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In the XY regime of the XXZ Heisenberg model phase diagram, we demonstrate that the origin of magnetically
ordered phases is influenced by the presence of solvable points with exact quantum coloring ground states
featuring a quantum-classical correspondence. Using exact diagonalization and density matrix renormalization
group calculations, for both the square and the triangular lattice magnets, we show that the ordered physics of
the solvable points in the extreme XY regime, at Jz

J⊥
= −1 and Jz

J⊥
= − 1

2 , respectively, with J⊥ > 0, adiabatically

extends to the more isotropic regime Jz
J⊥

∼ 1. We highlight the projective structure of the coloring ground states to
compute the correlators in fixed magnetization sectors which enables an understanding of the features in the static
spin structure factors and correlation ratios. These findings are contrasted with an anisotropic generalization of
the celebrated one-dimensional Majumdar-Ghosh model, which is also found to be (ground-state) solvable. For
this model, both exact dimer and three-coloring ground states exist at Jz

J⊥
= − 1

2 but only the two dimer ground

states survive for any Jz
J⊥

> − 1
2 .
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I. INTRODUCTION

The question of magnetic long-range ordering (LRO), or
lack thereof, in quantum antiferromagnetic insulators in low
dimensions has been of prime interest in the field of quantum
magnetism. One of the hallmark results is the absence of
true LRO for the quantum Heisenberg spin chain owing to
strong quantum mechanical fluctuations in one dimension and
the associated fractional spinon excitations [1]. LRO does
exist in two dimensions, but only at zero temperature, for
the square lattice Heisenberg model, as well as other (un-
frustrated) bipartite lattices [2]. In three dimensions, LRO
exists at finite temperatures as well. Compounding this issue
is the ingredient of frustration; it was initially suggested as a
possible mechanism to suppress LRO in the triangular lattice
Heisenberg antiferromagnet. Theoretical [3–7] and experi-
mental studies [8–10] have revealed that LRO indeed survives
in the triangular lattice geometry, however, other frustrated
geometries and interactions have continued to be the subject
of intense study.

Given the complexity of such problems, exactly solvable
Hamiltonians form important cornerstones in our understand-
ing of quantum magnetism and, more generally, quantum mat-
ter in its vast variety. Bethe’s solution of the one-dimensional
(1d) Heisenberg chain [11] has led to an entire field of ac-
tivity [12–15] with Bethe ansatz methods applied to a host
of 1d models including the spin- 1

2 XXZ model. Additionally,
the ground-state-solvable one-dimensional Majumdar-Ghosh
model [16], a precursor to the S = 1 AKLT chain [17], has
led to many insights into the valence bond physics of 1d
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frustrated systems. In higher dimensions, however, there are
fewer solvable examples for both unfrustrated and frustrated
quantum magnets, notably the Shastry-Sutherland model [18]
and Kitaev honeycomb model [19]. In this spirit, this work
will show the influence of exactly solvable points in the XXZ
parameter space,

HXXZ = J⊥
∑
〈i, j〉

(
Sx

i Sx
j + Sy

i Sy
j

)+ Jz

∑
〈i, j〉

Sz
i Sz

j, (1)

on magnetic LRO in two-dimensional quantum antiferromag-
nets (QAFM). We will set J⊥ = 1 throughout this paper.

The motivation for our present work stems from a recent
finding of a higher-dimensional example of ground-state-
solvable frustrated quantum magnets described by H3c ≡
HXXZ[Jz = −1/2] [20] (previously referred to as “XXZ0”)
on any lattice composed of triangular motifs that allow for
a consistent “three-coloring” of the lattice sites where no two
sites connected by a bond share the same color. Even though
this work was situated in the context of the Kagome antifer-
romagnet, the general principle applies to a host of lattices
including the triangular lattice. At this solvable 3c point, there
is a one-to-one correspondence between the classical and
quantum ground states. Adding realistic perturbations away
from such a point in parameter space thus potentially offers
a new way of understanding the phases that are stabilized by
quantum fluctuations.

