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Stripping the planar quantum compass model to its basics
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We introduce a novel mean-field theory (MFT) around the exactly soluble two-leg ladder limit for the planar
quantum compass model (QCM). In contrast to usual MFT, our construction respects the stringent constraints
imposed by emergent, lower (here d = 1) dimensional symmetries of the QCM. Specializing our construction
to the QCM on a periodic four-leg ladder, we find that a first-order transition separates two mutually dual
Ising nematic phases, in good accord with state-of-the-art numerics for the planar QCM. One pseudo-spin-flip
excitation in the ordered phase turns out to be two (Jordan-Wigner) fermion bound states, reminiscent of spin
waves in spin-1/2 Heisenberg chains. We discuss the novel implications of our work on (1) the emergence of
coupled orbital and magnetic ordered and liquidlike disordered phases and (2) a rare instance of orbital-spin
separation in d > 1, in the context of a Kugel-Khomskii view of multiorbital Mott insulators.
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I. INTRODUCTION

Frustration in quantum many body systems continues to
evince interest for over four decades now. The wide range of
exotic physical responses exhibited by transition metal oxides
(TMO) are believed to originate from a complex interplay
between strongly coupled charge, orbital, spin, and lattice de-
grees of freedom [1]. Adding frustration results in exponential
degeneracy of classical ground states. Quantum fluctuations
are believed to select novel ordered states out of this manifold
by “order by disorder” mechanism [2,3]. The upshot is the
possible emergence of truly novel, unconventional ordered
phases of matter, characterized by fractionalized excitations
in spatial dimension, d > 1. These issues have been addressed
extensively using a variety of analytic and numerical tech-
niques each having their own strengths and limitations [3].
While exact solutions in d > 1 are rare, an exception is the
celebrated Kitaev honeycomb model (KHM) [4]. In absence
of exact solutions in d > 1, controlled approximations that
capture the main essence of a given problem remain an at-
tractive option.

The quantum compass model (QCM) on a square lattice,
defined as

HQC = 1

4

∑
�r

[
Jxσ

x
�r σ x

�r+x̂ + Jzσ
z
�r σ z

�r+ẑ

]
(1)

is a particularly illustrative case in point. The “orbital only”
QCM has received extensive attention as a model for orbital
order in TMO based Mott insulators [5,6], and in the context
of qubit implementation in Josephson junction arrays [7].
Moreover, QCM on a square lattice is dual to the Xu-Moore
model for p + ip superconductor arrays [8] and Kitaev’s toric
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code (TC) model in a transverse field [9]. These dualities
are useful to unveil the hidden connections between clas-
sical and topological orders [10] in higher dimensions. On
the analytic front, QCM has been extensively studied in 1d
chains [11] and on two-leg ladders [12,13]; the latter one has
been very recently studied [14] in the context of many-body
localization.

Inspired by the “chain-mean-field” approach [15], one may
wonder whether the exactly soluble two-leg ladder QCM may
serve as an appropriate template to investigate the QCM on a
square lattice as a collection of coupled two-leg ladders. Ref-
erence [15] finds a first-order quantum phase transition (QPT)
between two states with |〈σ x

�r 〉| = mx > 0 (|Jx| > α|Jz|) and
|〈σ z

�r 〉| = mz > 0 (|Jx| < α|Jz|) with α �= 1; thus, the chain-
mean-field theory (MFT) violates the rigorous self-duality of
square lattice QCM, which requires α = 1.

The (expected) inability of chain-MFT to respect self-
duality can be traced back to its inherent inability to treat the
lower (d = 1) dimensional symmetries (LDS) [8] rigorously.
In the QCM, various 1d LDS constrain the finite temper-
ature responses. These LDS are (i) Pj = ∏

i σ
z
i j , acting on

the row j and (ii) Qi = ∏
j σ

x
i j acting along the column i of

the square lattice. Both Pj and Qi commute with HQC, but
[Pj, Qi] �= 0 ∀ i, j while [Pj, Pj′ ] = [Qi, Qi′ ] = 0 ∀ i, i′, j, j′.
Also, [PiPj, Qk] = [QiQj, Pk] = 0. Hence, all the eigenstates
are twofold degenerate [7] and there are exactly 2L low energy
states of HQC (here L denotes linear size of the system). At
Jx = Jz, HQC is also invariant under a global (d = 2) reflec-
tion symmetry σ x ↔ σ z (implemented by an operator R =∏

�r exp [ iπ
2
√

2
(σ x

�r + σ z
�r )]). In the thermodynamic limit, all the

2L low lying states collapse into each other for Jx �= Jz (and
2L+1 states for Jx = Jz) [16], leading to infinite but subexten-
sive degeneracy (scales with the linear size) of the compass
ground state.

Proliferation of nonlocal defects (like domain walls in
1d Ising model), generated by these 1d LDS, completely
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FIG. 1. QCM on a periodic square lattice is represented as col-
lection of coupled two-leg QC ladders. Intra (inter) two-leg ladder
exchange interactions are shown in thick blue (dashed red) arrows.

obliterates any conventional magnetic order at any tempera-
ture, T > 0 due to Elitzur’s theorem [17]. Remarkably, the
directional spin nematic order [8], described by an Ising
like variable, 〈D〉 = 〈σ x

�r σ x
�r+x̂ − σ z

�r σ z
�r+ẑ〉 survives the strong

fluctuations implied by these 1d LDS, even at finite T .
Thus any approach must obey (i) these LDS and (ii) self-
duality. These are stringent constraints for any analytical
approximation.

II. FORMULATION

In this communication, we construct a novel “mean-field-
like” approach as a first step toward the full 2d QCM.
Specifically, we exploit Mattis’s exact solution for the HQC

on a two-leg ladder [13] by coupling such two-leg ladders as
shown in Fig. 1. Now, the Hamiltonian is HQC = ∑N/2

l=1 H (0)
l +

Hint , where H (0)
l , Hint denote intraladder and interladder inter-

action terms [18].

H (0)
l =

N∑
j=1

[
Jx

(
Sx

jl S
x
j+1,l + T x

jl T
x
j+1,l

) + JzS
z
jl T

z
jl

]
, (2)

Hint = Jz

N∑
j=1

N/2∑
l=1

Sz
jl T

z
j,l+1, (3)

We now use the following canonical transformations [13]:

(
Sx

jl , Sy
jl , Sz

jl

) = (
Px

jl , 2Py
jl Q

x
jl , 2Pz

jlQ
x
jl

)
,(

T x
jl , T y

jl , T z
jl

) = ( − 2Qz
jlP

x
jl , 2Qy

jlP
x
jl , Qx

jl

)
. (4)

These transformations are nothing but the two site version
of well known Kramer-Wannier (KW) duality with an addi-
tional rotation of spin basis. To see this, we rotate only the
Pα basis about y-axis by an angle π/2, (Pz

jl → Px
jl , Px

jl →
−P z

jl ), then the Eq. (4) implies (i) 2Sz
jlT

z
jl = Px

jl , Sx
jl =

−P z
jl , T x

jl = 2(−P z
jl )(−Qz

jl ) and (ii) 2Sx
jl T

x
jl = −Qz

jl , T z
jl =

Qx
jl , Sz

jl = 2Qx
jlPx

jl . Both of these are conventional expres-
sions of two site KW duality [apart from the minus signs
which could be absorbed by a further rotation, Rx(π ) of P, Q
spins].

Now using Eq. (4), H (0)
l and Hint read following:

H (0)
l = Jx

N∑
j=1

Px
jl P

x
j+1,l

(
1 + 4Qz

jl Q
z
j+1,l

) + Jz

2

N∑
j=1

Pz
jl , (5a)

Hint = 2Jz

N∑
j=1

N/2∑
l=1

Pz
jl Q

x
jl Q

x
j,l+1. (5b)

When Hint is absent, we get a collection of 1d transverse field
Ising models (TFIM) with spins (Px

jl ) coupled to static Z2

variables (Qz
jl ). With Hint, the Qzs become fully dynamical,

pre-empting exact solubility. At this stage, MF decoupling of
Pμ and Qνs in both Eqs. (5a) and (5b) gives

H1 =
N/2∑
l=1

[
Jx

N∑
j=1

(
1 + 4

〈
Qz

jl Q
z
j+1,l

〉)
Px

jl P
x
j+1,l

+ Jz

2

N∑
j=1

(
1 + 4

〈
Qx

jlQ
x
j,l+1

〉)
Pz

jl

]
, (6a)

H2 = Jx

N∑
j=1

N/2∑
l=1

(
4
〈
Px

jl P
x
j+1,l

〉)
Qz

jlQ
z
j+1,l

+ Jz

N∑
j=1

N/2∑
l=1

(
2
〈
Pz

jl

〉)
Qx

jlQ
x
j,l+1. (6b)

Now H1 is a collection of N
2 1d TFIMs with couplings deter-

mined by two-spin correlations of the Qν , (ν = x, z), while
H2 is another 2d QCM (but on a N × N

2 rectangular lattice)
whose coefficients are the correlators of the 1d TFIM. Thus
it may look as if we have complicated the problem. However,
this is not so, as we explain now.

First we notice that (i) �x
jl = 4〈Px

jl P
x
j+1,l〉 corresponds

to 〈σ x
�r σ x

�r+x̂〉 in the original spin language; similarly,
(ii) �z

jl = 2〈Pz
jl〉 ∼ 〈σ z

�r σ z
�r+ẑ〉, and (iii) �x

jl = 4〈Qz
jl Q

z
j+1,l〉 ∼

〈σ x
�r σ x

�r+ẑσ
x
�r+x̂σ

x
�r+x̂+ẑ〉, (iv) �z

jl = 4〈Qx
jl Q

x
j,l+1〉 ∼ 〈σ z

�r σ z
�r+2ẑ〉.

Remarkably, all these MF averages thus respect the rigorous
1d LDS of the QCM. This feature, counterintuitive for any
MFT, will play a central role in our analysis, as we show
below.

We now notice that if we restrict ourselves to just two
coupled QC ladders, Eq. (6b) then reads

H2 =
N∑

j=1

∑
l=1,2

[
Jx�

x
jlQ

z
jl Q

z
j+1,l + Jz�

z
jlQ

x
jl Q

x
j,l+1

]
, (7)

which is precisely another two-leg QC ladder for Qν . Here we
assume periodic boundary conditions both along leg and rung
directions of the ladder.

Thus we can use the Mattis’s transformations for the Qνs
in Eq. (7). Writing Qx

j,1 = −2W z
j V x

j , Qz
j,1 = W x

j , and Qx
j,2 =

−V x
j , Qz

j,2 = −2V z
j W x

j , Eq. (7) reads

H2 = Jx

N∑
j=1

[
�x

j,1 + (
4V z

j V z
j+1

)
�x

j,2

]
W x

j W x
j+1

+ Jz

2

N∑
j=1

(
�z

j,1 + �z
j,2

)
W z

j . (8)
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So H2 is another 1d TFIM of W μ spins coupled to static Z2

fields V z
j . These local Z2 variables are V z

j = 8Sx
j,2T x

j,2Sx
j,1T x

j,1.
Interestingly, these are just one of the 1d LDS of HQC for
the two coupled QC ladders. We assume V z

j = ±1/2, ∀ j,
which is strictly valid only for T = 0+. This restores transla-
tional invariance, giving �

μ

jl ≡ �μ (μ = x, z), �x
jl ≡ �x, and

�z
jl ≡ �z. So finally,

H (l )
1 = Jx(1 + �x )

N∑
j=1

Px
jl P

x
j+1,l + Jz

2
(1 + �z )

N∑
j=1

Pz
jl , (9a)

H2 = 2Jx�x

N∑
j=1

W x
j W x

j+1 + Jz�z

N∑
j=1

W z
j . (9b)

We solve the Hamiltonians Eqs. (9a) and (9b) using the
exact solution of 1d TFIM (see Appendix A). The four self-
consistency equations are written in the following compact
manner. Define two vectors Mx and Mz, with two components
Mx

a = �x, Mx
b = �x, Mz

a = �z, and Mz
b = �z.

