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Spinor Boltzmann equation approach to domain-wall motion driven by spin-polarized current
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Based on the nonequilibrium Green’s function formalism, the spinor Boltzmann equation beyond gradient
approximation is derived in a ferromagnetic metal with a single domain wall (DW). We further obtain the
charge continuity equation and the spin diffusion equation by integrating over the momentum. By using the spin
diffusion equation, we get a generalized spin transfer torque (STT), in which the usual STT is extended to the case
beyond the gradient approximation and with inhomogeneous current. We also calculate numerically the physical
observables such as charge density n(x), spin accumulation m(x), current density j(x), spin current density js(x),
etc., by the use of the spinor distribution function. Along with the Landau-Lifshitz-Gilbert-Slonczewski equation
that contains the above generalized STT, we can study the motion domain wall, and the critical electric field at
an initial velocity of the DW is obtained in terms of the linear stability analysis method.

DOI: 10.1103/PhysRevB.103.144415

I. INTRODUCTION

In order to meet the increasing demand for ultradense stor-
age devices, the operation of the domain wall (DW) by some
external manipulations such as magnetic field, spin-polarized
current, spin wave and temperature, etc., was proposed as
a new type of magnetic memory [1–4]. The memory with
current-induced DW moving via spin transfer torque (STT)
has attracted more and more attention both in theoretical [5–7]
and experimental [8,9] studies owing to its advantages in
size, consumption, and speed. A magnetic domain is a region
within a magnetic material in which the magnetization is in
a uniform direction, and the boundary region of two domains
is called the DW over which the magnetization changes its
direction from one domain to another [10,11]. When a spin-
polarized current passes through a DW, the STT, resulting
from the s-d interaction of the conduction electron spins
with the background magnetization of the DW, will cause the
movement of the DW, which was called “domain drag force”
by Berger [8,12,13].

In 2004, Li and Zhang [14] proposed a phenomenological
form of STT produced by the spatial variation of spin current
density in ferromagnetic materials to explore the movement
of the DW, which reads τb = − bJ

M2
s
M × (M × ∂M

∂x ), where
bJ = P jeμB/(eMs), μB is the Bohr magneton, e is the elec-
tronic charge, je is the electronic current density, and P is the
spin polarization of the current. Obviously, bJ is a coefficient
related to P which should be determined by experiments.
However, the current density je will change with the varia-
tion of the DW accordingly because the STT may affect the
motion of both the DW and spin-polarized current, so we
must deal with their movements simultaneously. To consider
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the varying spin-polarized current in the moving DW, Levy
and colleagues [15,16] extended the above STT as τstt =
− γ

μBμ0
Jex

∫
M × m(x)dx, where γ is the gyromagnetic ratio,

μ0 is the vacuum permeability, Jex is the exchange coupling
strength, and m(x) is the spin accumulation. The varying
spin accumulation and spin current satisfy the spin diffusion
equation that contains the STT therein. The spin diffusion
equation can be derived from the spinor Boltzmann equation
(SBE) naturally; in other words, we can also obtain the spin
accumulation and spin current from SBE.

The quantum Boltzmann equation (QBE) is an impor-
tant and powerful tool to investigate the transport process,
and there has been much progress in recent years [17–20].
Based on Kadanoff’s work on the QBE [21], Sheng et al.
derived the SBE, including the spin degree of freedom in
the steady state [22,23]. In order to study the behavior of
the transverse spin current in noncollinear magnetic struc-
tures, Zhang et al. also proposed a time-dependent SBE in
2004 [24]. Wang further extended the form of SBE beyond
the gradient approximation for describing the system with
a rapid varying potential, which works whether the poten-
tials vary slowly or rapidly with time and position [25], and
then the charge current, spin current, and STT beyond the
gradient approximation were investigated [26]. Nowadays,
the SBE is widely used to study spin-dependent transport
issues. Since the background magnetization in the DW will
change rapidly when the DW moves, the usual SBE will fail
to describe the spin-polarized electronic transport through the
DW because the s-d interaction between conduction electrons
and background magnetization varies rapidly, and we should
study it using the SBE beyond the gradient approximation
along with the Landau-Lifshitz-Gilbert-Slonczewski (LLGS)
equation, where the LLGS equation describes the motion of
magnetization.

This paper is organized as follows: In Sec. II we derive the
SBE beyond the gradient approximation in a ferromagnetic
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FIG. 1. The schematic structure of a ferromagnetic metal with
a single DW. The directions of magnetization in the two domains
are opposite; xa represents the position of the DW, and the external
electric field is along the −x direction. Domain 1 is a pinnedlike
layer which is used to polarize the spin of electrons. If the electric
field exceeds the critical value, the DW will be driven by the STT
induced by the spin-polarized current.

metal with a single DW and investigate the LLGS equation
including STT using the method of linear stability analysis.
In Sec. III we present the numerical results of charge density,
spin accumulation, current density, and spin current density
by calculating the SBE, and the critical electric field that
drives the motion of the DW is obtained in terms of the linear
stability analysis method for the LLGS equation. Finally, a
summary and discussion is given.

