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We must protect inherently fragile quantum data to unlock the potential of quantum technologies. A pertinent
concern in schemes for quantum storage is their potential for near-term implementation. Since Heisenberg
ferromagnets are readily available, we investigate their potential for robust quantum storage. We propose to
use permutation-invariant quantum codes to store quantum data in Heisenberg ferromagnets, because the ground
space of any Heisenberg ferromagnet must be symmetric under any permutation of the underlying qubits. By
exploiting an area law on the expected energy of Pauli errors, we show that increasing the effective dimension
of Heisenberg ferromagnets can improve the storage lifetime. When the effective dimension of Heisenberg
ferromagnets is maximal, we also obtain an upper bound for the storage error. This result relies on perturbation
theory, where we use Davis’ divided difference representation for Fréchet derivatives along with the recursive
structure of these divided differences. Our numerical bounds allow us to better understand how quantum memory
lifetimes can be enhanced in Heisenberg ferromagnets.
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Introduction. Decoherence quickly renders unprotected
quantum data unreliable. To combat this, it becomes necessary
to encode quantum data into quantum error correction codes.
The challenge in designing robust quantum memories arises
from the difficulty of simultaneously (i) utilizing an easily ac-
cessible physical system, (ii) having a quantum code that lies
within the ground space of the system’s Hamiltonian H , and
(iii) having an increased storage lifetime τ with an increasing
number of qubits N in the physical system. Self-correcting
quantum memories [1,2] should satisfy (ii) and (iii), but are
challenging to implement in a multitude of desirable settings
[3–14]. Indeed, constraint (i) does easily not hold, which
frustrates the design of reliable quantum storage. For instance,
quantum memories based on stabilizer codes which correct at
least one error and also satisfy (ii) unfortunately reside in un-
physical systems with many-body interactions, and can only
be approximately constructed [4,15–17]. Of these constraints,
it is most pertinent to satisfy (i), because physically unrealistic
quantum memories will be difficult to engineer.

There are two reasons to store quantum data within the
ground space and thereby satisfy constraint (ii). First, a grow-
ing energy gap can suppress excitations from the ground space
[18]. Second, storing quantum data within the ground space
avoids unnecessary errors that can occur even in the complete
absence of noise. Any state within the ground space is an
eigenstate of the physical system, and for such states, they
are left unchanged by a unitary operation Uτ that the system’s
natural dynamics induces, after a storage time of τ elapses.
By avoiding the need to uncompute Uτ , we would not suffer
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from an imperfect reversal of Uτ caused by our imprecise
knowledge of τ .

Storage within the ground space, while satisfying con-
straint (ii), is not enough to result in self-correcting quantum
memories and thereby satisfy constraint (iii). Moreover,
many physically realistic systems satisfying constraint (i)
comprising of two-local terms are surprisingly incompatible
with constraint (iii) [12]. However, this no-go result does
not preclude physical systems comprising of noncommuting
two-body interactions from satisfying constraint (iii). Con-
sequently, determining whether such physical systems can
satisfy constraint (iii) is especially pertinent. In this paper
we study Heisenberg ferromagnets as a media for quantum
storage because they comprise of noncommuting two-body
interactions and therefore sidestep the no-go result of [12].
We also study to what extent Heisenberg ferromagnets satisfy
constraint (iii).

The Heisenberg ferromagnet (HF) is a model of quantum
magnetism, and is prevalent in many naturally occurring phys-
ical systems, and thereby satisfies constraint (i). For instance,
the HF is found in various cuprates [19,20], in solid helium-3
[21], and more generally in systems with interacting electrons
[22]. Even in many physical systems that cannot be naturally
interpreted as ferromagnets, effective HFs can nonetheless be
engineered, for instance by symmetrizing systems dominated
by dipole interactions using dynamic pulse sequences [23].
Effective HFs have also been engineered in ultracold atomic
gases [24] and quantum dots [25]. Specifically, we study spin-
half HFs in the absence of an external magnetic field, with
Hamiltonian of the form

H = −
∑

{i, j}∈E

J (1 − πi, j ). (1)
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Here 1 denotes an N-qubit identity operator, πi, j denotes a
swap operator on the ith and jth qubits, J denotes the ex-
change constants, and E denotes the set of interactions. Such
HFs have J > 0 and ground state energy set to zero.

