
PHYSICAL REVIEW B 103, 144421 (2021)

Topological solitons and bulk polarization switch in collinear type-II multiferroics
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We introduce a microscopic model for collinear multiferroics capable of reproducing, as a consequence of
magnetic frustration and easy-axis anisotropy, the so-called “uudd” (or antiphase) magnetic ordering observed in
several type-II multiferroic materials. The crucial role of lattice distortions in the multiferroic character of these
materials enters into the model via an indirect magnetoelectric coupling, mediated by elastic degrees of freedom
through a pantograph mechanism. Long-range dipolar interactions set electric dipoles in the antiferroelectric
order. We investigate this model by means of extensive density matrix renormalization group computations and
complementary analytical methods. We show that a lattice dimerization induces a spontaneous Z2 ferrielectric
bulk polarization, with a sharp switch off produced by a magnetic field above a critical value. The topological
character of the magnetic excitations makes this mechanism robust.
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I. INTRODUCTION

Multiferroic materials, defined as those in which ferro-
electricity and (anti)ferromagnetism coexist and interact, have
become one of the most studied topics in the last few years,
both from the experimental and the theoretical point of view.
The possibility of magnetic writing via electric fields makes
these materials a potential source of technological applica-
tions in data storage.

Among the most recent discoveries, a type of magneto-
electric materials, so called type-II multiferroics in which
the electrical polarization coincides with a magnetic ordering
transition, has been the subject of a lot of efforts [1,2]. What
is most important in these materials is the very large coupling
between magnetic and electrical properties, even if the value
of the electrical polarization can be rather small as compared
with typical ferroelectric materials.

An important issue is to determine the microscopic under-
lying general mechanism which could be applied to guide the
synthesis of bulk or film materials with enhanced magneto-
electric properties (see, e.g., Ref. [3] and references therein).
Within this paper, we contribute to this task by proposing
and analyzing a model in which this cross-coupling arises via
the interaction with the lattice, thus fitting into the so-called
exchange-striction mechanism [1,2,4].

Very generally, the high magnetoelectric response appears
to be associated with the magnetic frustration due to com-
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peting spin interactions leading to complex magnetic orders
[1]. Indeed, in most multiferroic materials with collinear
spins, the magnetic order observed at low magnetic fields
is of the “uudd” (↑↑↓↓) type along some particular line
(see, for instance, Refs. [1,2,5] and references therein). Such
an order usually appears when second-neighbor antiferro-
magnetic interactions compete with either the uniform or
Néel configurations induced by nearest-neighbor interactions.
This happens to be the case in quasi-one-dimensional (quasi-
1D) materials like Ca3CoMnO6 [6], quasi-two-dimensional
(quasi-2D) materials like the delafossite AgCrS2 [7,8], and
also in multiferroic manganite perovskites with E-type antifer-
romagnetic order such as HoMnO3 [9,10], ferrite perovskites
such as GdFeO3 [11], and other three-dimensional (3D) com-
pounds such as the CdV2O4 spinel [12] or RNiO3 nickelates
(R = La, Pr, ..., Lu) [13]. Among these ↑↑↓↓ multiferroic
materials, particular interest focuses on double perovskites
such as Yb2CoMnO6 [14], Lu2MnCoO6 [15,16], Er2CoMnO6

[17], and R2NiMnO6 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, and
Er), where a giant magnetoelectric effect has been reported
[18].

In a previous paper [19], we have introduced a simple
microscopic multiferroic model describing a system with
magnetic and electric dipolar degrees of freedom coupled
via lattice distortions. This mediated coupling is ubiquitous
in magnetoelectric phenomena and may be enhanced by the
strong influence of the lattice in multilayer multiferroics, as in
some cases, the lattice mismatch of the layer and the substrate
can generate enormous lattice distortions and trigger giant
multiferroic responses [20,21].
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In this paper, we extend and generalize our previous study
in several aspects: first and most important, we add antiferro-
magnetic exchange couplings between next nearest neighbors
(NNN) reported in most of the abovementioned materials.
When the NNN coupling is strong enough, we reproduce
the experimentally observed ↑↑↓↓ magnetic ordering at zero
magnetic field. This confirms that magnetic frustration is at
the root of the phenomenology observed in many materials.
Second and to make closer contact with experiments, we
introduce an easy-axis anisotropy that mimics the effective
Ising character observed for otherwise quantum magnetic mo-
ments. Indeed, the magnetic ions are immersed in crystal
local fields that generally diminish their quantum charac-
ter, making them behave as almost classical Ising variables.
Good examples of this situation are the spin-ice pyrochlores
[22], with the exception being Tb-based pyrochlores where
Ising models seem not to suffice but quantum fluctuations
have to be included [23–25]. Thus, a parameter control-
ling the easy-axis anisotropy allows for a phase diagram
covering the “quantum” and “classical” behavior realized in
many possible different materials. Last but not least, we con-
sider realistic dipolar interactions which, from intermediary
itinerant electrons [26], from Coulomb forces [27], or by
other effective mechanism, are expected to act as long-range
forces. Even when truncated at second neighbors, long-range
dipole-dipole interactions give rise to new phases in a richer
dipole-elastic phase diagram.

In this paper, we discuss the zero temperature ground state
of the magnetic, electric, and elastic 1D system described be-
low. The main results will be the emergence of a spontaneous
bulk polarization at zero magnetic field, as well as a sharp
drop thereof once the magnetic field exceeds a critical value.

The paper is organized as follows: in Sec. II, we define the
microscopic model to be discussed, the regions of interest, and
the methods to be used. In Sec. III, we explore the behavior
of dipolar degrees of freedom in the absence of magnetism,
finding that long-range dipolar interactions give rise to a new
intermediate phase with period 3 order. In Sec. IV, we present
our main results: the spontaneous electric polarization driven
by the interactions and the switch off of this effect as soon
as the system is magnetized by an external magnetic field. In
Sec. V, we summarize our results, discussing possible experi-
mental tests and applications such as efficient polarization flip
devices.

II. SYSTEM MODEL AND METHODS

A. The model

The system model under analysis describes magnetic, elec-
tric, and elastic degrees of freedom in a linear chain, in which
magnetic moments and electric dipoles interact independently
with the lattice, that serves as the intermediary for the ef-
fective magnetoelastic coupling we want to describe. Though
such a model requires many parameters to define at least the
free regime of each degree of freedom and to introduce their
couplings, after a general presentation, we will focus on a
specific region of interest and provide the particular set of
parameters to be analyzed in this paper. Also notice that, in a
quasi-1D material, the interaction between neighboring chains
significantly renormalizes the microscopic couplings along

the longitudinal direction. In consequence, the parameters in
our model should be interpreted as effective ones.

1. Magnetoelastic sector

Magnetic ion positions are described as sites i in a linear
chain. Their regular positions are xi = ia, where a is a lattice
constant, but under distortions, the ions move to xi + ui along
the chain direction, so that sites i and i + 1 will be separated
by a distance a + δi with δi = ui+1 − ui. The elastic energy
cost of such distortions is given by

Helastic = K

2

∑
i

δ2
i , (1)

where K is the lattice stiffness.
Magnetic ions themselves are represented by S = 1

2 spin
operators Si at chain sites. While the model aims to describe
the ↑↑↓↓ order observed along certain lines in 2D and 3D
multiferroic materials, it is interesting to notice that a few
compounds that have been identified to become multiferroic
do show this order in quasi-1D chains of Cu2+ magnetic ions
(S = 1

2 ): for instance, LiCuVO4 [28,29], LiCu2O2 [30–32],
CuCl2 [33], CuBr2 [34], PbCuSO4(OH)2 [35,36], CuCrO4

[37], and SrCuTe2O6 [38].
Following our proposal in Ref. [19], the magnetic ions in-

teract via nearest-neighbor (NN) antiferromagnetic couplings
J1. Frustration is introduced by NNN antiferromagnetic cou-
plings J2, so that a highly frustrated regime with J2/J1 above a
critical value will be responsible for the ↑↑↓↓ magnetic order.