Mx
σ =

∫ π

0

dk

π

(hσ cos k − 1) tanh
(
βEσ

k /2
)

√
1 + h2

σ − 2hσ cos k
, (10)

Mz
σ =

∫ π

0

dk

π

(
h−1

σ cos k − 1
)

tanh
(
βEσ

k /2
)

√
1 + h−2

σ − 2h−1
σ cos k

, (11)

where Ea
k = |Jx |

2 (1 + �x )
√

1 + h2
a − 2ha cos k, Eb

k =
|Jx||�x|

√
1 + h2

b − 2hb cos k, ha = Jz(1 + �z )/Jx(1 + �x ),
hb = Jz�z/Jx�x, and β = 1/T .

We could equivalently have applied the Mattis’s relations
(for Qν) before Eq. (8) to Eqs. (5a) and (5b) and then done a
MF decoupling, again leading to Eqs. (9a) and (9b). Notice
that the MF self-consistency Eqs. (10) and (11) faithfully
reflect the exact self-duality of the square lattice QCM at
Jx = Jz (Mx

σ ↔ Mz
σ when Jx, �x, �x ↔ Jz, �z, �z). This is

a very positive feature of the present approach, in contrast to
that of Ref. [15], which violates this constraint. This important
difference can be traced back to the fact that our MF decou-
pling is performed at a specific two-(particle) spin channel that
preserves the LDS. We also find that this particular decou-
pling channel is the only one (in the present approach, based
on Mattis’s relations) which preserves LDS and self-duality.
Other channels (e.g., conventional single site MF decoupling)
will violate these symmetries and this may produce qualita-
tively incorrect results at finite T . Keeping the LDS in mind,
one could in principle use the above MF construction for a
general N-leg compass ladder (for example, see the eight-leg
case in Appendix E). For N = 2p, one has to apply Mattis’s
relations [Eq. (4)] (p − 1) times and similarly (p − 1) MF
decouplings [like Eqs. (6a) and (6b)] to get a collection of
analytically soluble TFIMs [like Eqs. (9a) and (9b)]. In this
way, total 2p different MF order parameters are generated.
We find nearest neighbor nematics (�x, �z) and various
nonlocal static spin-correlations like �z

m = 〈σ z
j σ

z
j+2mẑ〉 and

�x
m = 〈θ x

j θ
x
j+2ẑ . . . θ x

j+(2m−4)ẑθ
x
j+(2m−2)ẑ〉, m = 1, 2, . . . , p − 1

with θ x
j = σ x

i σ x
i+x̂σ

x
i+ẑσ

x
i+x̂+ẑ to emerge from the MF decou-

pling procedure. The number of such MF order parameters
(to be determined self-consistently) diverges as O(ln(N )) as
N becomes large, which make the above method impractical

FIG. 2. (a) Ground-state energy per site (egs) vs anisotropy pa-
rameter (θ ) for (i) two-leg ladder [θ = tan−1(|Jz|/2|Jx|)] and (ii)
four-leg ladder [θ = tan−1(|Jz|/|Jx|)]; this MF egs agrees closely with
Refs. [9,16,20]. (b) Nematic order parameter (〈D〉) at T = 0 for (i)
and (ii) is shown in the inset.

for doing calculations when the number of ladder legs become
large. Hence, a MFT which can be directly used for the full 2d
compass model (and preserves the LDS) requires further inge-
nious way(s) which are beyond the scope of present work.

III. RESULTS

We now present our results. The two-leg QC ladder ex-
hibits a quantum critical point (see Ref. [13]) separating a
“magnetically ordered” and “quantum disordered” phase at
T = 0. In original spin variables, this is also a continuous
transition between xx-ordered phase to zz-ordered phase, with
Ising nematic order parameter 〈D〉 = +(−)D0 for 2|Jx| >

(<)|Jz|, clearly shown in Fig. 2. This QPT belongs to the
well known 2d classical Ising universality class. On the other
side, four-leg QC ladder reveals a clear first-order transition
between the two Ising nematic phases above, (see Fig. 2) pre-
cisely at the self-dual point (Jx = Jz). This agrees fully with
both exact arguments and numerical results [19,20]. Interest-
ingly, the MF ground-state energy per lattice site, egs(θ ), as a
function of θ = tan−1(|Jz|/|Jx|) [see Eq. (A8)] exhibits a clear
cusp (see Fig. 2) at θ = π/4 (Jx = Jz ), and agrees closely,
both in its functional form and magnitude, with the PCUT
results of Vidal et al. [9], iPEPS results of Orús et al. [20], and
Green function Monte-Carlo results of Dorier et al. [16]. In
fact, at θ = π/4, the point of maximum frustration, our egs =
−0.19 is very close to the egs ≈ −0.2 found from the above
numerical techniques. Considering the approximations made
here, this is remarkable accord. Thus most of the ground-state
correlation energy for the full 2d QCM already seems to be
captured by a four-leg ladder. Equivalences between the QCM
and Xu-Moore as well as the transverse field-TC model also
imply first-order QPTs at self-dual points in these models [9].
Even more interestingly, we also uncover a hitherto unnoticed
(to our best knowledge) duality between a plaquette order
�x and a next-near-neighbor zz correlation �z (this “hidden”
duality could also be proven analytically, see Appendix B) in
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FIG. 3. Various MF averages for the four-leg QC ladder at finite
T , (a) �x and dual �z (shown in the inset), (b) the other dual pair �x

and �z (shown in the inset) are plotted as function of θ , for different
T values. All these averages continue showing a sudden jump at
θ = π/4 (Jx = Jz) up to T = Tc ≈ 0.125, where the discontinuity
just vanishes.

Fig. 3. Both of these also exhibit a clear jump at Jx = Jz. While
possible “hidden” dimer order has been studied earlier [21] in
the 2d QCM, the duality between �x and �z is a new find-
ing. What about the excitations? In the xx-ordered state, the
pseudospin fluctuation spectrum, given by Imχ(PxPx )(q, ω),
is the two Jordan-Wigner (JW) fermion continuum. Thus a
pseudospin flip in the QCM is a two fermion bound state,
reminiscent of the des Cloizeaux-Pearson spin wave spectrum
of the S = 1/2 AF Heisenberg chain [22]. Thus excitations
of the nematic order are (i) the dispersive orbital pseudospin
excitations, which are two-fermion composites, and (ii) “indi-
vidual spin flips” which, in our case, correspond to flipping a
V z

j on local “sites”, j: for coupled ladders, these are precisely
“column flips.” These two distinct types of excitations have
also been observed by F. Trousselet et al. [23], in finite size
compass clusters perturbed by Heisenberg interactions. The
〈σ z

�r σ z
�r+n〉 correlations along the legs (x direction) rigorously

vanish, both at zero and finite T , and 〈σ x
�r σ x

�r+n〉 correlations
along x, z directions are consistent with a T = 0, Z2 symme-
try (Pj = ∏

i σ
z
i j) broken ordered state [20] when |Jx| > |Jz|,

as well as with short-range correlation at any finite T (see
Appendix D). The nematic (�x,z , �z) and plaquette (�x)
correlators nevertheless dominate at finite T ; this is a conse-
quence of the present MF decoupling, which is carried out by
decoupling the “four-spin interaction” at a “two-spin” level,
in a way that preserves the LDS. By construction, our MFT
treats spatial correlations along x direction almost exactly (cf.
two coupled 1d TFIMs), but approximates correlations along
z direction to just three lattice spacings. Thus, by construction,
the correlation length along x (ξx) is much larger than that
along z (ξz) : this assumption is in qualitative accord with
Ref. [26], which indeed finds ξx > ξz. Thus, even though we
cannot treat long-range correlations along z accurately, the
emergent LDS of the QCM come to the rescue.

At Jx = Jz, T = Tc ≈ 0.1225 (for periodic four-leg ladder),
the second-order endpoint has a Landau mean-field character
(see Appendix C). As expected from any MFT, Tc is overes-
timated, in comparison with the quantum Monte Carlo [24],
high-T expansion [25], and more recent variational tensor
network [26] approaches. Beyond-MF fluctuations (see be-
low) will certainly depress the MF Tc, but estimating this
reduction and “restoring” the classical 2d Ising critical ex-
ponents is beyond the scope of the present work. Finally,
about fluctuations beyond MFT, these are mainly of two types:
(1) interaction between the JW fermions and (2) sudden local
quenches due to flipping of one or more of V z

j s. In Appendix
F, we detail how beyond-MFT fluctuation effects converge
almost everywhere in the parameter space, except possibly at
Jx = Jz, T = Tc. Thus we expect our main results to survive
beyond-MF fluctuation effects except close to Tc.

About entanglement properties, we follow the approach
of O. Hart et al. [14] for our case and ask about the time
dependent entanglement entropy S(t ) after starting from a
translationally invariant initial state (when all V z

j = ±1/2)
and partitioning the full four-leg ladder legwise, into two
equal length four-leg ladders. Signatures of strong entangle-
ment (at long times) in the system (if any) are generally
also reflected in certain long-time dynamical spin correlations
which could be mapped to Loschmidt-echo-like objects. In
addition, these dynamical spin responses are also experimen-
tally measurable. We consider the following correlator as an
example, 〈Sz

j,1(t )Sz
j+n,1(0)〉 at long times:〈

Sz
j,1(t )Sz

j+n,1(0)
〉

≈ 1
4δn,0

〈
pz

j,1(t )pz
j,1(0)

〉〈
wz

j (t )vx
j (t )wz

j (0)vx
j (0)

〉
. (12)

Here pα
j = 2Pα

j (similarly for wβ, vγ ) are Pauli spins, (pα )2 =
1. The trace is performed over all {vz

j} configurations, so vx
j

should be applied twice at the same position to return back to
same {vz

j} sector. This makes the above correlator completely
local. Now,〈

wz
j (t )vx

j (t )wz
j (0)vx

j (0)
〉 = 〈

eitH ({vz
j })e−itH ′

j ({vz
j};−vz

j )
〉
.

Here H ′
j = wz

jH ({vz
j}; −vz

j )w
z
j , and H ({vz

j}; −vz
j ) represents

the Hamiltonian where one vz
j is flipped. we have used the

identity wz
je

−iHtwz
j = e−it (wz

j Hwz
j ), to get the above relation.

The above expectation value is nothing but Loschmidt-echo-
like quantity generally occurs in the “sudden quench” context.
As we discuss in Appendix F, (i) the presence of gap
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everywhere (below Tc) and (ii) the first-order transition at
Jx = Jz, lead to suppression of infrared singular behavior in
these types of local dynamical correlators (away from Tc).
Thus no power-law behavior at long times obtains, and thus
S(t ) will not grow logarithmically.