By storing quantum data using permutation-invariant (PI)
codes in HFs, we automatically satisfy constraint (ii). This is
because symmetric states lie within the ground space of any
HF, and quantum data in PI codes, by being invariant under
any permutation of their underlying qubits, are symmetric
states. Such codes are well studied both in the context of
perfect quantum error correction [26–29], and approximate
quantum error correction [28,30,31]. PI codes have not only
been studied in the qubit setting, but have also recently been
considered in bosonic settings [32]. While prior research on
PI codes shows that quantum error correction is possible
within the ground space of HFs, this is only suggestive that
constraint (iii) can be compatible with PI codes. This is
because the coding parameters of PI codes alone, being inde-
pendent of the parameters in HFs, are not enough to determine
what happens when physical noise applies to PI codes stored
in HFs. To better understand the extent in which HFs with
PI codes can satisfy constraint (iii), we study bounds on the
storage error of PI codes under the action of two different
noise models, where both bounds depend on properties of the
underlying HF.

Our first noise model applies to HFs of any geometry, and
introduces Pauli errors. These Pauli errors occur with proba-
bilities that are thermodynamically related to their expected
energies on the codespace of a specific family of PI codes
[28]. To derive an upper bound on the storage error, we find
an area law on the expected energy of a Pauli error, which
demonstrates that a quantum memory based in a HF can have
a macroscopic energy barrier for Pauli errors. This allows
us to show that the storage error decreases with increasing
dimensionality of the HF.

Our second noise model introduces unitary errors proba-
bilistically, where each unitary arises from a local perturbation
of the underlying Hamiltonian. Such a noise model can de-
scribe the effects of unwanted physical interactions, such as
spurious local fields afflicting each particle independently.
We use perturbation theory to bound the storage error by
using Davis’ divided difference representation of these taking
Fréchet derivatives. Because we require complete knowledge
of the Hamiltonian’s spectrum, we restrict our analysis to
exactly solvable mean-field HFs. In such HFs every pair of
spins interacts with equal strength. Since such HFs have an
infinite effective dimension, analyzing them is indicative of
the ultimate limits of robust quantum storage in HFs.

With respect to both noise models, we provide upper
bounds for the storage error of quantum memories in HFs that
are numerically tractable. In both cases we find that quantum
memories in HFs are partially self-correcting in the sense
that is an optimal system size for fixed noise parameters that
minimizes our upper bounds on the storage error.

Energy of Pauli errors and their geometry. We use GNU
codes [28] to elucidate the dependence of a HF’s dimension
with respect to the storage error of quantum data. GNU codes
depend on three parameters g, n, and u, and encode a single
qubit into N = gnu qubits. Here g and n quantify the distance
of the GNU code with respect to bit-flip and phase-flip errors,

respectively, while u is a scaling parameter where u � 1.
When g = n = 2t + 1, the GNU code corrects t errors. A GNU
code has logical codewords

|rL〉 =
∑

0� j�n
mod( j,2)=r

√ (n
j

)
2n−1

∣∣Dgnu
gj

〉
, (2)

where r = 0, 1, and |DN
w〉 are Dicke states of weight w

[33,34].1

We quantify a HF’s dimension using properties of its un-
derlying graph of interactions [35]. This graph G has vertices
labeled from 1 to N , and edges E that correspond to the
interactions in the HF’s Hamiltonian H . Given a subset S of
{1, . . . , N}, let ∂E S denote its edge boundary with respect to
the edge set E , which is the set of edges in E with exactly
one vertex in S. When every subset S satisfies the inequality
|∂E S| � c min(|S|, N − |S|)1−1/δ , the graph and HF have di-
mension δ with isoperimetric constant c.

Given a set P of N-qubit Pauli errors that afflict at most
N/2 qubits, let

〈P〉 = min
|ψ〉∈C

〈ψ |PHP|ψ〉 (3)

denote the minimum expected energy of P ∈ P on the code
C . When C is a GNU code, we derive a lower bound on 〈P〉
in terms of the edge boundary V (P), where V (P) denotes
the set of vertices on which P acts nontrivially. In particular,
Theorem 1 below gives an area law on the minimum size of
〈P〉, which we prove in the Supplemental Material [36].

