidate Kitaev materials like α-RuCl3, much less attention
has been paid to K > 0 as Kitaev interaction is likely negative
in these materials. A theoretical proposal for the AFM Kitaev
interaction in f -electron-based magnets has been proposed
[69]. Our study thus corroborates a new direction to hunt for
exotic phases in a less explored area.
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