Both NN and NNN super-exchange couplings may have
magnitudes that depend on elastic distortions. However, we
assume for simplicity that only the NN exchange shows a
linear dependence that can be written as

J1(δi) = J1(1 − αδi ), (2)

where α > 0 is called the linear magnetoelastic coupling (in-
cidentally, in the frequent case of alternating distortions, the
second-neighbor distances 2a + δi + δi+1 are not altered at
all). Positive α makes NN exchange stronger as magnetic ions
approach each other.

The effect of crystal fields can in general be modeled
by anisotropic spin interactions: the SU (2) invariant Heisen-
berg interaction Si · S j is replaced by Sx

i Sx
j + Sy

i Sy
j + �Sz

i Sz
j

(z axis determined by the crystal environment). Aiming to
describe collinear multiferroic materials, we focus on � � 1;
that is, we cover the easy-axis anisotropy case � > 1 and,
in particular, the isotropic case � = 1. This is motivated by
the large variety of known multiferroic materials, but also
by the theoretical importance of the SU (2) invariant point
case. The easy-plane regime � < 1, not discussed here, is
known to be continuously connected with the isotropic case
(see, for instance, Ref. [39]). On the other hand, the limit
� → ∞ connects our paper with the classical Ising regime.
To deal with large � without hiding the other sectors, we in-
troduce a parameter γ ≡ 1/� and absorb � into the exchange
constants. Finally, we introduce the Zeeman energy associated
with an external magnetic field h along the easy-axis direction.
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The magnetic sector, coupled to lattice distortions, is then
described by the Hamiltonian

Hspin =
∑

i

J1(δi )(Si · Si+1)γ +
∑

i

J2(Si · Si+2)γ

− h
∑

i

Sz
i , (3)

where we write for short

(Si · S j )γ ≡ Sz
i Sz

j + γ
(
Sx

i Sx
j + Sy

i Sy
j

)
. (4)

A model described just by Helastic + Hspin might be called a
frustrated anisotropic spin-Peierls system. It has been used
previously to study quasi-1D materials in their low temper-
ature ordered phase, as is the case of the spin-Peierls phase
in compounds like CuGeO3. Indeed, in the real material, the
magnetic chains are immersed in a 3D structure. Even though
the magnetic interactions are much greater in the direction
of the chains than in the other ones, the phonons establish
the three-dimensionality of the system. The 1D Hamiltonian
Helastic + Hspin appears when a mean field approximation is
used for the effective interchain interaction, which in turn
arises when the phonon coordinates are integrated out [40],
[41].

We recall that the anisotropy parameter γ < 1 (� > 1)
weakens the quantum fluctuations of the transverse spin com-
ponents, making the spins “more classical.” For systems with
collinear order, the large � limit is equivalent to considering
large S spins, in the sense that in a Holstein–Primakov [42]
expansion, transverse fluctuations are suppressed out by a 1/S
factor. Other approaches describe the easy-axis component
with a strong single ion anisotropy [43] or instead introduce
quantum fluctuations on top of classical spins [44,45].

In the absence of deformations, the magnetic model in
Eq. (3) has been thoroughly studied. We do not intend to
cover the subject in detail but summarize the main results
relevant for this paper; for a complete treatment with a careful
account of the literature, see Ref. [39] and references therein.
For our purpose, it is worth calling to mind its main features
when no magnetic field is turned on. These are governed
by the competition between frustration J2/J1 and anisotropy
γ and can be summarized by the diagram in Fig. 1. For
low frustration J2 � J1, the system can be seen as a linear
antiferromagnetic chain J1 weakly perturbed by NNN inter-
actions J2; in the opposite limit J2 � J1, it is better described
as a two-legged ladder of linear antiferromagnetic chains J2

weakly coupled by zig-zag rungs J1. The SU (2) symmetric
line γ = 1 is well studied by many techniques, in particular,
the bosonization of the effective low energy excitations [46]:
for low frustration, the ground state is a gapless Luttinger
liquid (LL) with quasi-long-range order but enters a twofold
degenerate gapped quantum dimer phase for J2/J1 > 0.2411
[47,48], with expectation value of the local spin 〈Sz

i 〉 = 0
and strong antiferromagnetic (negative) spin correlations ev-
ery two bonds (strictly, this is not collinear). A paradigmatic
example is found at J2/J1 = 0.5, the Majumdar–Ghosh point
[49], where the exact ground state is a (twofold degenerate)
direct product of two-site spin singlets. For very large frus-
tration, the gap decreases exponentially, and the ground state
shows incommensurate spiral spin correlations [50–52]. On

FIG. 1. Schematic ground state diagram for the spin S = 1
2

anisotropic frustrated antiferromagnetic chain. Zig-zag miniatures
of the spin chain are used to visually emphasize the prevalence of
first-neighbor or second-neighbor antiferromagnetic correlations or
singlet correlations indicated by ellipses. A diffuse line separates the
quantum behavior at low anisotropy from the classical behavior at
high anisotropy. Most of the materials we are interested in are located
in the frustrated anisotropic region (lower right corner). As repre-
sentative points, we numerically explore in detail a highly frustrated
regime given by J2/J1 = 0.8, in the isotropic case γ = 1 (red star)
and a high easy-axis anisotropy γ = 1

8 (blue star).

the bottom of the diagram, the large anisotropy limit γ =
0 defines the 1D antiferromagnetic anisotropic NNN Ising
(ANNNI) model; classical spins order in a twofold degenerate
↑↓↑↓ Néel phase for low frustration (J2/J1 < 0.5) with a
transition to the ↑↑↓↓ antiphase state for larger frustration
(J2/J1 > 0.5) [53]. In a sense, while γ → 0, the LL quantum
phase evolves into the classical Néel phase, and the quantum
dimer phase evolves into the ↑↑↓↓ classical phase. Many of
the materials we are interested in are located in the frustrated,
easy-axis anisotropic region (lower right corner). Others cor-
respond to the frustrated ANNNI model with ferromagnetic
J1 < 0 and antiferromagnetic J2 > 0, leading to the same
↑↑↓↓ antiphase state when J2/|J1| > 0.5.

2. Electroelastic sector

The electric sector is modeled by dipolar moments pi lo-
cated midway between magnetic atoms at sites i and i + 1.
They might arise from local charge distribution of nonmag-
netic ions in the crystal unit cell, occupying one of two
possible Jahn–Teller states determined by the crystal environ-
ment and bridging the super-exchange magnetic couplings.

As the magnetic ions change their positions, the magnitude
of dipolar moments may also change. It could happen that no
local dipolar moment is present in the absence of distortions;
in this case, we would describe the arising dipoles by a mag-
nitude proportional to δi and orientation along an appropriate
axis. For some other materials, a local dipolar moment might
exist before distortions, along a given axis ê. Relatedly, it is
worth recalling that the measurable quantity in crystals is not
the absolute polarization but the polarization change between
different states of the same compound [54].