II. THEORETICAL FORMALISM

Consider a ferromagnetic metal with a single DW, as
shown in Fig. 1, where the spin-polarized electronic current
flows through the x direction and drives the movement of
the DW when an external electric field is applied along the
x axis. Different DWs have different irregular shapes, which
obey the principle of the lowest energy [12]. It is very hard
to investigate both the motion of interacting spin-polarized
electrons and the DW, which means we should solve the SBE
and LLGS equation simultaneously. In order to simplify this
problem, we ignore the thickness and type such as Bloch wall,
Néel wall, etc., and describe the potential caused by the DW
by a simple step function, then assume it moves at a certain
speed.

The Hamiltonian for the electron in the ferromagnetic
metal shown in Fig. 1 can be written as

Ĥ = − h̄2∇2
x

2me
+ eEx − 1

2
JexM1 · σ̂[θ (xa − x) − θ (x− − x)]

− 1

2
JexM2 · σ̂[θ (x − xa) − θ (x − x+)], (1)

where − h̄2∇2
x

2me
is the kinetic energy of the electron, Jex is the

s-d exchange coupling constant, and M1 and M2 represent
the unit vectors of the magnetization of ferromagnets in dif-
ferent domains, respectively. σ̂ are the Pauli spin matrices, the
position xa of the DW can be rewritten as xa = vDt when we
assume that the DW has a velocity vD driven by the STT, and
(xa − x−) and (x+ − xa) are the thicknesses of the left and
right domains, respectively. θ (x) is the step function defined
by

θ (x) =
{

1, x < 0,

0, x > 0.

The spinor distribution function in spin space can be de-
fined by a 2 × 2 matrix as

f̂ (k, ω; x, t ) =
(

f↑↑(k, ω; x, t ) f↑↓(k, ω; x, t )
f↓↑(k, ω; x, t ) f↓↓(k, ω; x, t )

)
,

where ↑ and ↓ are the spin indices, k is the wave vector, and ω

is the frequency. As described in Ref. [24], the diagonal ele-
ment f↑↑(k, ω; x, t ) [ f↓↓(k, ω; x, t )] represents the occupancy
of state (k, ω) and goes to the Fermi function in equilibrium
so that only the spin state ↑ (↓) is occupied, while the other
is zero. In the two-fluid model, f↑↑ and f↓↓ can be considered
to be independent of each other and related only to charge.
The off-diagonal element f↑↓(k, ω; x, t ) [or f↓↑(k, ω; x, t )]
represents the coherences between states (k, ω) on the Fermi
surface and the states with opposite spin; these coherences
can be induced by spin-polarized current. For this reason,
the off-diagonal term is spin dependent [24]. The distribution
function fσσ ′ (k, ω; x, t ) is the quantum Wigner transformation
of the lesser Green’s function [26,27] in the nonequilibrium
Green’s function (NEGF) formalism:

fσσ ′ (k, ω; x, t )

= −iG<
σσ ′(k, ω; x, t )

= −i
∫

e−ik·X dX
∫

eiωT G<
σσ ′(X , T ; x, t ) dT , (2)

where x = 1
2 (x1 + x2), t = 1

2 (t1 + t2) is the center of mass
variable, X = x1 − x2, T = t1 − t2 represent the differences
between two position and time variables, and (x1, t1) and
(x2, t2) are the position and time variables in the lesser Green’s
function G<

σσ ′ (x1, t1; x2, t2).
Any 2 × 2 matrix can be decomposed into a new form by

using the complete basis composed of the Pauli matrix σ̂ and
unit matrix Î. Based on the local equilibrium assumption, we
further expand the spinor distribution function as [24,25]

f̂ (k, ω; x, t ) = f 0(k, ω)Î +
(

−∂ f 0

∂ε

)
[ f (k, ω; x, t )Î

+ g(k, ω; x, t ) · σ̂], (3)

where f 0(k, ω) is the equilibrium distribution function and
f (k, ω; x, t ) and g(k, ω; x, t ) are nonequilibrium scalar and
vector distribution functions, respectively, which describe the
deviation of the distribution function from the equilibrium
distribution. Combining Eq. (3) with the original matrix of
f̂ (k, ω; x, t ) above, it can be found that the terms containing
Î are exactly the diagonal elements f↑↑ and f↓↓, while the
other terms containing σ̂ are exactly the off-diagonal elements
f↑↓ and f↓↑. Therefore, the scalar distribution function f and
the vector distribution function g are also interpreted as the
charge distribution function and spin distribution function,
respectively.