The coloring states remain exact ground states when
projected to a specific magnetization sector due to U (1) sym-
metry of the XXZ model. This general projection structure of
the exact ground state is an important feature of the solvable
point, e.g., it was utilized [21] to explain the magnon crystal
associated with the m

ms
= 7

9 high-magnetization plateau state
on the Kagome lattice [22–24] where m is the magnetization,
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FIG. 1. Illustration of the unique two-coloring on the square
lattice, and one of the two three-colorings on the triangular lattice.
The colorings directly correspond to magnetically ordered states.

and ms is its saturation value. This was achieved by an exact
mapping of three-colorings to localized magnons using the
projection structure (also see the recent Ref. [25] for analo-
gous mappings on the sawtooth lattice). The unprojected exact
solution in the context of the triangular lattice has previously
been noted by Ref. [26].

Here we address two cases with magnetic LRO—the frus-
trated triangular and unfrustrated square lattice which admit
coloring ground states as shown in Fig. 1. For the unfrustrated
case, the exact ground state corresponds to a two-coloring
which is applicable for any bipartite lattice in any dimension
and occurs for Jz = −1. Because of the projection structure of
these states, we work in fixed magnetization sectors of choice.
For the square lattice case, we focus on the zero magneti-
zation sector and for the triangular case on the m = 0 and
m
ms

= 1
3 sectors, the latter being a known plateau state at the

Heisenberg point [27,28]. For these projected coloring states,
we establish the presence of magnetic LRO by calculating
two-point correlators. Since these points in parameter space
do not have the full SU (2) but only U (1) symmetry, the
corresponding ground state in the zero magnetization sectors
are AFM ordered in the XY plane.

We next investigate, using exact diagonalization (ED) and
density matrix renormalization group (DMRG) [29,30] cal-
culations, how these coloring ground states are connected to
the more isotropic regime Jz ∼ 1. Using various measures, we
provide evidence for the emergence of magnetic LRO in the
square and triangular Heisenberg magnets from the solvable
points. Interestingly, both the three-coloring and two-coloring
solvable points sit at the quantum critical point between the
XY Néel LRO and ferromagnetic ground state. Thus, the
exact ground states contain the seeds for both AFM and FM
ordering. This basic structure of the XXZ phase diagram for
magnetically LRO magnets is the central result of this paper.

However, the presence of an exactly solvable point with
quantum coloring ground states in the extreme anisotropic
limit does not necessarily guarantee the existence of LRO
away from it. We demonstrate this in the context of the
anisotropic generalization of the celebrated Majumdar-Ghosh
model where both coloring and dimer ground states are exact
solutions at Jz = −1/2. The model is characterized by com-
peting coloring and dimerized (valence bond) ground states;
perturbing toward the isotropic point favors the dimer solu-
tions rather than the coloring solutions.

The paper is organized as follows. In Sec. II, we discuss
the case of the m = 0 sector of the square lattice AFM in
the context of the Jz = −1 point. In Secs. III A and III B,

we present our findings for the m = 0 and m
ms

= 1
3 sectors

of the triangular AFM. As mentioned above, we contrast
these findings with that for an anisotropic generalization of
the Majumdar-Ghosh model in Sec. IV. In Appendices A–F,
we provide derivations for correlations and structure factors
induced by projection, applicable on any lattice and some
additional useful information.

II. THE SQUARE LATTICE ANTIFERROMAGNET

We consider the case of the Hamiltonian H2c ≡ HXXZ[Jz =
−1], where an exact ground-state solution is guaranteed on
any bipartite lattice in any dimension. We focus on the 2d
square lattice where the existence of Néel LRO at the Heisen-
berg point Jz = 1 is well established [22], in comparison to
the 1d chain which has only quasi-LRO with polynomially
decaying spin-spin correlations. The ground state of H2c cor-
responds to a unique two-coloring of the bipartite lattice.