The particular model discussed in this paper is partly in-
spired in the material AgCrS2, where the magnetic ions Cr3+

are arranged in triangular layers, each one surrounded by six
S2− nonmagnetic sulfur ions on the vertices of nonregular
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FIG. 2. Cartoon of degrees of freedom and dipole-elastic cou-
pling mechanism. Shaded symbols show the undistorted (regular)
lattice; full colored symbols represent a general distortion configu-
ration. Magnetic ions are described as a chain of sites (in black),
while dipoles (double arrows) associated with charged ions (in blue)
are located at chain bonds. The asymmetry of charged ions with
respect to the chain axis indicates the presence of dipolar moments
normal to the magnetic chain, pointing toward the furthermost vertex.
Displacements of magnetic ions ui modify bond lengths by a distor-
tion δi = ui+1 − ui. Also, the distance between adjacent dipoles is
distorted by ηi = (δi + δi+1)/2. A dipole strength is enlarged (short-
ened) when the bond is shortened (enlarged) while its orientation is
given by an Ising variable, as described in Eq. (5).

octahedra (nonequivalent crystallographic positions breaking
the reflection symmetry with respect to the Cr plane). It
suffers a transition from the paramagnetic R3m structure to
a magnetically ordered phase with noncentrosymmetric Cm
structure [7]. The low temperature magnetic order is given by
parallel ferromagnetic lines along one of the triangular layer
axes, which alternate with the ↑↑↓↓ pattern in the transverse
direction. This transition produces a magnetostriction enlarg-
ing (shortening) the distance between parallel (antiparallel)
magnetic moments [8], then produces a shift of the center
of charge of surrounding sulfur ions and a consequent spon-
taneous polarization. As all octahedra along a ferromagnetic
line suffer the same distortions, the active degrees of freedom
can be effectively described by a 1D model across the ↑↑↓↓
order (see Fig. 3 in Ref. [8]).

Following this description, and to unravel the physical
mechanism leading to multiferroicity by lattice distortions, we
will assume that the undistorted lattice hosts electric dipoles
amid magnetic ions, with a natural magnitude p0 and a pre-
ferred axis ê oriented perpendicular to the chain (this choice
of axes can be easily generalized to deal with more general
situations, but the main novelty of the mechanism presented
here is already contained in this simplified description). Under
distortions δi, the local dipole magnitude is modified through a
pantograph mechanism [19,55,56]. This is modeled in a linear
approximation by pi = pi(σi, δi )ê with a component

pi(σi, δi ) = p0(1 − βδi )2σi. (5)

Here, σi = ± 1
2 is an Ising variable for the orientation of

the dipole along its axis, p0 is the dipolar moment mag-
nitude in the absence of distortions, and β will be called
the dipole-elastic coupling. Notice that β > 0 makes dipolar
moments larger as neighboring magnetic sites become closer.
The pantograph mechanism, depicted in Fig. 2, encodes the
interaction between electric dipoles and elastic degrees of
freedom. Rhomboids in this picture represent, without loss of
generality, the actual crystal environment of magnetic ions.

For a given distribution of distortions δi and dipoles
pi(σi, δi ), the system acquires a bulk polarization

P ≡ 1

Ns

Ns∑
i=1

pi(σi, δi ) = 1

Ns

Ns∑
i=1

p0(1 − βδi )2σi, (6)

where Ns is the chain length (number of sites).
Electric dipolar momenta may interact with each other, at a

relevant energy scale, in a phenomenological way. Such an in-
teraction is eventually determined by long-range dipole-dipole
interactions and/or elastic relations between deformations of
charged and intermediate ions in the crystal [57]. For the sake
of definiteness, we consider a Coulomb long-range dipole-
dipole interaction coupling decaying with the cube of the
dipole separation,

λD
pi · p j − 3(pi · x̂)(p j · x̂)

|x j − xi|3 , (7)

which in the present geometry only contributes to the prod-
uct of the transverse components pi. Regarding the distance
decay, notice that dipoles pi and pi+1 are separated by a
distance a + ηi, where ηi = (δi + δi+1)/2 is the distortion of
the distance between adjacent dipoles. The electric energy of
a given configuration of dipoles coupled to distortions is given
by

H (full range)
dipole = λD

∑
i

[
pi(σi, δi )pi+1(σi+1, δi+1)

(a + ηi )3

+ pi(σi, δi )pi+2(σi+2, δi+2)

(2a + ηi + ηi+1)3 + · · ·
]

− E
∑

i

pi(σi, δi ), (8)

where the dots represent longer-range dipolar interactions,
and E is an external electric field along the dipolar axis ê. An
electric field component transverse to this axis would intro-
duce dipolar quantum fluctuations, interesting in the context
of molecular magnets [58] or the ferroelectric SrTiO3 [59],
but this is out of the scope of this paper.

We consider here an expansion of the dipolar interactions
in Eq. (8) up to second neighbors. We expect that the inclusion
of longer-range terms will not modify qualitatively the arising
dipolar phases, at least for bipartite lattices where further
neighbors fall into either the first- or the second-neighbor sub-
lattices and will only renormalize the frustration. Assuming
small deformations, we also expand distortions up to linear
terms. We get

Hdipole = Je

∑
i

(
σiσi+1+1

8
σiσi+2

)
− 2ε

∑
i

σi+2βε
∑

i

δiσi

− Je

∑
i

[(
β + 3

2a

)
(σi−1σi + σiσi+1)

+ 1

8

(
β + 3

4a

)
(σi−2σi + σiσi+2)+ 3

16a
σi−1σi+1

]
δi,

(9)

where Je ≡ 4λD p2
0/a3 and ε ≡ 2p2

0E . Though this expression
may look cumbersome, it is quadratic in dipolar variables σi,

144421-4



TOPOLOGICAL SOLITONS AND BULK POLARIZATION … PHYSICAL REVIEW B 103, 144421 (2021)

coupled with linear interaction vertices to elastic distortions.
In a phase where dipolar degrees of freedom are not excited,
as in Sec. IV below, it may be seen as a simple shift of the min-
imum energy elastic configuration. A model described by the
addition of Helastic + Hdipole might be called a dipole-Peierls
system.

3. Complete Hamiltonian

As we mentioned at the beginning of this section, the
elastic degrees of freedom with the Hamiltonian given in
Eq. (1), coupled separately with the spins in Eq. (3) and to the
dipoles in Eq. (9), are the intermediaries of the magnetoelastic
coupling in our proposal. This is achieved by the complete
Hamiltonian to be discussed below,

H = Helastic + Hspin + Hdipole, (10)

that will be called the spin-dipole-Peierls Hamiltonian.

B. Self-consistent equations

To cope with the three coupled degrees of freedom, one
needs an organizing strategy. Here, we follow a self-consistent
(SC) method [60,61] to find the ground state of the Hamilto-
nian in Eq. (10). One should recall that the chains of interest
are immersed in a 3D material with weak interchain interac-
tions so that the effective 1D model collectively describes a
macroscopic number of chains. From this point of view, the
δi distortions along the chains correspond to mean field order
parameters [40] obeying the SC equations we derive below.
This fact supports the validity of our computations.

For a given configuration of dipoles σi and a (quantum or
classical) state for the spins Si, the minimal elastic energy is
obtained when distortions δi satisfy the local zero gradient
conditions

Kδfree
i = αJ1〈Sz

i Sz
i+1 + γ

(
Sx

i Sx
i+1 + Sy

i Sy
i+1

)〉 − βεσi

+ Je

(
β + 3

2a

)
(σi−1σi + σiσi+1)

+ 1

8
Je

(
β + 3

4a

)
(σi−2σi + σiσi+2) + Je

3

16a
σi−1σi+1,

(11)

further constrained by the fixed chain length condition δi =
δfree

i − δfree
i , where the bar stands for average value along the

chain.
On the one hand, these SC equations clearly exhibit the

interplay between magnetic and electric degrees of freedom,
either collaborating or competing to produce the optimal
elastic distortions. Each of them enters in the form of local
correlations. On the other hand, it allows us to incorporate the
knowledge about the magnetic sector and the electric sector
separately. It should be stressed that NNN magnetic interac-
tions, although not explicit in Eq. (11), play a central role in
the actual value of NN correlations by introducing magnetic
frustration in the Hamiltonian in Eq. (3). It is the analysis of
this Hamiltonian that allows for theoretical or numerical input
into the SC equations. Below, we both discuss theoretical
arguments and provide numerical results by iteratively solving

the spin problem with the help of density matrix renormaliza-
tion group (DMRG) computations [62].