In the framework of Kadanoff et al.’s NEGF theory [21],
starting from the Dyson equation satisfied by the Green’s
function and using a procedure similar to the derivation
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of the QBE [28,29], as detailed in the Appendix, we can
obtain coupled equations for the scalar distribution function

f (k, ω; x, t ) related to charge and the vector distribution func-
tion g(k, ω; x, t ) related to spin:

(
∂

∂t
+ h̄k

me

∂

∂x
− eE

h̄

∂

∂k

)
f (k, ω; x, t ) + Jex

h̄

∫
1

k′ cos[2k′(vDt − x)](M1 − M2) · g(k − k′, ω − k′vD; x, t ) dk′

− Jex

h̄

∫
1

k′ {M1 cos[2k′(x− − x)] − M2 cos[2k′(x+ − x)]} · g(k − k′, ω; x, t ) dk′

= − f (k, ω; x, t ) − 〈 f 〉
τ

(4)

and (
∂

∂t
+ h̄k

me

∂

∂x
− eE

h̄

∂

∂k

)
g(k, ω; x, t ) + Jex

h̄

∫
1

k′ cos[2k′(vDt − x)](M1 − M2) f (k − k′, ω − k′vD; x, t ) dk′

+ Jex

h̄

∫
1

k′ sin[2k′(vDt − x)](M1 − M2) × g(k − k′, ω − k′vD; x, t ) dk′

− Jex

h̄

∫
1

k′ {M1 cos[2k′(x− − x)] − M2 cos[2k′(x+ − x)]} f (k − k′, ω; x, t ) dk′

− Jex

h̄

∫
1

k′ {M1 sin[2k′(x− − x)] − M2 sin[2k′(x+ − x)]} × g(k − k′, ω; x, t ) dk′

= −g(k, ω; x, t ) − 〈g〉
τ

− 2〈g〉
τs f

, (5)

where k′ represents the jump of momentum k when electrons are scattered. At first glance, mathematically, k′ = 0 is a singularity
of the above coupled equations. But it is also a removable singularity. In order to prove the above argument, we calculated the
limit of the integral terms in Eqs. (4) and (5) when k′ tends to zero. We find it is zero, which will not have any effect on
the result of the total integrals. Therefore, it is not necessary to consider k′ = 0 when doing numerical calculations, and we
can remove this singularity. In fact, we can explain this from the physical point since k′ denotes the momentum change in the
conduction electron when it travels through the interface of two domains. The integral terms in Eqs. (4) and (5) contribute source
terms scattered by the interface to the transport equations. While k′ = 0 means there is no scattering when the electron passes
through the interface, its momentum does not change, so there are no contributions from the interface scattering to the source
terms, which coincides with the above fact that the total integral terms is zero in the limit k′ → 0. So we do not consider the
contribution k′ = 0 in our integral terms. Assuming that j1(k′, x) = 1

k′ cos[2k′(vDt − x)](M1 − M2), j1 can be interpreted as the
transition probability of momentum and frequency from (k, ω) jumping to (k − k′, ω − k′vD) [27]. Similarly, if we assume that
j2(k′, x) = 1

k′ {M1 cos[2k′(x− − x)] − M2 cos[2k′(x+ − x)]}, j2 can be interpreted as the transition probability of the momentum
and frequency from (k, ω) jumping to (k − k′, ω). The physical explanation of other integral terms is similar to that of j1 and j2.

Integrating over the variables k and ω on both sides of Eq. (4), we can obtain the continuity equation of the charge density
and current density as

∂

∂t
n(x, t ) + ∂

∂x
j(x, t ) + Jex

h̄

∫
1

k′ cos[2k′(vDt − x)](M1 − M2) · mk′ (x, t ) dk′

− Jex

h̄

∫
1

k′ {M1 cos[2k′(x− − x)] − M2 cos[2k′(x+ − x)]} · mk′ (x, t ) dk′

= −n(x, t ) − 〈n〉
τ

, (6)

where the charge density and the charge current density are defined as

n(x, t ) =
∫∫ (

−∂ f 0

∂ε

)
f (k, ω; x, t ) dk dω (7)

and

j(x, t ) =
∫∫ (

−∂ f 0

∂ε

)
h̄k

me
f (k, ω; x, t ) dk dω. (8)
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Similarly, integrating over the variables k and ω on both sides of Eq. (5), we can obtain the spin diffusion equation of the spin
accumulation and spin current density as

∂

∂t
m(x, t ) + ∂

∂x
js(x, t ) + Jex

h̄

∫
1

k′ cos[2k′(vDt − x)](M1 − M2)nk′ (x, t ) dk′

+ Jex

h̄

∫
1

k′ sin[2k′(vDt − x)](M1 − M2) × mk′ (x, t ) dk′

− Jex

h̄

∫
1

k′ {M1 cos[2k′(x− − x)] − M2 cos[2k′(x+ − x)]}nk′ (x, t ) dk′

− Jex

h̄

∫
1

k′ {M1 sin[2k′(x− − x)] − M2 sin[2k′(x+ − x)]} × mk′ (x, t ) dk′

= −m(x, t ) − 〈m〉
τ

− 2〈m〉
τs f

, (9)

where the spin accumulation and spin current density are defined as

m(x, t ) =
∫∫ (

−∂ f 0

∂ε

)
g(k, ω; x, t ) dk dω (10)

and

js(x, t ) =
∫∫ (

−∂ f 0

∂ε

)
h̄k

me
g(k, ω; x, t ) dk dω (11)

and jsi is the ith spin component of the current density along the x direction.
We denote nk′ (x) = ∫

f (k − k′, ω; x, t ) dkdω and mk′ (x) = ∫
g(k − k′, ω; x, t ) dkdω in Eqs. (6) and (9) as the charge density

because it is related to the scalar distribution and spin accumulation, which is related to the vector distribution function
corresponding to the momentum jump k′. So Eq. (6) is just the continuity equation for charge density and charge current density,
and Eq. (9) is the continuity equation for spin accumulation and spin current density.