Let the two colors, denoted by red (|r〉) and blue (|b〉)
labels, represent the Sx eigenstates on a single site,

|r〉 ≡ 1√
2

(|↑〉 + |↓〉), |b〉 ≡ 1√
2

(|↑〉 − |↓〉). (2)

The (unprojected) ground state at H[Jz = −1] is

|C〉 ≡
(∏

i∈A

⊗i|r〉i

∏
j∈B

⊗ j |b〉 j

)
, (3)

where A, B are the two sublattices of any bipartite lattice, for
example, in 1D: chain, ladders; 2D: square, honeycomb; 3D:
cube, hyper-honeycomb, etc.

To show the ground-state property of Eq. (3), we write H2c

as a sum of bond Hamiltonians Hi j ≡ Sx
i Sx

j + Sy
i Sy

j − Sz
i Sz

j . On
a given bond, the eigensystem of Hi j[Jz = −1] consists of
the polarized states |↑↑〉, |↓↓〉, and the bond singlet |0; 0〉 ≡
(|↑↓〉 − |↓↑〉)/

√
2 as ground states with energy −1/4, while

the state |1; 0〉 ≡ (|↑↓〉 + |↓↑〉)/
√

2 is an excited state with
energy +3/4. Then, Hi j = ∑4

k=1 Ek|ψk〉〈ψk| where Ek are the
four eigenenergies of the bond, and |ψk〉 are the corresponding
eigenvectors. Using the identity 1 = ∑4

k=1 |ψk〉〈ψk|, H2c =∑
〈i j〉 Hi j is recast purely in terms of the bond projectors

Pi j ≡ |1; 0〉〈1; 0|,
H2c =

∑
〈i j〉

Pi j − 1

4
Nbonds. (4)

Since the coefficient in front of the projectors is positive,
any wave function that simultaneously zeros out the projec-
tor on each bond is a ground state. Zeroing out a projector
requires that only components orthogonal to |1; 0〉 enter the
many-body wave function. This is indeed achieved by |C〉.
(Expanding out the product state for one |r〉 and one |b〉 gives
|↑↑〉 − |↓↓〉 − √

2|0; 0〉, with each individual term being or-
thogonal to |1; 0〉).

One can see, at the level of a single bond, that there is inher-
ent competition between FM (|↑↑〉, |↓↓〉) and AFM (|0; 0〉)
correlations, and the two states become exactly degenerate at
Jz = −1. This, in turn, results in Jz = −1 being a critical point
in the XXZ phase diagram. Since total Sz is conserved, the
projected coloring state

|CSz 〉 ≡ PSz |C〉 (5)
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TABLE I. Comparison of exact analytic results with exact diagonalization computations for the case of two-coloring. The results hold for
both periodic and open boundary conditions.

(Lx, Ly )
E|C〉

#bonds
EED

#bonds #|C〉 (N + 1) #ED

〈
Ŝz

i Ŝz
j

〉
|C〉
(− 1

4
1

N−1

) 〈
Ŝz

i Ŝz
j

〉
ED

εi j

〈
Ŝx

i Ŝx
j

〉
|C〉
(

1
8

N
N−1

)
εi j

〈
Ŝx

i Ŝx
j

〉
ED

(2,2)/(4,1) −0.25 −0.250000.. 5 5 −1/12 −0.083333.. 1/6 0.166666..
(4,2) −0.25 −0.250000.. 9 9 −1/28 −0.035714.. 1/7 0.142857..
(6,2) −0.25 −0.250000.. 13 13 −1/44 −0.022727.. 3/22 0.136364..
(4,4) −0.25 −0.250000.. 17 17 −1/60 −0.016666.. 2/15 0.133333..
(6,4) −0.25 −0.250000.. 25 25 −1/92 −0.0108696 3/23 0.130435..
(8,4) −0.25 −0.250000.. 33 33 −1/124 −0.0080645 4/31 0.129032..

is also the exact ground state in every Sz sector, where PSz is
the projection to a given total Sz sector [31]. This construction
gives a unique ground state in each total Sz sector. For a lattice
with N sites, there are thus (N + 1) degenerate ground states
which is readily verifiable in exact diagonalization (ED) for
accessible systems, as well as their ground-state energy value
(Table I).