We have performed an iterative numerical analysis based
on DMRG to solve the magnetic and electric sectors in the
adiabatic Eq. (6), along the lines stated in Ref. [61] and im-
plemented in a similar context in Ref. [19]. The ground state
for the spin system is obtained by the DMRG algorithm for
each δi and σi configuration. Therefore, we re-obtain the set
of δi from Eq. (11) and prove different σi to minimize the
total energy. We have used periodic boundary conditions, and
we have kept the truncation error less than O(10−12), during
up to more than 100 sweeps in the worst cases. This assures
that errors of the DMRG computation are smaller than symbol
sizes in each figure.

C. Regions of interest

The various parameters in the model allow for a rich phase
diagram. According to the multiferroic materials we aim to
describe, the main region of interest in this paper is that
with large enough ratio J2/J1 so as to manifest magnetic
frustration. For large anisotropy γ � 1, one could expect
that spin fluctuations are strongly diminished, allowing for a
“uudd” ground state comparable with the classical ANNNI
model antiphase state. However, we will show that quantum
fluctuations still influence the deep Ising limit.

As for the energy scales, the dipolar exchange Je will
be kept below the magnetic exchange couplings so that, in
principle, it is magnetism that drives electric responses. The
lattice stiffness K will set an energy scale larger than magnetic
and electric ones to keep distortions small with respect to the
lattice spacing a. We set the length scale by taking the lattice
spacing a = 1 and also set the energy scale taking Ka2 = 1.

From the above considerations, we choose for numerical
computations a reference set of phenomenological parameters
J1 = 0.5, J2 = 0.4, and Je = 0.2 to organize the energy scale
of each degree of freedom. We also choose α = β = 0.2 to
analyze the magnetoelastic and electroelastic couplings. No-
tice that our results do not depend on fine tuning, so we expect
them to be valid in a wide region of parameters.

The electric and magnetic fields in Eqs. (3) and (8) can
be varied to set the system in different polarized and magne-
tized regimes. Finally, the magnetic anisotropy will be varied
from the quantum SU(2) symmetric point γ = 1 down to
small enough values to explore the large easy-axis anisotropy
regime where classical behavior is expected.

III. POLARIZATION PROCESS IN THE PRESENCE OF AN
ELECTRIC FIELD

In this section, we discuss the polarization due to an exter-
nal electric field, when the magnetic sector is decoupled from
the classical degrees of freedom (α = 0). To this end, we ana-
lyze the minimum energy configurations of the dipole-Peierls
Hamiltonian Hdipole + Helastic: given different periodic dipolar
patterns, we analytically compute the distortions minimizing
the elastic energy, in the presence of the electric field. By
comparison, we select the lowest energy electroelastic con-
figuration. In detail, we have considered all of the ordered
dipolar configurations up to period 4. The results lead to the
dipole-elastic phase diagram in Fig. 3.
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FIG. 3. Dipole-elastic phase diagram, computed for β = 0.2.
Double line arrows describe the dipole ordered pattern in each region.
Elastic distortions follow the dipole pattern periodicity, except in the
zero field line ε = 0 and the saturation region ⇑⇑⇑⇑ where magnetic
ions are equally spaced.

It should be stressed that long-range dipole-dipole inter-
action leads to a richer phase diagram with respect to the
first-neighbors interaction case [19]. It includes a new exotic
phase where dipoles order with a period of three sites not
found before. Distortions occur with the same periodicity and
will eventually contribute or interfere with the well-known
period 3 magnetic plateau state that is expected for the mag-
netoelastic sector [63]. In the present 1D case, and in any
bipartite lattice, we expect no other qualitative changes by
including the interactions between further neighbors.

Without electric field, the system possesses a Z2 inversion
symmetry but spontaneously adopts one of the two possible
antiferroelectric ⇑⇓⇑⇓ configurations. To be precise, these
are described by

σi = (−1)i+ν, (12)

where ν = 0 (1) indicates whether odd (even) dipoles are
pointing in the positive preferred axis direction. The distor-
tions are null in either configuration; then dipoles pointing up
or down have the same magnitude, and the system has no net
polarization. This is shown with shaded circles in Fig. 4, with
the left-most dipole pointing upwards; the other possibility is
by inversion or equivalently by a one-site translation.

When a small electric field is turned on, breaking the inver-
sion symmetry, no dipole flips are produced below a critical
field, but dimerized distortions are induced

δi = −(−1)i+ν p0β

K
ε. (13)

Under these distortions, bonds with dipoles pointing along
the field get shorter, enlarging the corresponding local dipolar
momenta, while bonds with dipoles pointing counter field get
longer, shortening the corresponding dipolar strength. This
behavior is sketched in Fig. 4 and occurs in either anti-
ferroelectric configuration (ν = 0, 1). The bulk polarization

FIG. 4. Dipolar pattern in the dimerized electroelastic phase
⇑⇓⇑⇓ for a finite electric field pointing upwards (symbols as in
Fig. 2). Dipoles pointing along the field are larger than dipoles in the
opposite direction. The alternation of bond length distortions is the
mechanism for bulk polarization. The system acquires a linear elec-
trical polarization (paraelectric behavior). Distortions are magnified
for visual effect.

reads

P(ε) = 1

Ns

Ns∑
i=1

p0(1 − βδi )2σi = p2
0β

2

K
ε. (14)

That is, the system behaves as a simple paraelectric, acquiring
a bulk polarization proportional to the applied electric field

(with electric susceptibility χe = ∂P
∂E = 2p4

0β
2

K ).
At the critical line that separates the antiferroelectric low

field phase from longer period dipolar structures, polarization
gets discontinuous because of extensive dipolar flips. In this
paper, we concentrate in the low field region properties. Dis-
continuous transitions to higher polarized states, either via an
electric or a magnetic field, and the interplay with magnetiza-
tion plateaus discussed below will be studied elsewhere.

IV. MAGNETO-ELASTIC COUPLING AND SPONTANEOUS
ELECTRIC POLARIZATION

When the magnetic sector is coupled to the lattice through
α = 0, the ground state magnetic configuration may come
along with lattice distortions. These in turn bring about the
possibility of modulations in the exchange couplings associ-
ated with the lattice distortions.

In the absence of dipolar degrees of freedom, this interplay
between distortions and modulated exchange couplings is re-
solved as an energy balance between elastic cost and magnetic
energy gain. Technically, this balance is expressed by SC
equations like our Eq. (11). In general, when nontrivial distor-
tions show up in the ground state, the spin excitation spectrum
is gapped. In consequence, the magnetization curve presents
a plateau: it requires a finite magnetic field for the Zeeman
energy to overcome the energy gap and change the spin state.
A most important example is the spin-Peierls mechanism
that promotes the formation of spin singlets at the cost of
dimerized distortions [64,65], either in the nonfrustrated case
J2 = 0 or the frustrated one [61]. This has been studied not
only in 1D spin chains but also in higher dimensions [66–70].
The spin-lattice coupling also provides mechanisms for the
opening of plateaus at different magnetization fractions, either
for quantum S = 1

2 spins [71] or classical spins [72].
It is important to notice that magnetization plateaus

may be related to other mechanisms different from elastic
distortions. One of them is the competition between NN and
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NNN exchange couplings, frustrating the antiferromagnetic
order [46,73]. Moreover, the easy-axis anisotropy drives a
competition between the convenience of ground states with
quantum structures (singlets) or classical frustrated configura-
tions [74].

In our system model, the magnetic frustration and the mag-
netoelastic mechanism coexist, along with a dipolar energy
cost-gain for lattice distortions. Altogether, this is expressed
in the SC Eq. (11) for lattice distortions. These SC equations
show that the pantograph mechanism puts dipolar and mag-
netic correlations in either cooperation or competition with
each other to produce changes in the bond lengths. This is
the key ingredient that provides an effective magnetoelectric
coupling mediated by lattice distortions, opening an avenue to
a plethora of new physics.

We show below that this interplay gives rise to a bulk
polarization without the presence of an external electric field.
Moreover, we show that a magnetic field above a threshold
causes a sharp polarization switch.