As we know, when the time is longer than the spin-flip relaxation of electrons τs f , it is reasonable to considered that the
system will arrive at a steady state; then the spin accumulation, spin current density, and charge density will satisfy the following
equations: ∂

∂t m(x, t ) = 0, ∂
∂t js(x, t ) = 0, and ∂

∂t n(x, t ) = 0, respectively. For simplicity the time dependence of the spin accumu-

lation, spin current density, and charge density can be approximated as m(x, t ) = m(x)(1 + e
− t

τs f ), js(x, t ) = js(x)(1 + e
− t

τs f ),
and n(x, t ) = n(x)(1 + e− t

τ ); it is easy to prove that the above physical quantities will eventually transition to m(x, t ) ∝ m(x),
js(x, t ) ∝ js(x), and n(x, t ) ∝ n(x) when t 	 τs f , where m(x), js(x), and n(x) are the spin accumulation, spin current density,
and charge density when the system arrives at the steady state, respectively. Inserting m(x, t ), js(x, t ), and n(x, t ) at steady state
into the spin diffusion equation (9), the spin accumulation can be expressed in the steady state as

m(x) = −τ
∂

∂x
js(x) − (1 − λ)〈m〉 − ξ

∫
1

k′ cos[2k′(vDt − x)](M1 − M2)nk′ (x) dk′

− ξ

∫
1

k′ sin[2k′(vDt − x)](M1 − M2) × mk′ (x) dk′ + ξ

∫
1

k′ {M1 cos[2k′(x− − x)] − M2 cos[2k′(x+ − x)]}nk′ (x) dk′

+ ξ

∫
1

k′ {M1 sin[2k′(x− − x)] − M2 sin[2k′(x+ − x)]} × mk′ (x) dk′, (12)

where ξ = τ Jex
h̄ is dimensionless. The spin accumulation in equilibrium 〈m〉 is parallel to the magnetization.

Substituting Eq. (12) into the definition of STT τstt = − γ

μBμ0
Jex

∫
M × m(x) dx proposed by Levy and colleagues [15,16],

we have

τstt = cJτ

∫
M × ∂

∂x
js(x) dx + cJξ

∫
dx

∫
1

k′ cos[2k′(vDt − x)]M × (M1 − M2)nk′ (x) dk′

+ cJξ

∫
dx

∫
1

k′ sin[2k′(vDt − x)]M × [(M1 − M2) × mk′ (x)] dk′

− cJξ

∫
dx

∫
1

k′ M × {M1 cos[2k′(x− − x)] − M2 cos[2k′(x+ − x)]}nk′ (x) dk′

− cJξ

∫
dx

∫
1

k′ M × ({M1 sin[2k′(x− − x)] − M2 sin[2k′(x+ − x)]} × mk′ (x)) dk′, (13)
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where cJ = γ

μBμ0
Jex has units of frequency. It can be seen

above that the STT includes the following terms: the first term
is caused by the variation of the spin current in space, which
is analogous to the phenomenological form of the STT τb ≡
∂
∂x js(x) proposed by Li an Zhang [14], but our expression is
derived analytically; the third and fifth terms are similar to the
generalized torque τ± defined by Wang [26]. The second and
fourth terms are the added terms in this work, which indicate
that the charge density also makes a contribution to the STT.
Equation (13) contains not only the position-dependent STT
given by Li and Zhang [14] but also the momentum-dependent
STT extended by Wang [26], and two additional terms asso-
ciated with charge density also appear. Equation (13) is the
central result here.

This STT not only affects the motion of conduction elec-
trons but also influences the movement of the DW, which can
be described by the LLGS equation, which means the STT
will appear in the LLGS equation,

∂M
∂t

= −γ M × Heff + α

Ms
M × ∂M

∂t
+ τstt , (14)

where α is the Gilbert damping coefficient and Ms is the
saturation magnetization. The first term on the right-hand
side of Eq. (14) describes the torque on the local magnetic
moment due to all the effective fields in the system including
the effective anisotropy field Hk and the exchange field Hex

between adjacent magnetizations. The second term describes
the effect of the magnetic damping on the precession of the
moment [11]. The third term is the STT given by Eq. (13). In
our model we write Heff as

Heff = Hk + Hex = HkMy

Ms
ey + 2Aex

μ0M2
s

∇2M, (15)

where Hk is the anisotropy field and Aex is the exchange
constant.