We note that the choice of the two colors in Eq. (2) has
a (global) gauge freedom. The present choice is along the X
direction in XY plane of the Bloch sphere. They can be chosen
to be in any direction in the XY plane owing to the U (1) sym-
metry of H[Jz]. This is also seen at a classical level through
a Luttinger-Tisza analysis of HXXZ which leads to a classical
phase transition at Jz = −1, with a FM solution along the Z
axis for Jz < −1, and an AFM solution in the XY plane for
Jz > −1. This freedom of choice in direction in the XY plane
is the classical counterpart of the global gauge freedom seen
in the quantum mechanical case. A similar classical-quantum
correspondence works for H3c [21]. In the classical case, the
XY plane AFM solution holds true only up to Jz < 1, after
which the AFM solution lies along the Z axis. At Jz = 1, the
AFM solution can lie in any direction. In the quantum case,
this translates to full SU (2) symmetry at the Heisenberg point.
We can thus anticipate that the U (1) symmetric XY Néel
state as in Eq. (3) evolves in an adiabatic fashion to a SU (2)
symmetric Néel state, since both are essentially Néel-ordered
states in the same total Sz sector.

The above can also be understood as a consequence of a
“superspin” with length N

2 with a degeneracy of 2( N
2 ) + 1,

even though H2c is not SU (2) symmetric and is short-ranged.
A more familiar and direct example of such a superspin
is rather the long-range all-to-all coupled SU (2)-symmetric
Hamiltonian [32] J

∑
i∈A, j∈B (Sx

i Sx
j + Sy

i Sy
j + Sz

i Sz
j ) = J (SA ·

SB) where SA/SB are superspins with length N
2 . To see how

this arises in H2c, it is useful to compare its solution with
that of the ferromagnetic Hamiltonian HFM = −HXXZ[J⊥ =
Jz] through a projector point of view. Recasting this ferromag-
netic Hamiltonian as a sum of projectors, HFM = ∑

〈i, j〉 Qi j

after a trivial shift of 0.25 per bond, where Qi j’s are noncom-
muting semi-definite projectors to the singlet state |0; 0〉 on
bonds 〈i, j〉, respectively. The familiar eigensystem here is
|↑↑〉, |↓↓〉 and |1; 0〉 as ground states (with energy −1/4),
and |0; 0〉 as an excited state (with energy +3/4). The unpro-
jected ground state is now achieved by

∏
i∈{A,B} ⊗i|r〉i, and

projection to desired total Sz sectors may again be done as
before. Since total S2 is also conserved for HFM, this projec-
tion gives rise to the usual multiplet structure expected for
SU (2) symmetry, i.e. the 2( N

2 ) + 1 = N + 1 degeneracy due

to a superspin structure. Also, since we project out the singlet
on each bond, we only get FM correlations here as expected.
In contrast, for H2c there is no SU (2) symmetry, and therefore
the ground state in any total Sz sector is a superposition of
various total S2 sectors. Nonetheless, we see that the superspin
structure of the ground state of HFM gets exactly mirrored in
the ground state of H2c because of the close relation of the
two ground states, |C〉 and

∏
i∈{A,B} ⊗i|r〉i. A phase change of

(−1)#↓B where # ↓B are the number of down-spins on the B
sublattice to the wave function coefficients (in the Sz basis)
maps uniquely |C〉 to

∏
i∈{A,B} ⊗i|r〉i and vice versa, and this

mapping carries over under projection PSz as well.
We now calculate the spin correlations in the state |CSz=0〉.