To start our analysis, we first address the existence of
a zero magnetization plateau in the magnetization curve of
the present spin-dipole-Peierls model, at zero electric field.
As discussed in Sec. II C, we focus on the region with
high enough frustration so as to produce the ↑↑↓↓ mag-
netic ordering (see Fig. 1); for numerical work, we take
as a representative case the parameters J1 = 0.5. J2 = 0.4,
Je = 0.2, and α = β = 0.2. We have explored the anisotropy
range γ � 1 and found signals of quantum and classi-
cal behavior; we report, as representative examples, the
SU (2) symmetric case γ = 1 and a highly anisotropic case
γ = 1

8 .
We solved the SC Eq. (11) iteratively, feeding in the spin-

spin correlations computed by DMRG in the presence of
distortions and the zero electric field antiferroelectric dipolar
configuration (see Fig. 3). It is worth noticing that, in this
regime, the dipolar degrees of freedom σi are not excited.
Once this is known, the full model in Eq. (10) can be seen as
a simpler magnetoelastic spin-Peierls Hamiltonian in a fixed
dipolar background.

By covering all the possible magnetizations in a finite sized
chain of length Ns, we draw the magnetization curves shown
in Fig. 5 where the magnetization M is defined as the total
〈Sz

total〉 relative to saturation.
The outcome is a very rich phase diagram that not only

includes previously studied situations, but also suggests some
exotic nontrivial ones. Besides the M = 0 plateau present for
both the isotropic and the anisotropic case, one can see other
plateaus at simple fractions of the saturation magnetization. In
particular, there is a noticeable plateau at M = 1

3 that is much
wider in the anisotropic case and comes together with a period
3 distortion modulation. There are also plateaus at M = 1

2 and
2
3 in the isotropic case, which are no longer present in the
anisotropic case. In spite of small differences or special points,
it is interesting to notice that the bosonization picture, strictly
valid for |γ | � 1 (|�| � 1), remains essentially the same for
the easy-axis anisotropic region γ < 1.

For completeness, we have computed the magnetiza-
tion curves for systems with some lower frustration values
(J2/J1 = 0.2, 0.5). We sketch in Fig. 6 a summary of the
observed plateaus in a plane h vs J2/J1.

FIG. 5. Magnetization curves obtained by density matrix renor-
malization group (DMRG) self-consistent solution of Eq. (11) for the
isotropic case (γ = 1) and a high easy-axis anisotropy (γ = 1/8),
setting J1 = 0.5, J2 = 0.4, Je = 0.2, α = β = 0.2, and zero electric
field. A plateau at M = 0 is observed in both cases, though the spin
structure found for the isotropic case (quantum dimerized plateau) is
very different from the one found in the anisotropic case (classical
↑↑↓↓ plateau), see discussion below. A prominent plateau at mag-
netization fraction M = 1

3 is also observed in both cases. The insets
show the finite sized scaling of the width of the main plateaus.

We will focus on the zero magnetization plateau and its
magnetic excitations in this paper, with emphasis on the de-
scription of experimental setups attainable in the multiferroic
materials surveyed in the Introduction. Finite magnetization
plateaus, which could trigger further experiments in high mag-
netic fields, will be studied elsewhere.

A. Zero magnetization plateau

In this section, we compare the magnetic structure of the
M = 0 plateau state observed in the SU (2) isotropic case
(γ = 1) with the easy-axis anisotropic case (γ = 1

8 ). In spite
of their differences, we show that both of them lead to alternat-
ing distortions and produce a finite bulk polarization at zero
electric field. Moreover, quantum fluctuations are relevant,
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FIG. 6. Schematic magnetic phases showing the appearance of
plateaus from the competition between the frustrated exchange J2/J1

and the magnetic field h, as well as the spin-lattice coupling. We
report separately the isotropic case (top panel, γ = 1) and a highly
anisotropic case (bottom panel, γ = 1/8). M is the magnetization
relative to saturation; arrows indicate classical collinear order, and
points in an ellipse indicate quantum singlet dimers. We do not intend
to depict here the J2/J1 → 0 limit. The vertical lines correspond to
magnetization curves at J2/J1 = 0.2, 0.5, and 0.8, where solid seg-
ments indicate plateau ranges (J1 = 0.5, Je = 0.2, and α = β = 0.2).

though substantially dumped, even for the (Ising-like) large
anisotropic limit.

1. Quantum dimerized plateau

It is well known that, without exchange modulation (α =
0) and with γ = 1, the homogeneous isotropic frustrated spin
S = 1

2 antiferromagnetic Heisenberg chain spontaneously
breaks the translation symmetry and enters a quantum dimer
phase for J2/J1 > 0.2411 [39,47,48], with 〈Sz

i 〉 = 0 and spin
correlations dominated by strong antiferromagnetic (negative)
correlations every two bonds (strictly, this is not collinear).
The possibility of forming dimers in even or odd bonds makes
the ground state twofold degenerate.

In the presence of the magnetoelastic coupling in Eq. (2),
the NN spin-spin correlations have influence on elastic distor-
tions, as seen in the first line of Eq. (11). As the frustrated
spin-spin correlations alternate along the chain, frustration

favors alternating distortions with short bonds accompanying
spin singlets. Regarding the electroelastic coupling, one can
see that the antiferroelectric configuration at zero electric
field has site-independent dipole-dipole correlations (negative
between first neighbors, positive between second neighbors).
According to the second line in Eq. (11), and considering
the fixed length constraint, dipole-dipole correlations have
no influence on distortions. Thus, our model gets alternat-
ing distortions following the frustrated spin correlations. The
strength of the dipoles sitting in shortened bonds is enlarged,
while that of dipoles sitting in enlarged bonds is shortened
[see Eq. (5)]. As a consequence, the magnetic frustration
gives rise to a ferrielectric state, carrying a spontaneous
bulk electric polarization. Such a bulk polarization, due to
incomplete compensation of local dipole moments, has been
observed in several multiferroic materials; besides the AgCrS2

[8] that motivates our system model, well-studied materials
like TbMnO3 and TbMn2O5 [75,76] are clear examples.

Notice that the twofold degeneracy of the magnetic sector
makes it possible to locate spin singlets (short bonds) either
where dipoles point up or down. The spontaneous polariza-
tion then has two possible orientations, as dictated by the Z2

inversion symmetry of the model.
The present analysis for the frustrated isotropic magnetoe-

lastic chain reinforces our previous results in the absence of
frustration [19], where spontaneous polarization was only due
to the spin-Peierls instability of NN Heisenberg spin chains.

For concreteness, we show in the left panels of Fig. 7 the
local spin expectation value, the distortion profile, and spin-
spin correlations obtained by solving Eq. (11) for J1 = 0.5,
J2 = 0.4, Je = 0.2, α = β = 0.2, and γ = 1. As anticipated,
there are alternating lattice distortions. The local magnetiza-
tion vanishes 〈Sz

i 〉 = 0. The spin-spin correlations are strongly
antiferromagnetic where the bonds are shortened and weakly
ferromagnetic along enlarged bonds; this indicates the forma-
tion of spin singlets every two bonds and defines the quantum
dimer phase. A second degenerate solution looks the same,
but with dimers translated by one lattice site. A pictorial de-
scription of these states, including enlarged dipolar moments
at singlet bonds, is shown in Fig. 8.

In the presence of an electric field (not enough to pro-
duce dipole flips, see Fig. 3), the dipole-field term in the SC
equations also favors the alternation of distortions, but now it
selects the short bonds to be located where dipoles point along
the field (as already discussed in the electroelastic sector, see
Sec. III). In other words, an infinitesimal poling electric field
breaking the Z2 symmetry is enough to select one of the
otherwise degenerate electric polarization states of the system.