The SBEs (4) and (5) and the LLGS equation (14)
should be solved simultaneously; that is difficult because the
equations are very complex, so we must adopt some approx-
imations to solve these coupled equations. As we know, the
relaxation time of conduction electrons (including momentum
relaxation τ and spin-flip relaxation τs f ) is much smaller
than that of the magnetization of the background ferromag-
net, where the former is of the order of picoseconds (τ ≈
0.001 ps, τs f ≈ 1 ps) and the latter is about 1 ns [30]. This
result strongly shows that the motion of the local magnetic
moment is much slower than that of conduction electrons. It
is useful to make some simplifications to solve the coupled
equations (4), (5), and (14) based on the above fact. The
principle one is recognizing that the conduction electronic
spin redistribution occurs much faster than the motion of the
background ferromagnet, so that one can envisage a time
period in which the electronic spin accumulation has reached
a quasisteady state before the magnetization of the local fer-
romagnetic starts to develop; that is, we can start the time
development of the magnetization of the background ferro-
magnet after the electronic spin accumulation has reached
steady state, which is called the adiabatic approximation [31].
Since the charge density and spin density of conduction elec-
trons satisfy their continuity equations derived from the SBE,
which can be solved at the steady state corresponding to a

magnetization which obeys the LLGS equation at some time,
at each time of magnetization, we solve the SBE for elec-
trons at the corresponding steady state and then repeat this
procedure for the next time. Thus, we can study both the mo-
tion of electrons and the magnetization of local ferromagnet
simultaneously. Therefore, we first solve the SBEs (4) and
(5) at steady state numerically, and after obtaining the spinor
distribution function and the STT, we substitute them into
the LLGS equation (14). The solution for the motion of the
domain wall satisfies the LLGS equation. In this paper, we
will not solve the LLGS equation but will study the critical
electric field Ec driving the motion of the DW using the linear
stability analysis method, then determine the initial velocity
of the DW vD, where the whole procedure must be performed
self-consistently.

The linear stability analysis was used to study the DW
dynamics with STT by Li and Zhang in 2004 [14]. Here, we
exploit the STT given by Eq. (13) instead of the previous
phenomenological form in Ref. [14]. Although we have not
solved the LLGS equation directly, we can obtain the critical
electronic current or the critical electric field which drives the
DW to start to move from an initial state M20 = Ms(0,−1, 0).
When we apply an electric field to the system, the STT
induced by the spin-polarized current will produce a pertur-
bation δM on the DW. If the electric field is lower than the
critical electric field Ec, the DW still remains unchanged; if
the electric field exceeds the critical electric field Ec, the DW
will lose its stability and begin to move with an initial velocity
vD. Consider one component of perturbation with wave vector
K and frequency 
, where vD = 


K , by means of the method
of linear stability analysis given by Lyapounov [32,33]; the
solution of the LLGS equation on the right ferromagnet of the
DW can be written as

M(x, t ) = M20 + δM = −Msey + uei(Kx+
t ), (16)

where M20 = Ms(0,−1, 0) and u is a small vector represent-
ing the amplitude of the perturbation.

Substituting Eqs. (15) and (16) into Eq. (14) and keeping
the linear terms in u, the equations for the amplitude u can be
obtained:

i
ux = Izuy + (γk − γexK2 − Iy − iα
)uz,

i
uy = Ixuz − Izux, (17)

i
uz = −(γk − γexK2 − Iy − iα
)ux − Ixuy,

where γex = γ 2Aex
μ0Ms

and γk = γ Hk are the physical constants
related to the material parameters, Ix,y,z = −cJ

∫
mx,y,z(x) dx,

and mx,y,z(x) are the components of spin accumulation. To
obtain the nonzero solutions of u, one should require the
determinant of the coefficients for the linear equations to be
zero, which is just the characteristic equation for 
 at a certain
K = 


vD
and reads


2 − (γk − γexK2 − Iy − iα
)2 − (
I2
x + I2

z

) = 0. (18)
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FIG. 2. The charge density and charge current density on the right side of the DW (domain 2) vary with position under different electric
fields. (a) The charge density versus position. (b) The charge current density versus position.

By further substituting K = 

vD

into the above equation we can
get a quartic function for 
. Equation (18) becomes

γ 2
ex


4

v4
D

+ 2iαγex

3

v2
D

− 2γex(γk − Iy)

2

v2
D

− (1 + α2)
2

+ 2iα(γk − Iy)
 + (γk − Iy)2 + I2
x + I2

z = 0. (19)

There are four characteristic values for 
. If we divide the
complex roots into the real part a j and imaginary part b j , we
have 
 j = a j + ib j ( j = 1, 2, 3, 4). According to the prin-
ciple of linearized stability proposed by Lyapounov [32,33],
if all the characteristic values 
 j have positive imaginary
parts, then M20 = Ms(0,−1, 0) is a stable equilibrium solu-
tion. If some characteristic values 
 j have negative imaginary
parts, then M20 = Ms(0,−1, 0) loses its stability and begins
to move with an initial velocity vD. The critical point cor-
responds to the zero imaginary part of characteristic values.
Therefore, we can obtain the critical electric field Ec and
the initial velocity of the DW vD by observing whether the
imaginary part of the root b j is zero. We will demonstrate this
with an example in the next section.