Following Ref. [20]’s supplementary, we have

〈CSz |CSz 〉 ∝ 1

N + 1

∑
p

∏
j

∑
s j

eips j 〈c j |s j〉〈s j |c j〉e−ipS∗
z (6)

up to an overall normalization, where p runs from 0 to 2πN
N+1

in steps of 2π
N+1 , and S∗

z is desired total Sz sector. We work
with even N to ensure that S∗

z = 0. |c j〉 refers to the coloring
of the site j in |C〉, i.e., |c j〉 = |r〉 or |b〉 for A/B sublattices,
respectively, and |s j〉 are Ising states |± 1

2 〉. Taking into ac-
count the number of states in the S∗

z = 0 sector compared to
the full Hilbert space, we are guaranteed that 〈CSz=0|CSz=0〉 =

1
N+1

2N

NCN/2

∑
p (cos p

2 )N = 1 as expected. NCM stands for the
“N choose M” combinatorial function everywhere in this
paper, i.e., NCM = N!/(M!(N − M )!). For the two-point cor-
relators, we perform similar calculations and arrive at

〈CSz=0|Sz
mSz

n|CSz=0〉 = −1

4

1

N − 1
(7)

〈CSz=0|Sx
mSx

n|CSz=0〉 = 〈CSz=0|Sy
mSy

n|CSz=0〉

= εmn

8

N

N − 1
(8)

where εmn = −1 for a pair of sites {m, n} with different col-
ors, and εmn = 1 for {m, n} with the same color. These exact
expressions are readily verifiable by performing ED on small
systems (see Table I). Details of the derivations are given in
Appendix A. We see from the above that projection to Sz = 0
sector introduces only subdominant corrections of O(1/N )
in the LRO correlations of |CSz=0〉 when compared to the
unprojected state |C〉 which is another generic feature of the
quantum-classical correspondence in all the examples consid-
ered in this paper, and are to be expected in other ordered cases
as well.
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FIG. 2. For the square lattice XXZ Hamiltonian in the m = 0 sector, the left panel shows the ground-state energy per bond (E0) vs Jz. The
inset of the left panel shows the evolution of the structure factors ( Szz (q0 )

N and Sxy (q0 )
N such that they are intensive), calculated at the ordering

vector q0 = (π, π ). The right panel shows the correlation ratio, as defined in the text [Eq. (10)], vs Jz at the ordering wave-vector q0 = (π, π )
for the representative case of �q = ( 2π

Lx
, 0).

We now show that the unprojected state |C〉 is
a gapless ground state in the thermodynamic limit.
Consider the following (unprojected) state |C′〉 =
(
∏

i∈A ⊗ieiSz
i δi |r〉i

∏
j∈B ⊗ je

iSz
jδ j |b〉 j ) built by modulating

the two-colorings of |C〉 in the XY plane of the Bloch
sphere by a small angle δi that oscillates at a nonzero
wave-vector q → 0, e.g., δi = δ sin(q · �ri ) with a small δ.
This variational state is like a Goldstone mode associated
with U (1)-symmetry breaking, however it is not orthogonal
to |C〉. Thus, for an excited state, we consider the following
variational state |ψ〉 ∝ |C′〉 − 〈C|C′〉|C〉. |ψ〉 is orthogonal
to |C〉 by construction. The variational estimate for the
excitation energy �E ≡ 〈ψ |H |ψ〉/〈ψ |ψ〉 − 〈C|H |C〉 scales
to zero as N → ∞, provided the variational parameter δ is
chosen to scale as Nα with −1/2 < α < 0. The details are
given in Appendix B. The foregoing discussions are thus
highly suggestive of |CSz=0〉 (and |C〉) being adiabatically
connected to the SU (2) symmetric Néel ground state,
which we numerically demonstrate next for the case of two
dimensions and expect to hold for higher dimensions.