2. Classical ↑↑↓↓ plateau

In the easy-axis anisotropy limit γ → 0 and no mag-
netoelastic coupling (α = 0), our model coincides with
the homogeneous frustrated antiferromagnetic Ising chain
(ANNNI model). It is known that this model enters the
collinear antiphase (↑↑↓↓) state at J2/J1 > 0.5 [53], where
J2 is large enough to make the NNN spin correlations ev-
erywhere antiferromagnetic, while NN correlations alternate
between values ±S2. Same as in the quantum case, the
analysis of the SC conditions in Eq. 11 shows that the mag-
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FIG. 7. Zoomed view of the M = 0 plateau configuration in a
chain of 84 sites with periodic boundary conditions (J1 = 0.5, J2 =
0.4, Je = 0.2, and α = β = 0.2, in the presence of an antiferroelec-
tric dipolar background). Upper panels: local profile of 〈Sz

i 〉 (blue
circles) and distortions δi (orange squares), in the isotropic case (left
panels, γ = 1) and highly anisotropic case (right panels, γ = 1/8).
Distortions are scaled by a convenient factor for better visualization.
Lower panels: local profile of spin correlations 〈Si · Si+1〉 in the
isotropic and anisotropic cases. In the isotropic case, the vanishing
of 〈Sz

i 〉 and the enhanced alternated antiferromagnetic correlations
are signals of a quantum dimer phase. In the anisotropic case, the
consecutive 〈Sz

i 〉 ≈ ±0.5 and the alternation of ferromagnetic and
antiferromagnetic correlations 〈Si · Si+1〉 ≈ ±0.25 indicate a classi-
cal ↑↑↓↓ phase. In both cases, distortions are negative (short bonds)
when spin correlations are negative (antiferromagnetic).

netoelastic terms favor alternating distortions, inducing the
Z2-symmetric spontaneous polarization.

To explore this classical scenario, we performed the SC
DMRG computation of the ground state for the same pa-
rameters as in the previous subsection, but for a markedly
anisotropic easy-axis spin-spin interaction γ = 1

8 . We show
in the right panels of Fig. 7 the spin and distortion profiles.
They indicate that the spins almost saturate the z com-
ponent, 〈Sz

i 〉 ≈ ± 1
2 , following the ↑↑↓↓ pattern. Spin-spin

correlations are close to classical, with 〈Si · Si+1〉 ≈ 1
4 for fer-

romagnetic bonds and − 1
4 for antiferromagnetic bonds. The

FIG. 8. Schematic picture for the quantum plateau state at M =
0. The two-spin singlets represented by ellipses gain magnetic energy
by shortening their distance, thus enlarging their exchange coupling.
The influence of these distortions on the alternating dipole lengths
(double arrows) produces a ferrielectric configuration with a finite
bulk polarization.

FIG. 9. Schematic picture for the ↑↑↓↓ plateau state at M = 0.
The collinear spin configuration represented by black arrows gains
magnetic energy by enlarging the exchange coupling of antiparallel
nearest neighbors, shortening their distance. Same as in the quantum
dimerized plateau, the influence of these distortions on the dipole
strengths (double arrows) produces a ferrielectric configuration with
a finite bulk polarization.

distortions do alternate, with short (long) bonds when spin
correlations are antiferromagnetic (ferromagnetic). A graph-
ical description of this state is shown in Fig. 9. Same as in
the quantum dimerized plateau, alternating distortions lead to
a finite spontaneous electric polarization.

It is worth emphasizing the robustness of the spontaneous
polarization induced by magnetic instabilities in the panto-
graph model. We have found the same result in very different
regimes, such as the magnetically frustrated J1 − J2 quantum
spin chain, the close to classical frustrated (Ising) chain, and
the spin-Peierls chain without magnetic frustration [19]. How-
ever, an easy-axis anisotropy in the low frustration regime
(lower left region in Fig. 1) induces a Néel antiferromagnetic
state with homogeneous correlations [77,78] that would even-
tually destroy the spontaneous polarization.

B. Magnetic excitations

The M = 0 configuration remains stable under an ex-
ternal magnetic field h, until it reaches a critical value hc

such that the gain in Zeeman energy of a magnetically ex-
cited state is larger than the spin gap. In this situation, the
system overpasses the M = 0 plateau and enters a magne-
tized regime (see Fig. 5). To understand the magnetization
process, we start by analyzing the features of the Sz

total =
1 state; we then check that low magnetization states can
be described as a superposition of elementary magnetic
excitations.

1. Excitation of the quantum dimerized plateau

There exist extensive studies of the Sz
total = 1 excitation

of the S = 1
2 magnetoelastic spin-Peierls Heisenberg chain,

which appears to be fractionalized into two spinons [79]. In
the bosonization framework, these spinons can be explained
as topological solitonic excitations of a sine-Gordon low en-
ergy effective continuum theory coupled to the distortion field
[80]. Their presence has been checked numerically by differ-
ent techniques [61], and they are found to condense at the
ground state in the presence of a magnetic field.

Relevant to our purpose is the fact that the topological
solitons connect different degenerate vacua of the system. In
the spin-Peierls Heisenberg chain, the ground state is twofold
degenerate, and these vacua are the two possibilities of form-
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FIG. 10. A magnetic soliton connects the two possible quantum
dimer vacua. In this qualitative picture, red (cyan) circles repre-
sent odd (even) magnetic sites; squares represent the distortions of
the bonds at the right of sites with the same color; dotted lines
are a guide to follow odd and even site distortions; double arrows
represent electric dipoles sitting amid magnetic sites in an anti-
ferroelectric configuration. The sequence of spin singlets (ellipses,
thick lines indicating enhanced NN exchange) is shifted by one
lattice site across the soliton, defining a different dimerized domain.
A spin S = 1

2 (black arrow) indicates the fractional magnetization
carried by the soliton. The sequence of short-long bonds is shifted
accordingly. In the presence of the antiferroelectric dipolar back-
ground, the dimerization defines ferrielectric domains with opposite
polarization.

ing singlet pairs along the chain; that is, the two vacua differ
by a one-site translation. The sequence of elastic distortions is
also shifted by one site across each soliton, as the short bonds
belong together with magnetic singlet pairs. We call each of
these vacua a dimerized domain, say A and B. A qualitative
picture in Fig. 10 illustrates the two different dimerized do-
mains separated by a soliton.

We have checked numerically that solitons also develop
in the present model, when distortions are coupled to the
amplitudes of antiferroelectrically ordered dipoles. As well,
the distortion pattern shows two different domains A and
B, separated by the magnetic solitons. At each domain,
the dipoles develop a ferrielectric net polarization, point-
ing in opposite directions. It is important that both domains
are found to have approximately the same length. This
is expected from the sine-Gordon low energy theory [81]
and numerically observed [82] due to the exponential tails
of the soliton profiles, which produce a residual repul-
sion between them. It has been shown that, for higher
Sz

total, the excitations are pairs of solitons distributed as
a periodic array, evolving into a sinusoidal magnetization
profile [83].