Theorem 1. Let C be an N-qubit GNU code with parameters
g = n = 2t + 1 and u = 2, where N = 2(2t + 1)2 and t � 1.
Then with respect to the Hamiltonian H given by (1) with
exchange constants J and set of interactions E , for every N-
qubit Pauli P in P , we have

〈P〉 � χJ|∂E [V (P)]|,
where χ = min{2μ, 1 − 4μ} and

μ = (1 + 5t + 6t2)/(4 + 32t + 32t2).

The significance of Theorem 1 lies in the geometric in-
terpretation it imparts to 〈P〉. Namely, when the graph G
has dimension δ and isoperimetric number c, we have the
isoperimetric inequality

〈P〉 � Jχc|P|1−1/δ, (4)

where |P| = |V (P)| denotes the weight of P. For a HF on a
one-dimensional (1D) spin chain, 〈P〉 � Jχ. For a HF on a
square lattice [37], with our result implies that 〈P〉 � Jχ

√|P|.
Whenever δ > 1, the expected energy of P grows with its
weight, and we have a macroscopic energy barrier [38]. This
suggests that when δ > 1, HFs can be good quantum memo-
ries. To see this, consider a noisy channel T that introduces
Pauli errors P ∈ P with probability proportional to e−β〈P〉 and

1Dicke states are uniform superpositions of computational basis
states labeled by binary vectors of Hamming weight w.
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FIG. 1. When a HF stores an encoded qubit within a GNU code on
N = 2(2t + 1)2 physical qubits that corrects t errors, we use (7) to
obtain upper bounds on the storage error ut with respect to the HF’s
dimension δ and t . Here βJ = 13 and c = 1.

with effective inverse temperature β. Explicitly,

T (ρ) =
∑
P∈P

(e−β〈P〉/Z )PρP, (5)

where Z = ∑
P∈P e−β〈P〉. The corresponding probability of

obtaining an uncorrectable error, which is the storage error
under the assumption of perfect error correction, is then

ut = 1

Z

∑
P∈P

|P|�t+1

e−β〈P〉. (6)

From the isoperimetric inequality (4) and the bound
|∂EV (P)| � 
|P|, where 
 is the maximum vertex degree of
G, we obtain

ut �
(

N/2∑
w=t+1

(
N

w

)
3we−βJχcw1−1/δ

)(
N/2∑
w=0

(
N

w

)
3we−βJ
w

)−1

.

(7)

We illustrate (7) in Fig. 1 with 
 = 4, c = 1, βJ = 13,
and vary the dimension δ and number of correctible errors
t . We see that increasing δ decreases ut . Moreover, when
2 � δ < 4, the optimal PI code has 1 � t � 4. This shows
that for low-dimensional systems with δ � 2, our is partially
self-correcting, where increasing the system size cannot in-
definitely reduce the storage error.

Random coherent noise and storage error. A good quan-
tum memory preserves entanglement. Given a quantum code
C with logical codewords |0L〉, . . . , |(M − 1)L〉, consider the
entangled state |�C 〉 = ∑M−1

j=0 | j〉 ⊗ | jL〉/√M. The storage
error of C with respect to a noisy channel N is

ε(N ,C ) = min
R

1
2

∥∥|�C 〉〈�C | − R(N (|�C 〉〈�C |))∥∥1,

where R = I ⊗ R, N = I ⊗ N , I is an identity chan-
nel, the minimization is over all recovery maps R, and ‖ · ‖1

denotes the trace norm. For simplicity, when the code C and
noise model N are implicit, we write ε = ε(N ,C ).

Let perturbations A1, . . . , Aα to the Hamiltonian H occur
with probabilities p1, . . . , pα , respectively. These perturba-
tions model the coupling of qubits to spurious classical fields.
Each perturbation Aj is a linear combination of operators that
acts nontrivially on a single qubit, and induces a unitary evo-
lution Uj = g(H + Aj ), where g(x) = e−ixτ . In what follows,
we consider a random coherent noise channel Nτ , which is
parametrized by its noise strength a = max j ‖Aj‖/N , and for
any initial state ρ,

Nτ (ρ) =
α∑

j=1

p jUjρU †
j . (8)

For any perturbation Aj , the Taylor series of the unitary g(H +
Aj ) gives

g(H + Aj ) = g(H ) +
∞∑

k=1

D[k]
g (H, Aj )/k!, (9)

where

D[k]
g (H, Aj ) = dk

dξ k
g(H + ξAj )|ξ=0 (10)

are Fréchet derivatives of g(H ) in the matrix direction Aj

[39,40]. Now the correctible component of g(H + Aj ) with
respect to a code that corrects t errors comprises of Fréchet
derivatives of order at most t , because these Fréchet deriva-
tives are polynomials in Aj of order no more than t . Therefore,
we study only the high order Fréchet derivatives. These
Fréchet derivatives allow us to bound the storage error.