Exactly at Jx = Jz, T = Tc, we are left with gapless JW-
Bogoliubov fermions (see Fig. 7), with a finite density of
states (DOS) at low energies. Now, as detailed in Appendix F,
a sudden quench as above leads to a nonperturbative shake-up
of the JW Fermi sea via an Anderson orthogonality Catas-
trophe, leading to complete loss of the pole structure of the
JW fermionic propagator in favour of a branch-cut structure.
Interestingly, this novel feature is associated with “strange”
metallicity in a completely different context [27], and leads to
a vanishing (like a power law at long times) fidelity. This fully
accords with numerics (F. Trousselet et al. [23]), which indeed
finds vanishing fidelity at the compass point in a compass-
Heisenberg model.

There are also interesting connections to the celebrated
KHM. KHM and it’s variants are exactly soluble via Majorana
or JW fermionization, due to gapless (gapped) Majoranas
coupled to static Z2 gauge fields [4,28]. Interestingly, the
two-leg ladder QCM is exactly soluble, again because it is
reduced to free (gapped or gapless) Dirac fermions coupled to
a static Z2 fields on bonds [13]. However, it is of course not
exactly soluble in d > 1. Nevertheless, the nematic state with
〈D〉 > 0 is an analytic continuation of the decoupled p-wave
Kitaev chains, and pseudospin-flip excitations are two-(JW)
fermion composites (bound states). Finally, QCM is also re-
lated to the (large-Jz KHM) toric code model in a transverse
field, which exhibits a first-order transition separating a topo-
logically ordered phase from a conventional ordered one. A
direct comparison between our results and Fig. 2 of Vidal
et al. [9] shows excellent accord in ground-state energy, the
magnetization, my, in their work is directly related to, and in
excellent accord with, �z in our work.

IV. MAGNETISM IN TMO WITH t2g

ORBITAL DEGENERACY

Buoyed by very good accord we find with both, iPEPS and
PCUT results, as well as by comparison with an eight-leg
ladder MFT (see Appendix E), we assume that our MFT is
a good approximation to the planar QCM. Consider a two
dimensional TMO with active degenerate orbital degrees of
freedom per lattice site. In cases, where the MO6 octahedron
is squashed, the xy orbital is “pushed above” the twofold de-
generate xz, yz orbitals, whence orbital degeneracy is relevant
for the d1 and d4 configurations of the TM ion. When the
local Hubbard interaction is large compared to the d electron
kinetic energy, the Mott insulator is effectively described by
Kugel-Khomskii Hamiltonian [29,30],

HKK = J1

∑
i,α=x,z

(
Si · Si+α̂ + 1

4

)
τα

i τα
i+α̂

+ J2

∑
〈〈i, j〉〉

Si · S j − Jf

∑
〈i, j〉

Si · S j . (13)

This model can also be motivated as a large-U limit of
a spinful, two-orbital Hubbard model with active xz, yz

degenerate orbitals per site. The spinless version at large-U
maps to the QCM [31]. Similarly, one can show that the
spinful version maps onto the first term of HKK. For a d1 TM
ion S = 1/2, while for the d4 TM ion, S = 1 (we assume that
the crystal field splitting between t2g and eg states is larger
than the Hund coupling, so can neglect eg states). Here J2 is
the diagonal anti-ferromagnetic (AF) interaction while Jf is
the direct ferromagnetic (FM) term [32].

Suppose orbital order occurs before magnetic order (To >

TN ). Starting from high temperature, the orbital ordering (OO)
is captured by the “orbital only” part of Eq. (13); Hoo =
J1
4

∑
i (τ x

i τ x
i+x̂ + λτ z

i τ
z
i+ẑ ), where λ can differ from unity, either

via coupling to the spin fluctuations in Eq. (13) or a coupling
to Jahn-Teller modes, or both [5]. The effective Heisenberg
superexchange now explicitly depends on the orbital correla-
tions and the effective spin couplings read J1x = J1〈τ x

i τ x
i+x̂〉 −

Jf , J1z = J1〈τ z
i τ

z
i+ẑ〉 − Jf . The resulting spin model

Hs =
∑

i

∑
α=x,z

J1αSi · Si+α̂ + J2

∑
〈〈i, j〉〉

Si · S j (14)

is precisely the J1x − J1z − J2 Heisenberg model successfully
used in the Fe-arsenide [33] context, but should obviously be
more generally valid. Furthermore, the sign of the coupling
strengths J1α could be AF or FM type depending on the values
of orbital correlations. If we deal with S > 1/2, spin excita-
tions below TN are qualitatively described by renormalized
spin wave theory (RSWT) [34] and are dressed propagating
magnons of a stripe magnetic order with q = (π, 0).

In general, when magnetic and orbital ordering occur close
together, it is not possible to decouple the spin-orbital cou-
pling. Spin-orbital entanglement plays an important role in
these cases. However, if we restrict ourselves to a subset of
cases where Too and TN are well separated, and orbital order
happens at higher T , some interesting conclusions can be
drawn without recourse to a full calculation.

At high T , without any order, the orbital excitations are
fractionalized orbitons, i.e., they are two JW fermion contin-
uum, while the spin excitations are overdamped bosons. At
Too, the JW fermions reconfine into boson like orbitons, while
the spin excitations are still over damped bosons. Thus the
part of the entropy is lost at Too. At TN , stripe magnetic order
sets in, and we are left with bosons like orbitons and usual
magnons.

Thus, at least in this subset of cases, the phenomenon of
orbital-spin separation [35] as well as reconfinement reveals
itself. It depends crucially on (i) emergent d = 1 symmetries
[36] in the QCM and (ii) well-separated orbital and magnetic
ordering scales.

V. CONCLUSION

We have constructed a novel MFT for the planar QCM and
implemented it for the four-leg case. A distinguishing feature
of our approach is that the MF decoupling is done at the level
of two-spin averages, in contrast to usual MFT. For a four-leg
ladder, our MFT preserves the LDS crucial to proper analy-
sis of the QCM. In very good accord with exact arguments
and numerics for the full 2d QCM, we find that a first-
order transition separates two, mutually dual Ising nematic
phases at Jx = Jz. Our results reveal an exciting (pseudo-) spin
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fractionalization that may survive in the full planer QCM, and
point a way to realization of (i) strongly coupled orbital and
magnetic orders, and (ii) orbital-spin-charge separation in 2d
multiorbital Mott insulators. Considering fluctuations beyond
ladder-MFT, as well as extension to d = 2, are complex av-
enues for future work and subject of future study.
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APPENDIX A: DERIVATION OF MEAN-FIELD
SELF-CONSISTENCY EQUATIONS

AND GROUND-STATE ENERGY

Exact solution of 1d TFIM using Jordan-Wigner (JW)
fermionization is well known (See [37] and references
therein), we provide here only few steps to derive the mean-
field self-consistency conditions. The mapping between spins
(S = 1/2) and spin-less JW fermions are following:

P+
jl = a†

jl

∏
m< j

(2a†
ml aml − 1) (l = 1, 2),

W +
j = b†

j

∏
m< j

(2b†
mbm − 1). (A1)

Using this, Eqs. (9a) and (9b) become

H = tα
2

N∑
j=1

(ψ jα − ψ
†
jα )(ψ j+1,α + ψ

†
j+1,α )

+ μα

2

N∑
j=1

(ψ†
jαψ jα − 1/2). (A2)

Here ψα = (a, b) represent two JW fermionic modes, ta =
Jx
2 (1 + �x ), μa = Jz(1 + �z ), tb = Jx�x, μb = 2Jz�z are
hopping, pairing, and chemical potentials of the JW fermions.
To obtain the bulk excitation spectrum, we simply go to mo-
mentum space (using translational invariance), and perform
the Bogoliubov transformation to diagonalize the momen-
tum space (−π � k < π ) Hamiltonian. The transformation is
given by

ψk,α = uα
k γk,α − ivα

k γ
†
−k,α

,

uα
k = 1√

2

(
1 + ξα

k

Eα
k

)1/2

, (A3)

vα
k = �α

k√
2|�α

k |

(
1 − ξα

k

Eα
k

)1/2

with ξα
k = −tα cos k + (μα/2), �α

k = tα sin k, and Eα
k =√

(ξα
k )2 + (�α

k )2.
The diagonalized Hamiltonian is following:

H =
π∑

k=−π

Eα
k (γ †

k,α
γk,α − 1/2). (A4)

Next we compute various expectation values using the
above exact solution. We have defined �x = 4〈Px

jl P
x
j+1,l〉 ≡

4〈Px
j Px

j+1〉=〈(a j −a†
j )(a j+1+a†

j+1)〉. Similarly, we have �x =

4〈Qz
jl Q

z
j+1,l〉. Applying Mattis’s duality, 4〈Qz

j,1Qz
j+1,1〉 =

4〈W x
j W x

j+1〉, 〈Qz
j,1Qz

j+1,1〉=16〈V z
j V z

j+1W
x
j W x

j+1〉=4〈W x
j W x

j+1〉,
so �x = 4〈W x

j W x
j+1〉 = 〈(b j − b†

j )(b j+1 + b†
j+1)〉. So,

〈ψ jαψ j+1,α〉 + H.c. = − 1

N

∑
k

(
2uα

k vα
k

)
sin k tanh

(
βEα

k

2

)

= − 1

N

∑
k

tα
Eα

k

sin2 k tanh

(
βEα

k

2

)
,

(A5)

〈ψ†
jαψ j+1,α〉 + H.c.

= 1

N

∑
k

(2 cos k)
[(

uα
k

)2
n
(
Eα

k

) + (
vα

k

)2(
1 − n

(
Eα

k

))]

= 1

N

∑
k

cos k

[
1 − ξα

k

Eα
k

]
tanh

(
βEα

k

2

)
. (A6)

Subtracting (A6) from (A5), we arrive at Eq. (10). In a sim-
ilar way, Eq. (11) could be found from (1): �z = 2〈Pz

j 〉 =
2〈a†

j a j〉 − 1 and (2): �z = 4〈Qx
j,1Qx

j,2〉 = 2〈W z
j 〉 = 2〈b†

jb j〉 −
1.

The mean-field ground-state (GS) energy of the four-leg
compass ladder is following:

Egs = − 4Jx

N∑
j=1

2∑
l=1

〈
Px

jl P
x
j+1,l〉〈Qz

jl Q
z
j+1,l

〉

− 2Jz

N∑
j=1

[〈
Pz

j,1

〉 + 〈
Pz

j,2

〉]〈
Qx

j,1Qx
j,2

〉

− 1

2

π∑
k=−π

(
2Ea

k + Eb
k

)
. (A7)

The first two position space summations come from the mean-
field decoupling of (5a) and (5b). The last one involving
momentum space sum, is the condensation energies of p−
wave superconductor chains, there are two identical fermionic
chains of “a” (for l = 1, 2) and one of “b” JW fermions.
Simplifying (A7), the GS energy per lattice site (egs) could
be written as

egs = Egs/4N = −1

8
(Jx�x�x + Jz�z�z )

−
∫ π

0

dk

8π

[ |Jx|(1 + �x )
√

1 + h2
a − 2ha cos k

+ |Jx||�x|
√

1 + h2
b − 2hb cos k

]
. (A8)

We have chosen Jx = J cos θ, Jz = J sin θ, and J = 1 for
doing calculations.