III. NUMERICAL RESULTS

In our calculations, the magnetizations of the background
ferromagnet in the two domains are taken as M1 = Ms(0, 1, 0)
and M2 = Ms(0,−1, 0). We take the adiabatic approximation
and assume that the distribution function of the electrons will
arrive at a steady state ∂ f̂

∂t = 0 after t 	 τs f . For simplicity,
we will not consider the frequency ω dependence in the dis-
tribution function. We choose the Fermi-Dirac distribution to
be the equilibrium distribution of the scalar distribution func-
tion 〈 f (k, x)〉 = fFD(k) and the boundary conditions to be
f̂ (k, x−) = f̂ (k, x+) = 0. We consider only the electrons near
the Fermi surface, which contribute mainly to the transport.
Other parameters in the system are chosen to be Jex = 0.5 eV,
x− = −10 nm, x+ = 10 nm, τ = 0.001 ps, τs f = 1 ps.

We solve Eqs. (4) and (5) numerically and show some
physical observables such as charge density n(x), charge cur-
rent density j(x), spin accumulation m(x), and spin current
density js(x) in Figs. 2 and 3.

In Fig. 2, we plot the distribution of the charge
density n(x) and charge current density j(x) in domain
2 as a function of position. The blue, red, black, and

green curves correspond to the parameters (E , vD) =
(0.5 × 107 V/m, 0 m/s), (E , vD) = (1 × 107 V/m, 0 m/s),
(E , vD) = (5 × 107 V/m, 9.9 × 10−8 m/s), and (E , vD) =
(9 × 107 V/m, 9.9 × 10−8 m/s), respectively. Since the
critical electric field obtained (shown in Fig. 4 below) is
Ec = 4.92 × 107 V/m, the velocity of the DW is zero when
E < Ec. The charge density under different electric fields in
Fig. 2(a) has similar features, which first increases rapidly and
then exhibits an oscillating decay with position. Because we
presume the step function potential in our model is between
domain 1 and domain 2, the charge accumulation is produced
near the DW. It can be seen that the variation of the blue
and red curves with position is more drastic than the other
two curves; in the latter the electric fields are larger than
the critical electric field. For the case of the blue and red
curves with E < Ec, the DW does not move, and the charge
current density is smaller than in the cases with E > Ec

when the DW starts to move (see Fig. 2), so there is a big
charge accumulation in this case. In Figs. 2(a) and 2(b),
the blue line and the red line almost overlap, and the black
line and the green line also show little difference. It can be
seen that when E < Ec (≈5 × 107 V/m), there is almost no
difference in charge density n(x) [charge current density
j(x)] under different electric fields, and the same is true for
Ec � E � 9 × 107 V/m. This result means that n(x) [ j(x)]
changes significantly only when E reaches Ec. Moreover, it is
known from our calculation that the numerical results of these
physical quantities will diverge when E > 9 × 107 V/m,
which indicates that the critical electric field must be less than
9 × 107 V/m.

The x, y, and z components of the spin accumulation under
different electric fields are shown in Figs. 3(a)–3(c), which are
similar to the charge accumulation. To manifest them clearly,
we show the local enlarged curves of the spin accumulation
near the DW in the inset of Figs. 3(a)–3(c), and it is easy to see
that the x and z components of the spin accumulation under
different electric fields oscillates only near the DW and then
remains unchanged in the region x > 0.4 nm, while the y com-
ponent of the spin accumulation increases to the maximum,
then rapidly declines to the minimum, and gradually tends
to zero. Because the directions of the magnetization on both
sides of the DW shown in Fig. 1 are opposite along the y axis,
a big spin accumulation exists near the DW which exerts STT
on the right-hand side of the DW. The x and z components
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FIG. 3. The x, y, and z components of spin accumulation and spin current density as a function of position at different electric fields;
the red, black, and green curves correspond to the parameters (E , vD ) = (1 × 107 V/m, 0 m/s), (E , vD ) = (5 × 107 V/m, 9.9 × 10−8 m/s), and
(E , vD ) = (9 × 107 V/m, 9.9 × 10−8 m/s), respectively. (a)–(c) The spin accumulation versus position. (d)–(f) The spin current density versus
position.

of the spin accumulation have smaller magnitudes than that
along the y component, as the magnetization of the ferromag-
net is assumed along the y axis, and the x and z components
of the spin accumulation have almost no effect on the entire
transport.

FIG. 4. The imaginary part bj of the roots 
 j in Eq. (19) versus
electric field. It turns out that the critical condition bj = 0 is satisfied
when the electric field arrives at 4.92 × 107 V/m.

For comparison, we also plot the x, y, and z components
of spin current density js(x) with position under different
electric fields in Figs. 3(d)–3(f). When the electric field
E < Ec, the spin current is smaller than in the case of
E > Ec, while the spin accumulation is bigger than in the
case of E > Ec, which is analogous to the charge accumu-
lation. The magnitudes of the x and z components of the
spin current density are smaller than that of the y compo-
nent of the spin current density, in which the z component
is the smallest, which is consistent with the results of spin
accumulation.