Lemma 2. Given a quantum code C that corrects t
errors, let Rj = ∑∞

k=t+1 D[k]
g (H, Aj ) and define ‖R‖C =

max j{‖Rj |ψ〉‖ : |ψ〉 ∈ C }. Then ε � ‖R‖C + ‖R‖2
C .

We prove Lemma 2 in the Supplemental Material [36].
From the integral representation of Rj [41], we exploit the fact
that g(H + Aj ) is unitary for Hermitian H and A to get

‖R‖C � max
j

max
{∥∥D[t+1]

g (H, Aj )
∣∣ψ〉‖ : |ψ〉 ∈ C

}
(t + 1)!

, (11)

which depends only on a single Fréchet derivative instead of
infinitely many. Given (11), one can clearly bound ‖R‖C in
terms of just ‖H‖ and aN . However, such a bound increases
with increasing ‖H‖, and exhibits a behavior contrary to the
numerical evidence in Fig. 1. Increasing the number of long-
range interactions increases both ‖H‖ and dimensionality, but
since increasing dimensionality should decrease the storage
error, this suggests that the storage error should instead de-
crease with increasing ‖H‖. We solve this conundrum by
using Davis’ representation [42] of Fréchet derivatives, which
reveals the intricate dependence of Fréchet derivatives on
the spectral decomposition H = ∑

j�0 λ j� j . Here λ j strictly
increase with j and � j are eigenprojectors. Namely, we can
write D[k]

g (H, Aj )/k! as∑
n0,...,nk

g(λn0 , . . . , λnk )(�nk A j ) · · · (�n1 Aj )�n0 . (12)

Here g(λn0 , . . . , λnk ) are divided differences that arise natu-
rally from the theory of Lagrange interpolation. To unravel
(12), we leverage on the remarkable properties of divided
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differences. First, divided differences are invariant under
any permutation of their arguments. Hence, we can al-
ways arrange the arguments of a divided difference in
nondecreasing order. Second, divided differences general-
ize scalar derivatives, because the divided difference of a
vector with k identical arguments is proportional to the
(k − 1)th derivative of the underlying function. For the
exponential function, |g(y1, . . . , yk )| = τ k−1/(k − 1)! when
y1 = · · · = yk . For instance, |g(2, 2)| � τ . Third, a divided
difference when not evaluated on identical arguments can
be recursively defined; whenever yi and y j are distinct,
g(y) = {g(y[not i]) − g(y[not j])}/(yi − y j ), where y[not i]
denotes a vector obtained from y by deleting its ith compo-
nent. From (11) and (12) we find that

‖R‖C � (aN )t+1

(
ht+1 + τ t+1

(t + 1)!

)
. (13)

Here τ t+1/(t + 1)! arises from the divided difference with
all arguments equal to zero. The term ht+1 is the sum of all
|g(0, λn1 , . . . , λnt+1 )| where n1 + · · · + nt+1 > 0.

Evaluating a bound on ht+1 requires knowing the eigen-
values of H . Since finding the eigenvalues of H for arbitrary
E is difficult [35], we study an exactly solvable HF where
every pair of spins interacts equally with Ji, j = J . We call
such a HF a mean-field HF, and its ground state energy is
λ0 = 0 and its higher energy eigenvalues are λ1 = JN, λ2 =
2J (N − 1), λ3 = 3J (N − 2). In general, λ j = J j(N + 1 − j)
[35]. Now denote δ j as the minimum energy needed to tran-
sition away from λ j . For instance, δ0 = λ1 − λ0 = JN , δ1 =
λ2 − λ1 = J (N − 2), and δ2 = λ3 − λ2 = J (N − 4). In gen-
eral, δ	N/2
 = 2 + (N − 2	N/2
) and δ j = J (N − 2 j) for all
j = 0, . . . , 	N/2
 − 1. Importantly, δ j is nonincreasing in j
and is maximal when j = 0. Exploiting the recursive structure
of divided differences, one gets∣∣g(0, λn1 , . . . , λnt )

∣∣ � 2t+1δ−1
0

(
δn1 · · · δnt+1

)−1
. (14)

We provide the full details of obtaining this upper bound in the
Supplemental Material [36]. When a divided difference has
repeated arguments, we overestimate its contribution to ht+1

by severe overcounting. For this we first use (14) for divided
differences even when there are r repeated arguments. Sec-
ond, for divided arguments with r repeated entries, we count
the contributions from leaves that terminate with all possible
divided differences with repeated identical arguments.