APPENDIX B: EXACT DERIVATION OF THE DUALITY
BETWEEN �x AND �z

First we establish the exact duality between �x and �z (in
addition to the duality between �x , �z) for four-leg compass
ladder in the restricted subspace where all local Z2 symmetry
operators (V z

j ) are frozen to ±1/2. To do that, we start from
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the Hamiltonian

HQC = Jx

N∑
j=1

2∑
l=1

(
Sx

jlS
x
j+1,l + T x

jlT
x
j+1,l

)

+ Jz

N∑
j=1

2∑
l=1

Sz
jlT

z
jl + Jz

N∑
j=1

2∑
l=1

Sz
jl T

z
j,l+1. (B1)

We successively apply two Mattis’s transformations, first
apply Eq. (4) and then(

Qx
j,1 , Qy

j,1 , Qz
j,1

) = ( − 2W z
j V x

j , 2W y
j V x

j , W x
j

)
,(

Qx
j,2 , Qy

j,2 , Qz
j,2

) = ( − V x
j , 2V y

j W x
j , −2V z

j W x
j

)
. (B2)

As explained before, both Eqs. (4) and (B2) are just two-site
Kramers-Wannier (KW) dualities with additional rotations of
spin basis (the two sites are positioned along rungs of the
ladder). Then, Eq. (B1) reads

HQC = Jx

N∑
j=1

[
Px

j,1Px
j+1,1

(
1 + 4W x

j W x
j+1

)
+ Px

j,2Px
j+1,2

(
1 + 4

(
4V z

j V z
j+1

)
W x

j W x
j+1

)]
+ Jz

2

N∑
j=1

∑
l=1,2

(
1 + 2W z

j

)
Pz

jl . (B3)

Here V z
j s are conserved operators. We define a pro-

jector (P) onto the subspace where all V z
j = ±1/2,

i.e. P = ∑
k |φk, {V z

j = ±1/2}〉 〈φk, {V z
j = ±1/2}|. The pro-

jected Hamiltonian looks following:

HP
QC =PHQCP = Jx

N∑
j=1

∑
l=1,2

Px
jl P

x
j+1,l

(
1 + 4W x

j W x
j+1

)

+ Jz

2

N∑
j=1

∑
l=1,2

(
1 + 2W z

j

)
Pz

jl . (B4)

We have the following correspondences between the
averages of transformed (B4) and original (B1) model,
it could be easily shown by inverting Eqs. (4) and (B2).
We see, �x = 4〈Px

jl P
x
j+1,l〉 ≡ 4〈Sx

jl S
x
j+1,l〉 ∼ 〈σ x

�r σ x
�r+x̂〉,

�z = 2〈Pz
jl〉 ≡ 4〈Sz

jl T
z
jl〉 ∼ 〈σ z

�r σ z
�r+ẑ〉, �x = 4〈W x

j W x
j+1〉 ≡

16〈Sx
jl T

x
jl S

x
j+1,l T

x
j+1,l〉 ∼ 〈σ x

�r σ x
�r+ẑσ

x
�r+x̂σ

x
�r+x̂+ẑ〉, and �z =

2〈W z
j 〉 ≡ 4〈T z

j,1T z
j,2〉 ∼ 〈σ z

�r σ z
�r+2ẑ〉.

We consider another four-leg ladder compass model, where
spins (S̃μ, T̃ ν) reside on the “dual” lattice sites (l̃ = l, j̃ =
j + 1/2) with coupling strengths being swapped with the
original model:

Hdual
QC = Jz

N∑
j̃=1

2∑
l̃=1

(
S̃x

j̃l̃ S̃
x
j̃+1,l̃ + T̃ x

j̃l̃ T̃
x
j̃+1,l̃

)

+ Jx

N∑
j̃=1

2∑
l̃=1

S̃z
j̃l̃

T̃ z
j̃l̃

+ Jx

N∑
j̃=1

2∑
l̃=1

S̃z
j̃l̃

T̃ z
j̃,l̃+1

. (B5)

The dual spins and coordinates are denoted by tilde symbols.
Applying transformations like Eqs. (4) and (B2) on these

“dual” spins, we get the following:

Hdual
QC = Jz

N∑
j̃=1

[
P̃x

j̃,1P̃x
j̃+1,1

(
1 + 4W̃ x

j̃ W̃ x
j̃+1

)

+ P̃x
j̃,2P̃x

j̃+1,2

(
1 + 4

(
4Ṽ z

j̃
Ṽ z

j̃+1

)
W̃ x

j̃ W̃ x
j̃+1

)]

+ Jx

2

N∑
j̃=1

∑
l̃=1,2

(
1 + 2W̃ z

j̃

)
P̃z

j̃l̃
. (B6)

We project onto the subspace where all Ṽ z
j = ±1/2, so the

projected Hamiltonian, HP,dual
QC = P̃Hdual

QC P̃ is following:

HP,dual
QC = Jz

N∑
j̃=1

2∑
l̃=1

P̃x
j̃l̃ P̃

x
j̃+1,l̃

(
1 + 4W̃ x

j̃ W̃ x
j̃+1

)

+ Jx

2

N∑
j̃=1

2∑
l̃=1

(
1 + 2W̃ z

j̃

)
P̃z

j̃l̃
. (B7)

Here we have �dual
x =4〈P̃x

j̃l̃
P̃x

j̃+1,l̃
〉≡4〈S̃x

j̃l̃
S̃x

j̃+1,l̃
〉 ∼ 〈σ̃ x

�r∗ σ̃
x
�r∗+x̂〉,

�dual
z = 2〈P̃z

j̃l̃
〉 ≡ 4〈S̃z

j̃l̃
T̃ z

j̃l̃
〉 ∼ 〈σ̃ z

�r∗ σ̃
z
�r∗+ẑ〉, �dual

z = 2〈W̃ z
j̃
〉 ≡

4〈T̃ z
j̃,1

T̃ z
j̃,2

〉 ∼ 〈σ̃ z
�r∗ σ̃

z
�r∗+2ẑ〉, and �dual

x = 4〈W̃ x
j̃
W̃ x

j̃+1
〉 ≡

16〈S̃x
j̃l̃

T̃ x
j̃l̃

S̃x
j̃+1,l̃

T̃ x
j̃+1,l̃

〉 ∼〈σ̃ x
�r∗ σ̃

x
�r∗+ẑσ̃

x
�r∗+x̂σ̃

x
�r∗+x̂+ẑ〉.

We see that Eqs. (B4) and (B7) could be connected by an
“infinite chain type” KW duality (like the one used in the
context of 1d TFIM),

W z
j → 2W̃ x

j̃ W̃ x
j̃+1, W x

j W x
j+1 → 1

2W̃ z
j̃
,

Pz
jl → 2P̃x

j̃l̃ P̃
x
j̃+1,l̃ , Px

jl P
x
j+1,l → 1

2 P̃z
j̃l̃
. (B8)

Using Eq. (B8), we see �x maps to �dual
z . Similarly, we

have �z → �dual
x , �x → �dual

z , and �z → �dual
x . So we have

proved the duality in a projected subspace of all V z
j = ±1/2

(and Ṽ z
j̃

= ±1/2).
We now extend the above proof to arbitrary subspaces (of

V z
j , Ṽ z

j̃
) for planar compass model by taking a different route.

We start from the Hamiltonian (B1) (change the upper limit of
l to N/2) and apply Eq. (4), we get

HQC = Jx

4

N∑
j=1

N/2∑
l=1

px
jl px

j+1,l

(
1 + qz

jl q
z
j+1,l

)

+ Jz

4

N∑
j=1

N/2∑
l=1

pz
jl

(
1 + qx

jl q
x
j,l+1

)
. (B9)

Here pμ

jl = 2Pμ

jl , qν
jl = 2Qν

jl . The self-duality is already visi-
ble from this expression as we have 1d TFIM of pμ coupled to
a compass model of qν , both of them show self-dual property.
To be rigorous mathematically, we prove it by applying the
following set of duality relations successively on (B9) (we
define l̃ = l, j̃ = j + 1/2).
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(1) We use the “infinite-chain-like” KW duality for pμ and qν

spins:

px
jl px

j+1,l → p̃z
j̃l̃
, pz

jl → p̃x
j̃l̃ p̃x

j̃+1,l̃ ,

qz
jl q

z
j+1,l → τ x

j̃l̃ , qx
jl → τ z

j̃l̃
τ z

j̃+1,l̃
. (B10.a)

(2) Next we implement Xu-Moore duality relation [38] for τ ν

spins,

τ̃ x
j̃,l̃ = τ z

j̃l̃
τ z

j̃+1,l̃
τ z

j̃,l̃+1
τ z

j̃+1,l̃+1
, τ̃ z

j̃,l̃
=

∏
�r<( j̃,l̃ )

τ x
�r . (B10.b)

Here �r < ( j̃, l̃ ) means the x and z coordinates of �r is less than
j̃ and l̃ , respectively.

(3) Finally, we use again “infinite-chain-like” KW duality,
for τ̃ μ spins,

τ̃ z
j̃l̃
τ̃ z

j̃+1,l̃
→ q̃x

j̃l̃ , τ̃ x
j̃l̃ → q̃z

j̃l̃
q̃z

j̃+1,l̃
. (B10.c)

Then Eq. (B9) reads following:

Hdual
QC = Jz

N∑
j̃=1

N/2∑
l̃=1

P̃x
j̃l̃ P̃

x
j̃+1,l̃

(
1 + 4Q̃z

j̃l̃
Q̃z

j̃+1,l̃

)

+ Jx

2

N∑
j̃=1

N/2∑
l̃=1

P̃z
j̃l̃

(
1 + 4Q̃x

j̃l̃ Q̃
x
j̃,l̃+1

)
. (B11)

Here P̃μ

jl = p̃μ

jl/2 and Q̃ν
jl = q̃ν

jl/2. Using the inverse of

Eq. (4) for P̃μ, Q̃ν , the Hamiltonian (B11) reduces to the
‘dual’ compass model [see (B5)]. We see �x (∼ 〈qz

jlq
z
j+1,l〉)

maps to �dual
z (∼ 〈q̃x

j̃l̃
q̃x

j̃,l̃+1
〉) under the web of dualities

(B10.a)–(B10.c), similar mapping also holds true between �z

and �dual
x . So the duality between �x and �z holds generally

true for compass like interactions, not just restricted to a
particular subspace or four-leg ladder geometries.

APPENDIX C: MFT RESULTS FOR FINITE
TEMPERATURE CRITICALITY

(FOUR-LEG LADDER CASE)

In Fig. 3, we see that the jump discontinuity (at Jx = Jz) of
various mean-field averages vanishes near T ≈ 0.125 and the
graphs for higher T values show continuous behavior. Here we
provide some additional plots which show that the point T ≈
0.125, Jx = Jz actually corresponds to a second-order critical
endpoint (Tc) to the first-order transitions below Tc.