We substitute the vector distribution function gx,y,z(k, x)
under different (E , vD) in Eq. (19) and adopt the parameters in
this system as Hk = 10 Oe, γ = 1.75 × 107 Oe−1 s−1, Ms =
8 × 105 A/m, A = 1.3 × 10−11 J/m, α = 0.02, and μB =
9.274 × 10−24 A m2. Then the roots of Eq. (19) at a cer-
tain parameter (E , vD) can be obtained self-consistently. In
Fig. 4 we show how b j ( j = 1, 2, 3, 4) varies with the electric
field E .

We found that when the velocity of the DW vD is
greater than 9.9 × 10−8 m/s, the imaginary parts of 
 j are all
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negative regardless of the different electric fields. This in-
dicates that the DW has lost its stability according to the
principle of linear stability presented in Sec. II. As can be
seen from Fig. 4, the imaginary parts of 
 will tend to zero
at the point E = 4.92 × 107 V/m, which means that it is just
the critical field when vD is taken to be 9.9 × 10−8 m/s.

IV. SUMMARY AND DISCUSSION

In this paper, we derived the SBE given in Eqs. (4) and (5)
beyond the gradient approximation in a ferromagnetic metal
with the single DW, and the continuity equation of charge
density (6) and the spin diffusion equation (9) satisfied by
the spin accumulation were also given. From the spin diffu-
sion equation we further obtained a generalized STT under a
steady-state assumption which contains terms associated with
the charge density. Then we calculated the scalar distribution
function f (k, x) and the vector distribution function g(k, x)
as well as some physical observables numerically. The results
for the charge density n(x), current density j(x), spin accu-
mulation m(x), and spin current density js(x) under different
electric fields and velocity (E , vD) are shown in Figs. 2 and 3.
Moreover, we substituted the generalized STT into the LLGS
equation (14) and obtained the critical electric field by means
of linear stability analysis. By performing the self-consistent
calculations with the SBE, we finally obtained the critical
electric field Ec = 4.92 × 107 V/m at the initial velocity of
DW vD = 9.9 × 10−8 m/s.

It should be emphasized that we should solve both the
coupled SBE for conducting electrons and the LLGS equation

for the DW simultaneously, but that is hard. For simplicity, we
studied the LLGS equation using the method of linear stability
analysis. Although we could obtain the critical electric field at
an initial velocity, we failed to get the complete solution for
the motion of the DW. How to solve the coupled SBE and
LLGS equation self-consistently is an open question, which
we will leave for further exploration.
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APPENDIX: DERIVATION OF THE SBE BEYOND THE
GRADIENT APPROXIMATION

In this Appendix we will present the detailed derivation of
Eqs. (4) and (5).

We start with Dyson’s equation satisfied by Ĝ<(x1, x2), that
is, the starting point for the derivation of the QBE [21,28]. The
variables are changed to center of mass x1,2 = x ± X , t1,2 =
t ± T , and then the relative coordinates (X , T ) are Fourier
transformed to (k, ω). Finally, the equation of motion for
Ĝ<(k, ω; x, t ) is presented naturally:

ih̄

[
∂

∂t
+ h̄k

me
∇x − eE

h̄
∇k

]
Ĝ<(k, ω; x, t )

+ Jex

2

∫
dX e−ikX

∫
dT eiωT M1 · σ̂Ĝ<(X , T ; x, t )

{
θ

[
vD

(
t + T

2

)
− x − X

2

]
− θ

(
x− − x − X

2

)}

− Jex

2

∫
dX e−ikX

∫
dT eiωT Ĝ<(X , T ; x, t )M1 · σ̂

{
θ

[
vD

(
t − T

2

)
− x + X

2

]
− θ

(
x− − x + X

2

)}

+ Jex

2

∫
dX e−ikX

∫
dT eiωT M2 · σ̂Ĝ<(X , T ; x, t )

{
θ

[
x + X

2
− vD

(
t + T

2

)]
− θ

(
x + X

2
− x+

)}

− Jex

2

∫
dX e−ikX

∫
dT eiωT Ĝ<(X , T ; x, t )M2 · σ̂

{
θ

[
x − X

2
− vD

(
t − T

2

)]
− θ

(
x − X

2
− x+

)}

=
∫

dX e−ikX
∫

dT eiωT
∫

dx3 [�t G
< − �<Gt̄ − Gt�

< + G<�t̄ ], (A1)

where the Green’s functions G<, Gt , and Gt̄ and the self-energies �<, �t , and �t̄ are 2 × 2 matrices in spin space. Obviously,
the terms of the Fourier transformation on the left side of Eq. (A1) contain a discontinuous potential, so we cannot use the usual
gradient approximation which applies to potentials varying slowly with time and position. We treat the integral terms of Eq. (A1)
that contain a discontinuous potential in a formula proposed by Wigner in 1932 to deal with convolution with rapidly varying
potentials [27], and Wang derived the SBE beyond the gradient approximation in a ferromagnet/insulator/ferromagnet (F/I/F)
junction by using this formula [25]. We choose one of the integral terms to show this treatment in the following:

I = Jex

2

∫
dX e−ikX

∫
dT eiωT M1 · σ̂Ĝ<(X , T ; x, t )

{
θ

[
vD

(
t + T

2

)
− x − X

2

]
− θ (x− − x − X

2
)