If the contribution to the divided differences is domi-
nated by leaves with no repeating indices, the total con-
tribution of such leaves to ht+1 is at most St 2t+1/δ0,
where S = δ−1

0 + · · · + δ−1
t+1. The contribution to ht+1

by leaves that terminate with r repeated arguments is
[τ r−1/(r − 1)!]St+1−r/δ0. From this we get ht+1 � θ where

θ = St+1

δ0
+ n/2 + 1

δ0

t+1∑
r=2

(t+1
r−1

)
τ r−1

(r − 1)!
St+2−r . (15)

From Lemma 2, (13) and (15), we get the following result.
Theorem 3. Let H be a mean-field HF with exchange con-

stant J , and C be any PI code that corrects t errors. Let Nτ

be the random coherent noise channel (8). Then ε(Nτ ,C ) �
� + �2, where � = (aN )t+1[θ + τ t+1/(t + 1)!], and θ is
given in (15).

FIG. 2. When a mean-field HF stores an encoded qubit within
an N-qubit PI that corrects t errors, we use Theorem 3 to obtain
upper bounds for the corresponding storage error ε after a target
storage lifetime of τ . The baseline lifetime and storage error for an
unprotected qubit are 12 ns and 0.00048, respectively. The shaded
region indicates where ε is smaller than the baseline.

Theorem 3 implies that the quantum memory is partially
self-correcting, because the bound on ε contains a term
(Nτ )t/t! which diverges for large t , since N is quadratic in
t . Hence for fixed noise parameter a and exchange constant
J , our scheme for a quantum memory has an optimal system
size. Figure 2 illustrates only results for optimal system sizes.

Recently, a superconducting qubit was stored between 12
to 20 ns with a fidelity of 0.9995 [43]. Using our noise model,
these experimental parameters can be recast into a baseline
storage error of 5 × 10−4 with a memory lifetime of 12 ns and
a noise strength of a = 0.04 MHz. Given this noise model,
we use Theorem 3 to obtain upper bounds on the storage
error ε of an encoded qubit within a PI code in a mean-field
HF, and we depict these numerical results in Fig. 2. Here the
number of qubits for t = 1 is seven [27], and when t � 2,
N = (2t + 1)2. From Fig. 2, if one uses a seven-qubit PI
code with J = 103 GHz, the qubit’s storage lifetime can be
improved to over 100 ns. In addition, if one uses a 25 qubit PI
code that corrects two errors [28], the qubit’s storage lifetime
can be enhanced to over 120 ns when J = 104 GHZ. Similarly,
if J = 106 GHZ, the qubit’s storage lifetime can be enhanced
to over 150 ns using a 49 qubit PI code that corrects three
errors. From this we can see how increasing J and the number
of qubits in HFs can enhance the storage lifetime.

Discussions. Here we study quantum storage in a physi-
cally abundant physical system, the HF. Since our scheme is
a physical model that is simple to realize, it will be easier
to implement than those built upon many-body interactions.
Because Pauli errors on PI codes exhibit a macroscopic en-
ergy barrier, we see evidence that a quantum memory based
in a HF can become increasingly robust with increasing di-
mensionality of the HF. Moreover, we find that strengthening
the coupling strengths can extend the storage lifetime of HF-
based quantum memories when used in concert with PI codes.
For this we analyze an infinite-dimensional HF, namely the
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mean-field HF, and find numerically tractable upper bounds
on the storage error. Our derivation of the bounds relies on
a novel approach based on the connection between matrix
perturbation theory and divided differences.

Since our analysis technique extends to any physical
system with a completely understood spectral structure,
it applies also to other code-inspired Hamiltonians, and
lays the foundations for analyzing quantum memories us-
ing our new methodology. While PI codes can be pre-
pared in superconducting charge qubits [44], it remains to
integrate the initialization Hamiltonian with HFs. Further-
more, constructing explicit protocols for the decoding of
PI codes can bring quantum memories in HFs closer to
implementation.
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