Our numerical results for the Sz
total = 1 excitation are

shown in Fig. 11. Detailed data show that the distortions
(squares in the upper panel) in odd-even sites are interchanged
across the first soliton, as sketched with the same colors in
Fig. 10, and interchanged again to their original sequence
across the second soliton, so that the short-long bond se-
quence is shifted by one site at each soliton. The alternation
of ferromagnetic-antiferromagnetic correlations (triangles in
the lower panel) follows the same sequence as distortions,
indicating singlets in two different dimerized domains. The
magnetic excitation is localized in the soliton regions, with
an incipient 〈Sz

i 〉 spin component. As the soliton regions are
wide, in the finite lengths accessible by DMRG, 〈Sz

i 〉 does
not reach the null value seen in the vacuum state; instead,

FIG. 11. Local observables in the Sz
total = 1 excitation in a chain

of 86 sites, in the isotropic case γ = 1 (with periodic boundary
conditions, J1 = 0.5, J2 = 0.4, Je = 0.2, and α = β = 0.2, in the
presence of an antiferroelectric dipolar background). Notice that,
using periodic boundary conditions, we have changed the chain
length to 86 sites for commensurability of the density matrix renor-
malization group (DMRG) solution of the Sz

total = 1 excitation with
the lattice size. Upper panel: local profile of 〈Sz

i 〉 (circles) and dis-
tortions δi (squares). Lower panel: local spin correlations 〈Si · Si+1〉
(triangles). The same colors red (cyan) in Fig. 10 are used here to
visually distinguish odd (even) sites and bonds. The magnetic state
develops a two-soliton profile for spin correlations, separating equal
length domains. The dimerized distortions follow the same profile.
The local magnetizations 〈Sz

i 〉 do not vanish, being larger around the
soliton regions, but show no clear order. Qualitative features agree
with the cartoon in Fig. 10.

distortions and correlations clearly reach their vacuum pat-
terns. Similar behavior has been reported for the excitation of
fractional plateau states in the frustrated magnetoelastic spin
chain [63,74].

We have also studied higher magnetically excited states,
where a pattern of equidistant soliton pairs shows up, thus
confirming the described cancellation of electric polarization.

2. Excitation of the ↑↑↓↓ plateau

Given the Ising-like ↑↑↓↓ structure found in the
anisotropic case γ = 1

8 for the M = 0 plateau in Fig. 7 (right
panels), one could expect that the Sz

total = 1 magnetic excita-
tion also looks Ising-like, that is, a simple spin flip followed
by a rearrangement of classical spins defining sharp domain
walls where some second-neighbor correlations get frustrated
(ferromagnetic).

However, it happens that the system takes advantage of
quantum fluctuations to develop solitonic excitations, so that
the reduction of 〈Sz

i 〉 in the soliton region lowers the en-
ergy cost of the frustrated second-neighbor correlations. Away
from the soliton regions, the same as in the quantum case, we
find that the alternation of distortions and spin correlations,
and the saturated ↑↑↓↓ spin pattern, are like the classical
Sz

total = 0 plateau structure but shifted by one lattice site across
each soliton. The same as in the isoptropic case, the electric
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FIG. 12. Sz
total = 1 excitation configuration in a chain of 86 sites

with periodic boundary conditions (J1 = 0.5, J2 = 0.4, Je = 0.2, and
α = β = 0.2, in the presence of an antiferroelectric dipolar back-
ground), in the anisotropic case γ = 1

8 . Upper panels: local profile
of 〈Sz

i 〉 (circles) and distortions δi (squares), in the isotropic case
(γ = 1) and highly anisotropic case (γ = 1/8). Lower panels: local
profile of spin correlations 〈Si · Si+1〉 (triangles). Four different col-
ors, red, cyan, green, and blue, are used to visually help the location
of data every four sites. The system develops two magnetic solitons,
separating equal length domains. The ↑↑↓↓ spin pattern, as well as
the short-long distortion pattern, are shifted by one lattice site across
each soliton.

polarization forms ferrielectric domains with the polarization
pointing in opposite directions.

We show in Fig. 12 these results for anisotropy γ = 1
8 (cf.,

the M = 0 state in Fig. 7, right panels), using a sequence of
colors to identify four sublattices. Spins at the left side show a
vacuum ↑↑↓↓ configuration; spins at odd sites (red and green
sublattices) are flipped across the first soliton to connect with a
different ↑↑↓↓ vacuum; the same happens with spins at even
sites (cyan and blue sublattices) across the second soliton.
Distortions are dimerized, changing the dimerization domain
across each soliton. Spin correlations in the lower panel show
that antiparallel spins go along with short bonds in vacuum
regions, but quantum fluctuations fade away the expectation
value and correlations of spins in the soliton regions. This
fact reduces the energy cost of the solitonic “domain wall”
as compared with sharp classical domain walls. As a visual
aid, we summarize in Fig. 13 the ↑↑↓↓ soliton features in a
cartoon picture.

Notice that the solitons in the anisotropic case are slightly
narrower than those in Fig. 11, for the isotropic case γ = 1.
The more anisotropic the interaction, we have checked numer-
ically that the soliton regions get even narrower, but they do
not evolve into sharp domain walls, at least for anisotropies as
large as γ = 0.01 (� = 100). It is remarkable that quantum
fluctuations play a significant role even in the quasiclassical
limit.

The presence of topological solitons, instead of sharp do-
main walls, is decisive in the formation of equal length ↑↑↓↓
domains: it is the repulsive residual interaction between soli-
tons that keeps them separated in the finite sized chain.

FIG. 13. Schematic description of the first soliton in Fig. 12, con-
necting two different ↑↑↓↓ dimerized domains. The zig-zag chain
design (following the solid lines) is solely intended to distinguish odd
sites in the lower leg and even sites in the upper leg. Nearest-neighbor
exchanges J1 are represented by solid rung lines and next nearest-
neighbor exchanges J2 by dashed straight leg lines. Single arrows
represent the 〈Sz

i 〉 component of spins, using the same sublattice
colors as in Fig. 12, and orange double arrows represent the electric
dipoles between them. Notice that the ↑↑↓↓ spin order along the
chain can be seen as Néel configurations along each leg. The mag-
netic soliton reverses the spins in the lower leg (indicated as a twist
in the dotted lines), leaving unchanged those in the upper leg. The
lattice dimerization brings closer the antiparallel nearest-neighbor
spins, enlarging their exchange couplings (thick solid rungs); thus,
the magnetic twist produces different dimerization domains with
ferrielectric polarizations in opposite directions.

C. Polarization jump driven by magnetic field

At zero electric field, both in the isotropic and the
anisotropic cases, the solitonic magnetic excitations separate
ferrielectric domains with opposite polarization. This happens
not only for Sz

total = 1 but for higher excitations described by
pairs of solitons. As a consequence, having these domains
the same length, the total polarization of the system drops
nearly to zero. That is, the spontaneous electric polarization
observed at zero magnetization is switched off by means of
the applied magnetic field [19]. This happens either if the
exit from the M = 0 plateau is smooth (that is, soliton pairs
appear continuously with the magnetic field) or in the case of
a metamagnetic jump in which soliton pairs proliferate.

To make apparent the relation between the polarization
jump and the onset of magnetization, we plot together in
Fig. 14 the polarization and the low magnetization curves in
a magnetic field, both for the isotropic (upper panel) and the
anisotropic (lower panel) cases discussed in this paper. The
spontaneous polarization (red curves, scale in right axis) is
computed from the lattice distortions in an antiferroelectric
background, according to Eq. 6. In both cases, it suddenly
drops several orders of magnitude. The magnetization is the
same as in Fig. 5, with the addition of an infinite sized ex-
trapolation (blue curves, scale in left axis). The infinite sized
extrapolation of the polarization at the lowest magnetization
levels, shown in the insets, clearly proves that the polarization
switch off is a bulk magnetoelectric effect occurring at the
onset of magnetization. Beyond the excited Sz

total = 1 and 2
sization shown in the insets, we have checked that the further
increase of the magnetization introduces extra pairs of soli-
tons. These appear uniformly spread along the chain, as it also
occurs in the magnetoelastic case [83], separating different
dimerization domains and producing the drop of the electric
polarization observed in Fig. 14 for arbitrary nonvanishing
magnetization.
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FIG. 14. Polarization curves (red solid lines, scale in the right
axis in units of p0) in an external magnetic field for the isotropic
γ = 1 and the anisotropic γ = 1

8 models (J1 = 0.5, J2 = 0.4, Je =
0.2, and α = β = 0.2, in the presence of an antiferroelectric dipolar
background). Magnetization curves in the low M region (extrapo-
lated as blue solid lines, scale in the left axis) are also plotted for
comparison. In both cases, the system supports a finite spontaneous
polarization at low magnetic fields, while Sz

total = 0, but a sudden
drop is observed once the system exits the M = 0 magnetic plateau.
The polarization curves follow from finite sized results and infinite
sized extrapolation. Insets: finite sized scaling for the polarizations
obtained for Sz

total = 0, 1, and 2 shows almost no size dependence.