We find that the Ising like nematic order parameter,
|〈D〉| = |〈σ x

�r σ x
�r+x̂ − σ z

�r σ z
�r+ẑ〉| continuously decreases with in-

creasing T and goes to zero at T = Tc = 0.1225 (J = 1) when
Jx and Jz are equal [see Fig. 4(a)]. In our calculations, we
have used θ = tan−1(Jz/Jx ) = π/4 ± 10−6. We also compute
the “nematic susceptibility,” defined as χD = (∂〈D〉/∂h)|h→0,
where h = 1 − (Jz/Jx ), is the anisotropy in coupling strengths
which acts as a fictitious external field needed to compute
susceptibility. We find that the susceptibility diverges near
T = Tc [see Fig. 4(b)]. The critical exponents, β (defined as
|〈D〉| ∼ (Tc − T )β) and γ (defined as χD ∼ A±|T − Tc|−γ )
are almost equal to the classical Landau theory exponents,
we find β = 0.4776 and γ = 1.0. For the calculation of γ ,
we have fitted χ−1

D with a±|T − Tc| + b±; we find a− = 10.7,

(a)

(b)

(c)

FIG. 4. (a) Nematic order parameter (D) vs temperature (T ) is
shown, the inset figure compares it’s behavior near Tc = 0.1225 (blue
dots) with the fitted curve [∼c(Tc − T )β , red dashed line] used for
extracting the exponent β. (b) Nematic susceptibility (χD) vs T ,
the inset figure plots χ−1

D vs |T − Tc|, which are straight lines with
almost zero intercept along χ−1

D axis. Slope of T < T c line (blue
dots) is almost twice as the slope of T > Tc line (green stars). (c) MF
specific heat (CV ) vs T plot showing a finite gap at Tc, similar to
the Landau theory. In all these figures, we consider four-leg compass
ladder.

b− = 3.6 × 10−3 for T < Tc, and a+ = 4.648, b+ = 5.02 ×
10−4 for T > Tc. So even the ratio of A± (∼1/a±) is almost
like Landau theory. The specific heat (CV ) calculated from
MFT shows a finite jump at Tc, meaning the corresponding
exponent, α = 0.0 [see Fig. 4(c)]. This is also same as classi-
cal Landau theory.
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We find the critical exponents are same as classical Lan-
dau mean-field theory, whereas the numerical results [24–26]
show signatures of 2d classical Ising universality class. Fluc-
tuations around MFT play a significant role near this critical
region (as we will explain below).

APPENDIX D: TWO-SPIN CORRELATION FUNCTIONS

One novel feature of our MFT is that the spatial correla-
tions are partially retained, which are unusual in conventional
MF descriptions. We evaluate here some important time inde-
pendent two-spin correlation functions both at zero and finite
temperatures. Explicit computations are not performed here as
the MF Hamiltonians are just 1d TFIMs. We will use Mattis’s
dualities and some well-known results of 1d TFIM [37,39] to
derive the following correlation functions.

(a) 〈σ x
�r σ x

�r+nx̂〉 for n � 1, T = 0.

4
∣∣〈Sx

j,1Sx
j+n,1

〉∣∣ ≡ 4
∣∣〈Px

j,1Px
j+n,1

〉∣∣
for |Jx| > |Jz| = (

1 − λ2
a

)1/4
[

1 + 1

2πn2

λ2n+2
a

1 − λ2
a

+ · · ·
]

;

(D1.a)

for |Jx| < |Jz| = 1√
πn

λ1/2
a(

λ2
a − 1

)1/4 e−|n|/ξa . (D1.b)

Here λa = |Jz|(1+�z )
|Jx |(1+�x ) , ξa = 1/| ln (λa)|. By applying Mattis’s

transformations Eqs. (4) and (B2), we get 4T x
j,1T x

j+n,1 =
16Qz

j,1Px
j,1Qz

j+n,1Px
j+n,1 = 16W x

j Px
j,1W

x
j+nPx

j+n,1. So at the MFT
level,

4
∣∣〈T x

j,1T x
j+n,1

〉∣∣ ≈ 4
∣∣〈Px

j,1Px
j+n,1

〉∣∣ × 4
∣∣〈W x

j W x
j+n

〉∣∣,
4
∣∣〈T x

j,1T x
j+n,1

〉∣∣
for |Jx| > |Jz|

= {(
1 − λ2

a

)(
1 − λ2

b

)}1/4
[
1 + 1

2πn2

∑
α=a,b

λ2n+2
α

1 − λ2
α

+ · · ·
]

;

(D2.a)

for

|Jz| > |Jx|

= 1

πn

(λaλb)1/2e−|n|/ξt(
λ2

a − 1
)1/4(

λ2
b − 1

)1/4 , ξ−1
t = ξ−1

a + ξ−1
b .

(D2.b)

Here λb = |Jz|�z/|Jx|�x and ξa,b = 1/| ln (λa,b)|.
We have Sx

j,2Sx
j+n,2 = Px

j,2Px
j+n,2 and T x

j,2T x
j+n,2 =

64V z
j V z

j+nW
x
j Px

j,2W
x
j+nPx

j+n,2. We take all V z
j = ±1/2, this

holds rigorously at T = 0. So we see |〈Sx
jl S

x
j+n,l〉| and

|〈T x
jl T

x
j+n,l〉| are same for l = 1, 2.

(b) 〈σ x
�r σ x

�r+mẑ〉 for m = 1, 2, T = 0.
These operators do not commute with the 1d symmetries,

Zl = limN→∞
∏N

j=1 σ z
jl ; so according to Elitzur’s theorem

[17], their expectation values should vanish rigorously above
T = 0. Although at T = 0, this theorem permits spontaneous
breaking of these 1d Z2 symmetries in the thermodynamic

limit, resulting finite average values of these symmetry nonin-
variant operators. We now show that these nonzero averages
result from the long-range ordering of P and W Ising chains
(〈Px

jl〉, 〈W x
j 〉 �= 0) in the |Jx| > |Jz| region. At first, we con-

sider the nearest neighbor (along ladder rungs) or m = 1 case,∣∣〈σ x
j,1σ

x
j,2

〉∣∣
∼ 4

∣∣〈Sx
j,1T x

j,1

〉∣∣ ∼ 2
∣∣〈Qz

j,1

〉∣∣∼2
∣∣〈W x

j

〉∣∣=(
1−λ2

b

)1/8
. (D3.a)

Similarly, it is easy to show |〈σ x
j,3σ

x
j,4〉| = |〈σ x

j,1σ
x
j,2〉| ∼ (1 −

λ2
b)1/8.∣∣〈σ x

j,2σ
x
j,3

〉∣∣ ∼ 4
∣∣〈Sx

j,1T x
j,2

〉∣∣ ∼ 2
∣∣〈W x

j

〉∣∣ × 4
∣∣〈Px

j,1Px
j,2

〉∣∣
∼ 8

∣∣〈W x
j

〉∣∣∣∣〈Px
j,1

〉∣∣2 = (
1 − λ2

a

)1/4(
1 − λ2

b

)1/8
. (D3.b)

Here the spins Px
j,1 and Px

j,2 are governed by identical Hamilto-
nians and they don’t interact with each other, so we can write
|〈Px

j,1Px
j,2〉| = |〈Px

j,1〉|
2
. Similarly, |〈σ x

j,1σ
x
j,4〉| = |〈σ x

j,2σ
x
j,3〉| =

(1 − λ2
a)1/4(1 − λ2

b)1/8. Due to periodic boundary condition,
( j, 1) and ( j, 4) are here nearest neighbor sites. Next we
calculate the second neighbor or m = 2 case,∣∣〈σ x

j,1σ
x
j,3

〉∣∣ ∼ 4
∣∣〈T x

j,1T x
j,2

〉∣∣ ∼ 16
∣∣〈Qz

j,1Px
j,1Qz

j,2Px
j,2

〉∣∣
∼ 4

∣∣〈Px
j,1Px

j,2

〉∣∣ ∼ 4
∣∣〈Px

j,1

〉∣∣2 = (
1 − λ2

a

)1/4
. (D3.c)

Finally, we see |〈σ x
j,2σ

x
j,4〉| ∼ 4|〈Sx

j,1Sx
j,2〉| ∼ 4|〈Px

j,1Px
j,2〉| is

identical to (D3.c). As expected here, the second neighbor
(m = 2) correlations are weaker than the nearest neighbor
(m = 1) ones.

(c) 〈σμ

�r σ
μ

�r+nx̂〉 for any n, μ = y, z, and T = 0.
These operators violate local (d = 0) symmetries (V z

j ∼∏4
l=1 σ x

jl ) of the Hamiltonian. Elitzur’s theorem tells that
spontaneous breaking of local gauge symmetries is impossible
even at T = 0. So, these spatial correlations are ultralocal in
nature, 〈σμ

�r σ
μ

�r+nx̂〉 = δn,0. We now prove this statement using
our MF construction. We show here two such examples,〈

σ z
j,2σ

z
j+n,2

〉 ∼ 4
〈
Sz

j,1Sz
j+n,1

〉 ∼ 16
〈
Pz

j,1Qx
j,1Pz

j+n,1Qx
j+n,1

〉
∼ 64

〈
Pz

j,1W
z
j V x

j Pz
j+n,1W

z
j+nV

x
j+n

〉 = δn,0. (D4.a)

Similarly,〈
σ

y
j,1σ

y
j+n,1

〉 ∼ 4
〈
T y

j,1T y
j+n,1

〉 ∼ 16
〈
Px

j,1Qy
j,1Px

j+n,1Qy
j+n,1

〉
∼ 64

〈
Px

j,1W
y
j V x

j Px
j+n,1W

y
j+nV

x
j+n

〉 = δn,0. (D4.b)

The MF eigenstates are common eigenstates of HQC and V z
j , so

flipping of V z
j will map to different symmetry sector and thus

makes the overlap zero. This is independent of any |Jz|/|Jx|.
Conclusion 1. When T = 0 and |Jx| > |Jz|, there is a long-

range magnetic order (〈σ x
�r 〉 �= 0) in the system where spins

are mostly “aligned” in the x direction. This ordering occurs
due to spontaneous breaking of d = 1 Ising symmetries. The
magnetic order suddenly drops to zero at the self-dual point,
Jx = Jz and continues to be zero in |Jz| > |Jx| region with a
finite two-spin correlation length.

Now we will show that long-range magnetic order com-
pletely disappears as we go above T = 0 and the two-spin
correlation functions become short ranged. Elitzur’s theorem
forbids spontaneous breaking of d = 1 symmetries, Zl at any
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T > 0 (like in 1d TFIM), thus the long-range order vanishes.
We define following parameters, �a = |Jx|(1 + �x )(1 − λa),
�b = |Jx|�x(1 − λb), va = 2|Jx|(1 + �x ), vb = 2|Jx|�x. Us-
ing Mattis’s relations and the rigorous finite T results of 1d
TFIM [37], we find the following:

When �a,�b � T > 0 (or |Jx| > |Jz|, T � Tc),

4
〈
Sx

jlS
x
j+n,l

〉 ∼ �1/4
a e−|n|/ξa (T ), (D5.a)

4
〈
T x

jlT
x
j+n,l

〉 ∼ �1/4
a �

1/4
b e−|n|/ξt (T ). (D5.b)

Here ξ−1
α = √

2|�α|T/πv2
αe−|�α |/T with α = a, b, and ξ−1

t =
ξ−1

a + ξ−1
b . So the temperature induces a finite two-spin cor-

relation length, destroying the T = 0 magnetic order.
When �a,�b < 0, |�a|, |�b| � T > 0 (or |Jz| >

|Jx|, T � Tc).