}
. (A2)

According to the Fourier convolution formula,

F [ f1(T ) · f2(T )] = 1

2π
F1(ω) ∗ F2(ω) =

∫
F1(ω′)F2(ω − ω′) dω′, (A3)
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where F [ f (t )] = ∫
eiωt f (t ) dt = F (ω). Equation (A2) can be rewritten as

I = Jex

4π

∫
dk′

∫
�̂1(k′, ω′; x, t )Ĝ<(k − k′, ω − ω′; x, t ) dω′, (A4)

with

�̂1(k, ω; x, t ) =
∫

dX e−ikX
∫

dT eiωT M1 · σ̂

{
θ

[
vD

(
t + T

2

)
− x − X

2

]
− θ

(
x− − x − X

2

)}
, (A5)

which can be interpreted as the transition probability of the momentum and frequency from (k, ω) jumping to (k − k′, ω − ω′).
It is not hard to get the expression for �̂1(k′, ω′; x, t ):

�̂1(k′, ω′; x, t ) = −2π

ik′ M1 · σ̂[e−2ik′(vDt−x)δ(k′vD − ω′) − e−2ik′(x−−x)δ(ω′)]. (A6)

Then the equation satisfied by the lesser Green’s function beyond the gradient approximation can be obtained:

ih̄

[
∂

∂t
+ h̄k

me
∇x − eE

h̄
∇k

]
Ĝ<(k, ω; x, t ) + Jex

4π

∫
dk′

∫
dω′ �̂1(k′, ω′; x, t )Ĝ<(k − k′, ω − ω′; x, t )

− Jex

4π

∫
dk′

∫
dω′ Ĝ<(k − k′, ω − ω′; x, t )�̂2(k′, ω′; x, t )

+ Jex

4π

∫
dk′

∫
dω′ �̂3(k′, ω′; x, t )Ĝ<(k − k′, ω − ω′; x, t )

− Jex

4π

∫
dk′

∫
dω′ Ĝ<(k − k′, ω − ω′; x, t )�̂4(k′, ω′; x, t )

=
∫

dX e−ikX
∫

dT eiωT
∫

dx3 [�t G
< − �<Gt̄ − Gt�

< + G<�t̄ ]

= −
(

∂ f

∂t

)
collision

. (A7)

�̂2, �̂3, and �̂4 can be obtained in the same way as Eq. (A2) and have the following forms:

�̂2(k′, ω′; x, t ) = 2π

ik′ M1 · σ̂[e−2ik′(x−vDt )δ(k′vD − ω′) − e−2ik′ (x−x− )δ(ω′)], (A8)

�̂3(k′, ω′; x, t ) = 2π

ik′ M2 · σ̂[e−2ik′(vDt−x)δ(k′vD − ω′) − e−2ik′ (x+−x)δ(ω′)], (A9)

�̂4(k′, ω′; x, t ) = −2π

ik′ M2 · σ̂[e−2ik′(x−vDt )δ(k′vD − ω′) − e−2ik′(x−x+ )δ(ω′)]. (A10)

In addition, the collision terms on the right side of Eq. (A7), including the momentum relaxation of electrons and spin-flip
relaxation, are simplified by the relaxation time approximation [24] instead of the Kadanoff-Baym gradient expansion used by
Mahan [28]: (

∂ f̂

∂t

)
collision

=
(

−∂ f 0

∂ε

)[
f Î + g · σ̂ − 〈 f Î + g · σ̂〉

τ
+ 2〈g · σ̂〉

τs f

]
, (A11)

where τ is the momentum relaxation time and τs f is the spin-flip relaxation time.
By using the relation in Eq. (2), Ĝ< in Eq. (A7) can be replaced by the Wigner distribution function f̂ (k, ω; x, t ); further, by

inserting Eq. (A6) and Eqs. (A8)–(A10) into Eq. (A7), we can obtain the equation satisfied by the Wigner distribution function:(
∂

∂t
+ h̄k

me
∇x − eE

h̄
∇k

)
f̂ (k, ω; x, t ) + Jex

2h̄

∫
1

k′ (M1 − M2) · σ̂ f̂ (k − k′, ω − k′vD; x, t )e−2ik′ (vDt−x) dk′

+ Jex

2h̄

∫
1

k′ f̂ (k − k′, ω − k′vD; x, t )(M1 − M2) · σ̂e−2ik′(x−vDt ) dk′

− Jex

2h̄

∫
1

k′ (M1e−2ik′(x−−x) − M2e−2ik′(x+−x) ) · σ̂ f̂ (k − k′, ω; x, t ) dk′

− Jex

2h̄

∫
1

k′ f̂ (k − k′, ω; x, t )(M1e−2ik′(x−x− ) − M2e−2ik′(x−x+ ) ) · σ̂ dk′

=
(

∂ f̂

∂t

)
collision

. (A12)
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By inserting Eqs. (3) and (A11) into the above formula and using a series of procedures that is rigorous but cumbersome we
can get the coupled SBEs (4) and (5) for the scalar distribution function f (k, ω; x, t ) and vector distribution function g(k, ω; x, t ).
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