Such magnetically driven polarization jumps are a source
of intrigue in many multiferroic materials. For instance,
Lu2MnCoO6 [16] and Er2CoMnO6 [17] show a polariza-
tion jump when exiting the observed M = 0 magnetization
plateau. Closely related are the polarization jumps observed
in R2V2O7 (R = Ni, Co) when entering and exiting the M = 1

2
magnetization plateau [84]. We expect that the present results
could help in fitting actual parameters in these materials and
explain the observed jumps.

D. Polarization flip controlled by very low electric fields

Measures of spontaneous polarization are usually made
with the help of a tiny poling field to lift the degeneracy

FIG. 15. A magnetic field step, in any orientation and strong
enough to magnetize the system, produces electric depolarization. In
combination with a tiny poling field signal, it can be used to reverse
the spontaneous polarization P. This could be the basis for storing
information in a dipolar memory bit.

between the possible spontaneous orientations. Once done, a
coercive field much larger than the poling one is required to
flip the bulk polarization.

In the present model, it is also interesting to discuss the
effect of a poling electric field when the polarization has been
switched off by a magnetic field larger than the critical one,
strong enough to magnetize and depolarize the system by the
creation of pairs of different ferrielectric domains. It happens
that the domains with polarization pointing along the poling
field are energetically favored, hence pushing apart the soliton
walls at their ends to lower the total system energy. As the
displacement of solitonic domain boundaries in large systems
has very small energy cost, a high electric susceptibility is
expected in this regime. In consequence, the polarization can-
cellation is not perfect, and the system exhibits a small net
polarization in the direction of the electric field. From this
situation, as soon as the magnetic field is turned off, it is
expected that the orientation of the much larger recovered
spontaneous polarization follows the preferred orientation set
by the poling field in the magnetized regime.

One can think of designing a multiferroic memory storage
in which information, in the form of a polarized spot, is con-
trolled by a low electric field signal with the help of a brief but
strong magnetic blast: a magnetic field, carrying no informa-
tion, would erase the previously “written” polarization, which
is then “rewritten” in the desired (up or down) orientation by
the simultaneous presence of a poling low electric field (low
voltage bias). The procedure is sketched in Fig. 15. Such a
device would show a giant electric response and could be the
basis for an efficient memory writing-reading device.

To support these considerations, we show in Fig. 16 how
the equal length domains already seen in Figs. 11 and 12
(shaded symbols here) are modified in the presence of a
small electric field ε = 0.01: the central domain, with po-
larization along the field, indeed gets wider. We note that,
in the computationally accessible finite sized chains, the ef-
fect is more pronounced in the anisotropic case, where the
solitons are narrower and their residual repulsion is less
manifest.

V. SUMMARY AND PERSPECTIVES

In this paper, we have extended and improved a micro-
scopic mechanism of magnetoelectric coupling mediated by
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FIG. 16. A small electric field provokes the displacement of the
solitons in the Sz = 1 configuration, enlarging the domain with elec-
tric polarization along the field. The solid symbols correspond to an
electric field ε = 0.01, with the rest of the parameters as in Figs. 11
and 12 (repeated here in shaded symbols for comparison). The same
effect is observed both in the isotropic and the anisotropic case.

lattice distortions, previously introduced by the authors in Ref.
[19], into a realistic model for type-II collinear multiferroic
materials. Essential ingredients to match with experimental
observations are the easy-axis anisotropy � > 1 (expressed
for convenience as γ < 1) favoring collinearity, the magnetic
frustration J2/J1 leading to the “uudd” spin ground state,
and the Coulomb-like long-range dipole-dipole interaction
establishing the antiferroelectric order, all of these in the ab-
sence of external fields. Motivated by the variety of known
multiferroic materials, which includes the SU (2) symmetric
as well as strongly easy-axis anisotropic spin interactions,
we have explored the proposed model from the Heisenberg
isotropic regime � = 1 up to Ising-like anisotropic cases
� � 1.

The microscopic mechanism may be described by a
spin-dipole-Peierls Hamiltonian, where the indirect magneto-
electric coupling arises from a combination of a spin-Peierls
like magnetoelectric coupling, which is known to lead to an
elastic dimerization instability, and a pantograph mechanism
that relates the strength of electric dipolar moments to lattice

deformations. Both mechanisms are ubiquitous in multiferroic
materials, especially when competing magnetic interactions
frustrate an antiferromagnetic Néel configuration. Magnetic
and electric degrees of freedom can thus either cooperate or
compete in provoking lattice instabilities, in a precise way
expressed in the SC key Eq. (11).

We have argued theoretically and proven numerically, by
extensive DMRG computations, that in a wide parameter re-
gion, starting at the isotropic SU (2) Heisenberg model and
going up to an extreme anisotropic ANNNI model, the system
has a gapped magnetic ground state associated with dimerized
lattice distortions. Main consequences are the zero magnetiza-
tion plateaus in the magnetization curves and the emergence
of an spontaneous ferrielectric bulk polarization (an antifer-
roelectric with a remanent polarization), with two possible
degenerate orientations (Z2 symmetry).

In the presence of an external magnetic field exceeding
a critical value, related to the spin gap, low magnetiza-
tion excitations develop as pairs of topological solitons that
separate different dimerized domains carrying opposite ferri-
electric polarizations. A lattice of equidistant solitons grows
along the system, producing a sharp switch off in the bulk
polarization. This mechanism, robust due to its topologi-
cal character, could be at the root of the bulk polarization
jumps observed in many different multiferroic materials. We
expect that the present paradigm might be fitted to actual
experimental parameters and be identified as one of the micro-
scopic mechanisms behind magnetically induced polarization
jumps.

We have also found a polarization state at intermediate
electric fields with ⇑⇑⇓ periodicity, exclusively due to the
long-range character of the dipolar interactions frustrating
the antiferroelectric order. Such a period 3 dipolar config-
uration, combined with the M = 1

3 magnetic plateau state
found at intermediate magnetic fields, could give rise to in-
teresting magnetoelectric cross effects. This will be studied
elsewhere.

Regarding technological interest, a material described by
our model is classified as a ferrielectric. It has a sponta-
neous Z2 polarization due to dipolar imbalance that can be
easily controlled by applied fields. In fact, the presence of
a small poling electric field gives rise to a relative displace-
ment of the solitonic domain walls, making the polarization
of the magnetized states not completely turned off. Then a
demagnetization would select a preferred orientation for the
spontaneous polarization. This property could be used, for
instance, to engineer polarized memory storage devices con-
trollable by very low electric signals. From a different point
of view, this paper could guide the design and manufacture
of composite artificial multiferroic systems, such as multi-
layers (see, for instance, Ref. [85]), where the mechanical
strain transfer couples ferroelectricity and ferromagnetism, or
even regularly nanopatterned arrays (see, for instance, Ref.
[86]), where flexoelectricity couples magnetostrictive strain
gradients with electric polarization in different materials. The
technological control of multiferroicity in these multiphase
composite systems is rapidly progressing and could in the fu-
ture be the alternative to chemically synthesized multiferroic
compounds. We hope that the understanding of the mecha-
nisms of multiferroicity at the atomic scale will shed light
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on the effective magnetoelectric coupling mechanisms taking
place at the nanometer scale.

The pantograph mechanism, which is the key ingredient
in our proposal to generate the magnetoelectric coupling,
encodes the relation between the dipolar moments and
their lattice environment and is present as well in 2D or
3D systems. Appropriate extensions of the present model
can be written considering detailed crystallographic data.
In these higher dimensional settings, the isolated solitons
could become extended walls; the predicted magnetically

driven polarization switch off will probably survive to these
generalizations.
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