4
〈
Sx

jl S
x
j+n,l

〉 ∼ T

|�a|3/4
e−|n|/ξ̃a (T ), (D6.a)

4
〈
T x

jl T
x
j+n,l

〉 ∼ T 2

(|�a||�b|)3/4
e−|n|/ξ̃t (T ). (D6.b)

Here ξ̃−1
α = (|�α|/vα ) + √

2|�α|T/πv2
αe−|�α |/T with α =

a, b, and ξ̃−1
t = ξ̃−1

a + ξ̃−1
b .

When |�a|, |�b| � T (or Jz = Jx, T → T −
c ).

This is the region near second-order critical point where
the nematic order parameter smoothly goes to zero [Fig. 4(a)]
and the elementary JW fermionic excitations become gapless
(Fig. 7). Although fluctuations are important (as we show
below) in this region, we continue using the MFT to see what
minimal features could be extracted from it. We find

4
〈
Sx

jl S
x
j+n,l

〉 ∼ T 1/4e−|n|/ξ c
a , (D7.a)

4
〈
T x

jl T
x
j+n,l

〉 ∼ T 1/2e−|n|/ξ c
t . (D7.b)

Here (ξ c
α )−1 ≈ (πTc/4vα ), α = a, b, and (ξ c

t )−1 = (ξ c
a )−1 +

(ξ c
b )−1. So the two-spin correlation length remains finite even

in this critical region, reflecting that finite T phase transition
is nonmagnetic in nature. In the finite T calculations, we
assumed that all the classical Ising variables, V z

j are frozen
to ±1/2, this is rigorously valid only at T = 0. We should
expect that at any finite T , 〈V z

j V z
j+n〉 ∼ e−|n|/ξv , where ξ−1

v =
ln coth (Js/T ). Here Js represents some unknown energy scale
depending on Jx and Jz. We already have exponentially decay-
ing finite T correlations at the MF level. An additional decay
of 〈V z

j V z
j+n〉 will just bring quantitative changes in correlation

lengths, the functional forms of these correlations remain
same as MFT.

APPENDIX E: MEAN-FIELD RESULTS OF THE
EIGHT-LEG COMPASS LADDER

Construction of lower dimensional symmetry preserving
MFT for the eight-leg compass ladder is straightforward. We
skip the lengthy algebra and provide only some crucial steps
to derive the MF self-consistency relations.

We start form the eight-leg compass ladder Hamiltonian
(HQC) and apply Mattis’s transformations (labelling it M1).
Like Eqs. (6a) and (6b), we decouple the resulting four-spin
interacting model in a two-spin channel which preserves all
lower dimensional symmetries. This decoupling (calling it

D1) results four identical 1d TFIMs (H (l )
1 , l = 1, 2, 3, 4) and

a four-leg compass ladder (H ′
QC). Coupling constants in both

of these Hamiltonians depend on bare strengths (Jx, Jz) plus
various mean-field averages which have to be determined
later using self-consistency conditions. Now a similar scheme
would be repeated for H ′

QC; we use M2 and D2 [40], which

gives two more 1d TFIMs (H (m)
2 , m = 1, 2) and a two-leg

compass ladder (H ′′
C ). Applying M3 on H ′′

C , we get the final
1d TFIM (H3) coupled to static Z2 fields which are one of the
gaugelike symmetries of HQC.

We arrive at the following Hamiltonians:

H (l )
1 = Jx

N∑
j=1

(
1 + �x

jl

)
Px

jl P
x
j+1,l + Jz

2

N∑
j=1

(
1 + �z

jl

)
Pz

jl

(l =1, 2, 3, 4), (E1)

H (m)
2 = Jx

N∑
j=1

α
(m)
j Qx

jmQx
j+1,m + Jz

2

N∑
j=1

μ
(m)
j Qz

jm

(m =1, 2), (E2)

H3 = Jx

N∑
j=1

[
β

(1)
j + 4V z

j V z
j+1β

(2)
j

]
W x

j W x
j+1

+ Jz

2

N∑
j=1

γ jW
z
j . (E3)

Like in the four-leg case, here also we find the
following MF order parameters, �x

jl = 4〈Sx
jl S

x
j+1,l〉,

�z
jl = 4〈Sz

jl T
z
jl〉, �x

jl = 16〈Sx
jl S

x
j+1,l T

x
jl T

x
j+1,l〉, and

�z
jl = 4〈T z

jl T
z
j,l+1〉 (with j = 1 to N and l = 1, 2, 3, 4).

In addition, we find a rectangular looplike object, �x
jl =

28〈Sx
jl S

x
j+1,l T

x
jl T

x
j+1,l S

x
j,l+1Sx

j+1,l+1T x
j,l+1T x

j+1,l+1〉 and a fourth
neighbor zz correlation, �z

j = 4〈T z
j,3T z

j,1〉 (∼ 〈σ z
�r σ z

�r+4ẑ〉), these
two are also dual to each other as we will show below.

The coupling constants in H (m)
2 and H3 are following, α(1)

j =
�x

j,2 + �x
j,1�

x
j,1, α

(2)
j = �x

j,4 + �x
j,3�

x
j,3, μ

(1)
j = �z

j,1 +
�z

j,2�
z
j , μ

(2)
j = �z

j,3 + �z
j,4�

z
j , β

(1)
j = �z

j,1�
x
j,2, β

(2)
j =

�z
j,3�

x
j,4, and γ j = �z

j,2�
z
j,1 + �z

j,4�
z
j,3. The conserved

Z2 fields are V z
j = 1

2

∏4
l=1(4Sx

jl T
x
jl ), which are one of the

gaugelike symmetries of the eight-leg compass ladder.
Next we assume translationally invariant ansatz for the MF

order parameters, i.e., (a) take all V z
j = ±1/2, this helps us

to get rid of j dependence, and (b) �x
jl ≡ �x and �z

jl ≡ �z

(independent of j, l). In the four-leg case, the condition (b)
comes as a consequence of condition (a), but here we have
to impose it separately. It is straightforward to verify that
these conditions (a) and (b) will make all the order parameters
(hence the coupling constants) to be completely independent
of spatial coordinates ( j, l).

Finally, we arrive at the following self-consistently cou-
pled, spatially uniform 1d TFIMs,

H (l )
1 = Jx(1 + �x )

N∑
j=1

Px
jl P

x
j+1,l + Jz

2
(1 + �z )

N∑
j=1

Pz
jl

(l =1, 2, 3, 4), (E4)
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FIG. 5. Comparison between ground-state energy density (egs) of
four-leg (green triangles) and eight-leg (red circles) compass ladders
as a function of θ = tan−1(|Jz|/|Jx|), there is a negligibly small
difference between two energies, only near θ = π/4 (Jx = Jz ).

H (m)
2 = Jx�x(1 + �x )

N∑
j=1

Qx
jmQx

j+1,m

+ Jz

2
�z(1 + �z )

N∑
j=1

Qz
jm (m = 1, 2), (E5)

H3 = 2J1�x�x

N∑
j=1

WjWj+1 + J2�z�z

N∑
j=1

W z
j , (E6)

Which could be solved easily as shown in the Appendix A, the
final equations are same as in the four-leg case [see Eqs. (10)
and (11)], except Mx = (�x,�x,�x ) and Mz = (�z,�z,�z )
now have three components.

Mx
σ =

∫ π

0

dk

π

(hσ cos k − 1) tanh
(
βEσ

k /2
)

√
1 + h2

σ − 2hσ cos k
, (E7)

Mz
σ =

∫ π

0

dk

π

(
h−1

σ cos k − 1
)

tanh
(
βEσ

k /2
)

√
1 + h−2

σ − 2h−1
σ cos k

. (E8)

Here Ea
k = |Jx |

2 (1 + �x )
√

1 + h2
a − 2ha cos k, Eb

k =
|Jx |
2 |�x|(1 + �x )

√
1 + h2

b − 2hb cos k, and Ec
k = |Jx||�x|�x

×√
1 + h2

c − 2hc cos k are elementary excitation spectrum
of the above Ising chains (E4)–(E6) with ha = Jz (1+�z )

Jx (1+�x ) ,

hb = Jz�z (1+�z )
Jx�x (1+�x ) , hc = Jz�z�z

Jx�x�x
, and β = 1/T .

The ground-state energy per site is given by following:

egs = − 1

16
[Jx�x�x(1 + 2�x ) + Jz�z�z(1 + 2�z )]

− 1

2

π∑
k=−π

[
4Ea

k + 2Eb
k + Ec

k

]
. (E9)

We now proceed to the results. We find that the ground-state
energy density is almost same as what is found in four-leg
ladder case, except close to isotropic or self-dual point Jx = Jz

FIG. 6. Various MF order parameters of the eight-leg compass
ladder as a function of anisotropy, θ = tan−1(|Jz|/|Jx|). The dual
observables are shown in the inset figures.

where very small changes are observed (see Fig. 5). At the
self-dual point, we find egs = −0.189623 for the eight-leg
case and egs = −0.190205 for the four-leg case (J = 1). This
negligible difference strongly supports our previous argument
(in the main text) that most of the ground-state correlation en-
ergy of 2d compass model is captured in a four-leg ladder and
increasing number of legs has only negligible effect. Although
we have performed the mean-field decoupling twice (in the
eight-leg case), various loop/plaquette correlators (�x,�x)
and beyond nearest neighbor zz correlations (�z,�z) (which
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do not violate gaugelike symmetries) actually capture the cor-
relations along rungs in a self-consistent way. This should be
a reason behind such nice convergence of egs.

Next we plot various MF order parameters as function
of anisotropy (θ ) for different values of T (see Fig. 6). We
observe that �x and �z show properties similar to the four-leg
case. The main thing to notice is that the discontinuity of these
order parameters melts slowly and it survives up to T ≈ 1/5,
which is higher than what is observed in the four-leg case
(T ≈ 1/8).

APPENDIX F: FLUCTUATIONS AROUND
MEAN-FIELD THEORY

Finally we discuss qualitatively about various fluctuation
effects around the four-leg ladder MFT. There are mainly two
different sources of fluctuations which we have neglected in
MFT : (1) the interaction between P and W spins (or between
“a” and “b” JW fermions), this effect is present at both T = 0,
and T > 0. (2) thermal (T > 0) fluctuations of static Z2 fields,
V z

j . These fields are present in (a) the interaction terms (be-
tween P and W ) and (b) the quadratic MF Hamiltonian of W
spins (H2). The timescale associated with collective fluctua-
tions of JW fermions is of the order of 1/Jx or 1/Jz, so that
these are switched on gradually. On the other hand, the local
quenches (flipping of V z

j at T > 0) are suddenly switched
on. Thus there is a clear separation of timescales associated
with different fluctuation processes. Starting with the “fast”
process (flipping of V z

j ), these are nonsingular except around
Jx = Jz and T = Tc, as we will argue below in detail. Over
the timescale on which the “slow” processes (fluctuations of
JW fermions) operate, there will be many such incidents of
“sudden” flipping processes. Thus the “disorder” generated

by local flips of the V z
j is annealed out at times of order of

1/Jx, restoring the translational invariance. So it is reasonable
to “decouple” the two effects (1) and (2) in the spirit of an
adiabatic approximation: treat the fast process first, and then
consider the slow process in a medium already renormalized
by the fast fluctuations.

1. Fluctuations arising from the interaction between
JW fermions

We have neglected the following interaction Hamiltonian
in MFT description:

Vf = Jx

4

N∑
j=1

[(
px

j,1 px
j+1,1 − �x

j,1

)(
wx

jw
x
j+1 − �x

j,1

)
+ (

px
j,2 px

j+1,2 − �x
j,2

)(
vz

jv
z
j+1w

x
jw

x
j+1 − �x

j,2

)]
+ Jz

4

N∑
j=1

[(
pz

j,1 − �z
j,1

)(
wz

j − �z
j

)
+ (

pz
j,2 − �z

j,2

)(
wz

j − �z
j

)]
. (F1)

Here pμ

jl = 2Pμ

jl , w
μ
j = 2W μ

j , and v
μ
j = 2V μ

j . We have argued
in the main text that if we take vz

j = ±1 ∀ j (which is rig-
orously true at T = 0), then for a periodic four-leg ladder,
we have �x

jl ≡ �x, �z
jl ≡ �z, �x

jl ≡ �x, and �z
j ≡ �z. We

continue to assume this spatially uniform configuration of vz
j

for T > 0, according to the reasons explained above. The MF
Hamiltonians corresponding to pμ

jl are same for both l = 1, 2
and the interaction is only between p and w. So we consider
only one of them for further discussions and use common
notation pμ

j for both l = 1, 2. So the above Hamiltonian now
reads the following:

Vf = Jx

4

N∑
j=1

[
px

j px
j+1w

x
jw

x
j+1 − 2�xw

x
jw

x
j+1 − �x px

j px
j+1

] + Jz

4

N∑
j=1

[
pz

jw
z
j − 2�zw

z
j − �z pz

j

]
. (F2)

Apart from the four-spin Ising type interaction (proportional to Jx), the rest is precisely a two-leg QCM ladder, but now with
“chain-dependent” exchanges and magnetic fields.

−
N∑

j=1

[
Jp px

j px
j+1 + Jwwx

jw
x
j+1

] + Jz

4

N∑
j=1

pz
jw

z
j −

N∑
j=1

[
μp pz

j + μwwz
j

]
. (F3)

Here Jp = Jx�x/4, Jw = Jx�x/2, μp = Jz�z/4, and μw = Jz�z/2. Now it is easy to see that the fluctuations in the zz-sector are
suppressed for all μσ �= 0, σ = p,w. While the remaining xx part can order at T = 0 [i.e., χxx(q, ω) can diverge at ω = 0, T = 0
for q = 0 or π ], it cannot order at T > 0. Moreover, even with inclusion of the four-spin term, having Jp �= Jw and μp �= μw

ensures the nonclosure of the spin excitation gap. Thus neither the xx nor the zz fluctuations get singular. This qualitatively
implies that MF results are stable against fluctuations.

While the argument above is a symmetry-based one, actual computation of the renormalization caused by Vf is rather involved.
We now present a perturbative argument that can be made self-consistent, and which reinforces the above conclusions.

We apply JW fermionization (A1) on Eq. (F2),

Vf =
[

Jx

4

N∑
j=1

(a j − a†
j )(a j+1 + a†

j+1)(b j − b†
j )(b j+1 + b†

j+1) + Jz

4

N∑
j=1

(2a†
j a j − 1)(2b†

jb j − 1)

]

−
[

Jx

4

N∑
j=1

[2�x(b j − b†
j )(b j+1 + b†

j+1) + �x(a j − a†
j )(a j+1 + a†

j+1)] + Jz

4

N∑
j=1

[2�z(2b†
jb j − 1) + �z(a†

j a j − 1)]

]
. (F4)
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The terms inside first square bracket represents the quartic
interactions between a and b fermions. It contains several
terms, some of the interaction vertices don’t even preserve
the fermion numbers (like a†a†b†b). The terms inside second
square bracket denotes quadratic “external fields.” We write
the above interaction in momentum space with spinor nota-
tions for fermionic fields. we define ψ

†
k ≡ (a†

k, a−k ), φ
†
k ≡

(b†
k, b−k ),

Vf = 1

2N

∑
kk′q

∑
αβγ δ

Vαβγ δ

kk′q ψ
†
k+q,α

φ
†
k′−q,γ

φk′,δψk,β

−
∑

k

∑
αβ

[
hαβ

a,kψ
†
kα

ψkβ + hαβ

b,kφ
†
kα

φkβ

]
. (F5)

Our target is to find how the single-particle Green’s func-
tions (SPGF) of a and b get modified by (F5), the
modified SPGF will cause corrections in different MF
averages. We define the matrix Green’s functions for a
fermions as Ga

αβ (k, τ ) = −〈Tτ {ψk,α (τ )ψ†
k,β

(0)}〉 and simi-

lar for b fermions, Gb
αβ (k, τ ) = −〈Tτ {φk,α (τ )φ†

k,β
(0)}〉. The

bare/noninteracting SPGF are following:

G0,σ
11 (k, iω) =

(
uσ

k

)2

iω − Eσ
k

+
(
vσ

k

)2

iω + Eσ
k

,

G0,σ
21 (k, iω) = �σ

k

2Eσ
k

[
1

iω − Eσ
k

− 1

iω + Eσ
k

]
. (F6)

The remaining two are G0,σ
22 (k, iω) = −[G0,σ

11 (k, iω)]
∗

and
G0,σ

12 (k, iω) = [G0,σ
21 (k, iω)]

∗
. We find that the Feynman dia-

grams arising from “external fields” in Vf will always cancel
with the zero-momentum transfer Hartree diagrams arising
from the quartic interactions in the perturbative expansion
of SPGF. In this way, the leading order diagrams are those
of second order in Vf . It is straightforward to check that
second-order perturbative corrections (without Hartree dia-
grams) have the following general structure:

∼ 1

βN

∑
q,iq

∑
α′β ′

∑
α′′β ′′

[
χ

(b),p
α′β ′α′′β ′′ (q, iω)

× Ga
αα′ (p, ip)Ga

α′′β ′′ (p − q, ip − iq)Ga
β ′β (p, ip)

]
, (F7)

the generalized susceptibility or so called bubble diagram is
expressed following:

χ
(b),p
α′β ′α′′β ′′ (q, iω)

= 1

βN

∫ β

0
dτeiωτ

∑
k′k′′

∑
γ δ

∑
γ ′δ′

[
Vα′β ′γ δ

p−q,k′,q

× Vα′′β ′′γ ′δ′
p−q,k′′,−q〈Tτ {φ†

k′−q,γ
φk′,δ (τ )φ†

k′′+q,γ ′φk′′,δ′ (0)}〉].
(F8)

Explicit computation of these diagrams are straightforward
but lengthy. We use here a simple physical argument. The
excitation spectrum of a and b JW fermions are always gapped
for all Jz/Jx and 0 � T < Tc, which means that single-particle
density of states (DOS), D(ω) is zero at low energies (for
ω � �, the energy gap). This will put a infrared cutoff scale
for all energy/frequency integrations in the above Feynman

FIG. 7. Excitation energy (Ek) vs momentum (k) plot for a (con-
tinuous lines) and b (dashed lines) JW fermions (or P and W Ising
chains) at Jx = Jz and three different T values. Close to Tc ≈ 0.125,
elementary Bogoliubov excitations are gapless, the spectrum goes
like Ek ∼ v|k|, near k = 0.

diagrams. So as a result, the diagrams will not diverge and the
pole structure of the SPGF remains preserved with some quan-
titative renormalization of the energy gap (like in Ref. [15]).
As a whole, the MFT phase diagram qualitatively remains
same in the presence of these interactions.

2. Effect of thermal fluctuations of V z
j

A glance at the Hamiltonian (8) shows that while spatial
uniformity of the bond-product of Z2 variables vz

j enables
solubility of the MFT equations that lead to our results, fluc-
tuations in these variables at finite T are akin to sudden local
quenches. Indeed, we can see from Eq. (8) that a flip of a sin-
gle vz

j , say from +1 to −1 (or vice versa), acts as a “suddenly
switched on” potential for the JW fermions. However, since
these are described by a fully gapped p-wave superconductor,
the orthogonality catastrophe (OC) associated with sudden
switching of such a local potential in a Fermi sea is suppressed
by the p-wave gap. This is true everywhere, except at a single
point Jx = Jz and T = Tc, where the gapless 1d like fermionic
spectrum (see Fig. 7) causes an OC to occur. Had this occurred
at T = 0, it would have generated an infrared singularity and
invalidated any picture based on well-defined JW fermions, or
of p-wave pairs formed from them [41]. However, at finite T ,
it is well known that this singularity is smeared by a scale kBT ,
kB = Boltzmann constant. The resulting Doniach-Sunjic line
shape [42] carries the memory of the infrared singularity, and
would correspond to a branch cut, instead of a renormalized
pole structure, in the spin-fluctuation propagators.

To make the above statements more rigorous, we consider
the following dynamical spin correlation function:

Gi j (t ) = 〈
T z

i,2(t )T z
j,2(0)

〉 = 〈
V x

i (t )V x
j (0)

〉
. (F9)

Here the average is computed using the density matrix,
ρ = e−βHMF/Z with Z = Tr(e−βHMF ). Here HMF =∑

l=1,2
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H (l )
p + Hw[{vz

j}], and

H (l )
p = Jx

N∑
j=1

(
1 + �x

jl

)
Px

jl P
x
j+1,l + Jz

2

N∑
j=1

(
1 + �z

jl

)
Pz

jl ,

Hw

[{
vz

j

}] = Jx

N∑
j=1

[
�x

j,1 + (
vz

jv
z
j+1

)
�x

j,2

]
W x

j W x
j+1

+ Jz

2

N∑
j=1

(
�z

j,1 + �z
j,2

)
W z

j . (F10)

We see [HMF, v
z
j] = 0 for all j. So, while computing the trace

in the common eigenbasis of HMF and {vz
j}, we need to flip

vz
j at the same location twice to remain in a particular {vz

j}.
This makes the correlator completely local. Thus Gi j (t ) =
δi j〈V x

j (t )V x
j (0)〉. Now,〈∣∣V x

i (t )V x
j (0)

∣∣〉 = 〈∣∣ · (
eiHMFtV x

i e−iHMFtV x
i

∣∣〉)
The physical interpretation is clear from the expression. We
flip V z

i of the “initial” state at t ′ = 0, then time evolve the
resulting state from t ′ = 0 to t ′ = t , then further flip V z

i at
t ′ = t , and time evolve backwards from t to 0 to get the “final”
state. This correlation function denotes the overlap between
the “final” and “initial” states, the so called “fidelity.” We
write the average in Eq. (F9) as following:

〈
V x

j (t )V x
j (0)

〉 = 1

Z

[
Tr′p,w

(
e−βHMF[{vz

j}=±1]V x
j (t )V x

j (0)
)

+
′∑

{vz
j}

Trp,w
(
e−βHMF[{vz

j}]V x
j (t )V x

j (0)
)]

(F11)

and

Z = Tr′p,w
(
e−βHMF[{vz

j}=±1]) +
′∑

{vz
j }

Trp,w
(
e−βHMF[{vz

j}]). (F12)

The first two terms of Eqs. (F11) and (F12) denote sum
of all states of Pα, W β spins in the subspace where all
vz

j = ±1 (uniform configurations of vz
j). The second terms of

Eqs. (F11) and (F12) denote sum over all remaining nonuni-
form configurations of vz

j , where one or more vz
j spins are

flipped. These configurations naturally increase the disorder
in the system, thus play less dominant role [with respect to
the first terms of Eqs. (F11) and (F12)] where system has
some kind of average order (�x,�z, �x, �z). These high
energy configurations (random {vz

j} configurations) will play
an important role only near and above Tc, where the system
transits to a disordered phase.

Below Tc, we assume that the effect of these nonuniform
configurations of {vz

j} have been captured by renormalizing
various mean fields (also the Tc), i.e., �x

jl → �̃x
jl , �

z
jl → �̃z

jl ,

�x
jl → �̃x

jl , �z
jl → �̃z

jl , and Tc → T̃c(< T MF
c ). These renor-

malized mean-fields and T̃c are unknown, unless one could
treat the effect of vz

j fluctuations exactly. This renormaliza-
tion of various parameters (below Tc) is justified because the
JW fermion excitations are gapped, so infrared singularities
are suppressed as we will see below. So we approximate

Eqs. (F11) and (F12) as

〈
V x

j (t )V x
j (0)

〉 ≈ Tr′p,w
(
e−βH̃MF[{vz

j}=±1]V x
j (t )V x

j (0)
)

Tr′p,w
(
e−βH̃MF[{vz

j}=±1]) . (F13)

Here the tilde sign on HMF tells that we have replaced all the
mean-fields by renormalized parameters and put all vz

j = ±1.
In addition, the above approximation is fully sensible close to
0 � T � Tc.

Now we consider the effect of flipping a single vz
j at j =

j′ on the Hamiltonian HMF and on various order parameters.
After it has been flipped at j′,

�̃x
j′,1 = 4

〈
W x

j′W
x
j′+1

〉
�̃x

j′,2 = 4
〈
vz

j′v
z
j′+1W

x
j′W

x
j′+1

〉
.

Here the trace operations are performed over all {vz
j}, i.e.,

using Eqs. (F11) and (F12), thus giving all the renormal-
ized parameters. We see that �̃x

j,1 and �̃x
j,2 are different in

general, once all possible configurations of vz
j are considered

in the trace. �̃z
j′l = 4〈Qx

j′lQ
x
j′,l+1〉 = 4〈Qx

j′,1Qx
j′,2〉 = 2〈W z

j′ 〉 ≡
�z

j′ This quantity is l independent, because of just four-legs
and periodic boundary conditions along z direction. Due to
differences between �x

j,1 and �x
j,2, the Hamiltonians H (l=1)

p

and H (l=2)
p are now different [see Eq. (F10)]. So, �̃x

j,1 �= �̃x
j,2

and �̃z
j,1 �= �̃z

j,2 (�̃x
jl = 4〈Px

jl P
x
j+1,l〉, �̃z

jl = 2〈Pz
jl〉). Before

considering the effect of flipping vz
j on Hw, we use the

Kramer-Wannier duality for W spins,

W z
j → 2W̃ x

j W̃ x
j+1, W x

j W x
j+1 → 1

2W̃ z
j .

This duality transformation only places “disorder” (vz
j) on the

local sites rather than on the links, otherwise does not effect
any local dynamics. The Hamiltonian Hw̃ (in the dual spin
language) after the flip of vz

j reads

Hw̃

[{vz},−vz
j′
] =

[
Jz

N∑
j=1

(
�̃z

j,1 + �̃z
j,2

)
W̃ x

j W̃ x
j+1

+Jx

2

N∑
j=1

(
�̃x

j,1 + �̃x
j,2

)
W̃ z

j

]
+ Jx

2
(δVj′ )W̃

z
j′ .

(F14)

Here δVj′ = (�̃x
j′,1 − �̃x

j′,2) − (�̃x
j′,1 + �̃x

j′,2) = −2�̃x
j′,2 de-

notes the change in local potential due to flipping of vz
j′ . To

simplify the picture further and to understand the leading
order effect, we discard the j dependence of various mean
fields (but keep the l dependence). So,

Hw̃

[{
vz

j

}
,−vz

j′
] ≈

[
Jz

(
�̃z

1 + �̃z
2

) N∑
j=1

W̃ x
j W̃ x

j+1

+Jx

2

(
�̃x

1 + �̃x
2

) N∑
j=1

W̃ z
j

]
+ Jx

2
(δV )W̃ z

j′ ,

(F15)

H (l )
p ≈ Jx

(
1 + �̃x

l

) N∑
j=1

Px
jl P

x
j+1,l + Jz

2
(1 + �̃z )

N∑
j=1

Pz
jl .

(F16)
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Here �̃α
l = 1

N

∑N
j=1 �̃α

jl , with α = x, z and l = 1, 2. Simi-

larly, we define �̃x
l and �̃z also. These replacements are

reasonable because all these order parameters are protected
by LDS. So at low T < Tc, their spatial fluctuations (along x)
are relatively less (except some extreme points like Jx → 0, or
Jz → 0) compared to very high T where everything becomes
disordered.

Because P and W spins do not interact with each other in
HMF, the trace operations for P and W are decoupled both in
the numerator and denominator. So,

〈
V x

j (t )V x
j (0)

〉 = Tr′w̃
(
e−βH̃w̃[{vz

j}=±1]V x
j (t )V x

j (0)
)

Tr′w̃
(
e−βH̃w[{vz

j }=±1]) . (F17)

Here

H̃w̃

[{
vz

j

} = ±1
] = Jz

(
�̃z

1 + �̃z
2

) N∑
j=1

W̃ x
j W̃ x

j+1

+ Jx

2

(
�̃x

1 + �̃x
2

) N∑
j=1

W̃ z
j . (F18)

So, Hw̃[{vz
j},−vz

j′ ]= H̃w̃[{vz
j}=±1]+ Jx

2 (δV )W̃ z
j′ . Now rescale

the coupling parameters with respect to Jz(�̃z
1 + �̃z

2)/4,

define g = Jx (�̃x
1+�̃x

2 )
Jz (�̃z

1+�̃z
2 )

, δg = JxδV
Jz (�̃z

1+�̃z
2 )

. We further denote

H̃w̃[{vz
j} = ±1] = H0 and 2(δg)W̃ z

j′ = V . Then using the cu-
mulant expansion for Green’s function [43], we see

Gj j (t ) = 〈
eiH0t e−i(H0+V )t

〉 = 〈
Tt

{
e−i

∫ t
0 dt ′V (t ′ )}〉

≡ e
∑∞

l=1 Fl (t ). (F19)

Here

Fl (t ) = (−1)l

l

∫ t

0
dt1 . . . .dtn〈TtV (t1) . . .V (tn)〉connected,

(F20)

we can choose the location of the sudden quench at j′ = 0,
then

V = 2(δg)W̃ z
0 = δg

L

∑
k,k′

(b†
kbk′ − bkb†

k′ ).

Now, we expand up to second-order cumulant,

F1(t ) = it

L
(δg)

∑
k

((
ub

k

)2 − (
vb

k

)2)
tanh

(
βEb

k /2
)
, (F21)

F (1)
2 (t ) = it

L2
(δg)2

∑
k,k

[
1

2

(
ub

kub
k′ − vb

kv
b
k′
)2

(
nb

k − nb
k′
)

Eb
k′ − Eb

k

+ 1

2

(
ub

kv
b
k′ + ub

k′v
b
k

)2
(
1 − nb

k − nb
k′
)

Eb
k + Eb

k′

]
. (F22)

These terms are linear in t , enters into the coherent part of the spin correlation function, Gj j (t ). The second-order cumulants
(nonlinear in t) are given following:

F ′
2 (t ) = − (δg)2

L2
×

∑
k,k′

[(
ub

kub
k′ − vb

kv
b
k′
)2 nb

k

(
1 − nb

k′
)

(
Eb

k′ − Eb
k

)2

(
1 − e−it (Eb

k′ −Eb
k )

)

+1

2

(
ub

kv
b
k′ + ub

k′v
b
k

)2

{(
1 − nb

k

)(
1 − nb

k′
)

(
Eb

k + Eb
k′
)2

(
1 − e−it (Eb

k +Eb
k′ )

) + nb
knb

k′(
Eb

k + Eb
k′
)2

(
1 − eit (Eb

k +Eb
k′ )

)}]
. (F23)

Here ub
k, vb

k , and Eb
k have same expression as Eq. (A3), except,

now tb = Jz

2 (�̃z
1 + �̃z

2) and μb = Jx(�̃x
1 + �̃x

2).
Now to simplify Eq. (F23), we replace the Fermi distribu-

tion, nb
k = (eβEb

k + 1)−1 simply by zero. This approximation
is completely valid for � > kBT (�= energy gap of the
JW fermion spectrum). It does not mean although that the
T dependence is completely neglected as various MF order
parameters carry the T dependence implicitly (�̃α

l ≡ �̃α
l (T ),

α = x, z). After this simplification,

F ′
2 (t ) = −

∫ ∞

0

dω

ω2
R(ω)(1 − e−iωt ) (F24)

with

R(ω) = (δg)2

2L2

∑
k,k′

(
ub

kv
b
k′ + ub

k′v
b
k

)2
δ
(
ω − Eb

k − Eb
k′
)
. (F25)

Due to gapped nature of the energy spectrum Eb
k , the Dirac

delta function gives nonzero contribution for |1 − g|/2 � ω �
|1 + g|/2. So, when the JW fermionic excitations are gapped
[for g �= 1, i.e., (a) Jx = Jz, T < T̃c or (b) Jx �= Jz, any T ],

the above integral (F24) has finite upper and lower cut-offs,
thus avoiding infrared singularity due to the “sudden quench.”
The pole structure of Gj j remains preserved, with only quan-
titative renormalization. When Jx = Jz, T ∼ T̃c, we have g =
�̃x

1+�̃x
2

�̃x
1+�̃x

2
|T ∼T̃c

∼ 1 (We have seen earlier that at T = T MF
c , �x =

�z or the nematic order (∼|�x − �z|) vanishes. Similarly,
here we take �̃x

l = �̃z
l at T = T̃c). At sufficiently long times,

t → ∞ [41,43],

F ′
2 (∞) ≈ −

(
δg

2π

)2

ln |g − 1|. (F26)

Thus Gj j (t → ∞) → 0 as g → 1 (or Jx = Jz, T → T̃c). Ex-
actly, at g = 1 (Jx = Jz, T = T̃c), Gj j (t ) develops a power law
behavior in time (leading order) [41,43],

Gj j (t ) ∼ e−iεt (it )−( δg
2π

)2
. (F27)

So, the leading order effect of this “sudden quench” are
(1) vanishing “quasiparticle residue” ∼eF ′

2 (∞) and (2) power
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law time correlations. The effect of the Fermi factors (ne-
glected in the above calculations) will have the “smearing”
effect (on a scale ∼kBT ) as we have argued at the beginning
of this section.

So, the above discussion shows that the sudden local
quenches associated with fluctuations of the Z2 variables (V z

j )
do not invalidate MFT results qualitatively either, except close
to Jx = Jz and T ∼ T̃c.
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