To analyze the magnetic structure and adiabaticity of the
XY LRO upto the SU (2) symmetric Heisenberg point, we
calculate the structure factors defined by

Szz(q) = 1

N

∑
m,n

e−iq·(rm−rn )〈Sz
mSz

n

〉
,

Sxy(q) = 1

N

∑
m,n

e−iq·(rm−rn )

〈
Sx

mSx
n

〉+ 〈
Sy

mSy
n
〉

2
, (9)

where we set Lx, Ly as the number of unit cells along the
primitive lattice directions such that the number of sites N =
Lx × Ly, and rm is the Bravais lattice vector for site m, while
q is a reciprocal lattice vector in the (first) Brillouin zone.
We also calculate correlation ratios defined as

Rα = 1 − Sα (q0 − �q)

Sα (q0)
, (10)

where α ∈ (zz, xy), q0 is a chosen wave vector in the Brillouin
zone, and q0 − �q represents one choice of the nearest wave
vectors allowed on the discrete lattice. This quantity scales to
1 if there is a Bragg peak at q0 implying ordering at that wave
vector in the α channel, and scales to 0 if there is no such
ordering. This ratio is designed to approach unity independent
of the strength of quantum fluctuations as long as there is spin
LRO at the chosen wave vector.

For the square lattice, the two structure factors Szz(q0)
and Sxy(q0) at q0 = (π, π ) are useful order parameters to
measure the diagonal or Ising AFM ordering, and off-diagonal
or U (1)/XY AFM ordering, respectively. In Fig. 2, we show
the ground-state energy per bond, and the above order pa-
rameters and corresponding correlation ratios at the AFM
ordering wave-vector q0 = (π, π ) computed using ED and
DMRG (with bond dimension 8000) in the zero magnetiza-
tion sector. From Fig. 2(a), we see a monotonic behavior in
the ground-state energy in the XY regime extending up to
Jz = −1 on one side and Jz = 1 on the other side. This is the
first piece of data that signals that a single phase encompasses
the regime Jz ∈ (−1, 1) of the XXZ phase diagram on the
square lattice. At the end points of this regime, we observe
kinks in the ground-state energy curves [33]. At Jz = −1,
this kink behavior is quite pronounced, and it corresponds to
development of ferromagnetic order.

However, at Jz = 1, the kink behavior is less pronounced.
However, by looking at the structure factors in the inset of
Fig. 2(a), we see that Szz(q0) dominates over Sxy(q0) on the
Ising side. This is consistent with the development of Ising
AFM order [34], which is confirmed by the fact that Rzz is
essentially one on this side in Fig. 2(b). Germane to the solv-
able point 2c and as is also seen from Eq. (9), we observe that
Rxy tends to one strongly in the whole regime Jz ∈ (−1, 1).
This second piece of data convincingly establishes that the
U (1) AFM LRO state at Jz = −1 is adiabatic all the way
to the SU (2)-symmetric point. Our results show that the XY
regime of the square lattice unfrustrated magnet, and likely
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FIG. 3. The panels show Sxy(q) and Szz(q) for the square lattice, in the first Brillouin zone (highlighted by the dashed black lines) for
various representative Jz in the m = 0 magnetization sector for the N = 8 × 8 cylinder.

other unfrustrated magnets, has a ground state whose essen-
tial properties are captured by the correlations of the exact
ground state |CSz=0〉. We finally note that the FM-AFM phase
transition at H2c is a first-order level-crossing transition as can
be seen in Fig. 2(a).

Our findings in Fig. 2 are further substantiated in Fig. 3
where we have plotted the full structure factor as a function of
q for the 8(Lx ) × 8(Ly) cylinder. At Jz = −2 (top left), there
is ferromagnetic order in the system. Imposing the constraint
of Sz = 0 in our DMRG calculations leads to a state with
two domains arranged along the length of the cylinder, pre-
serving the translational invariance along the y direction due
to periodic boundary conditions imposed in the y direction.
As a result of this modulation in the x direction, the ordering
wave vector in the zz channel is not (0,0). Instead, peaks occur
at the smallest allowable nonzero |qx| = 2π

Lx
and qy = 0. The

contributions to Sxx(q) throughout the entire Brillouin zone
are significantly smaller and arise purely near the domain
wall due to transverse spin fluctuations (see Appendix F for
real-space plots of the spin-spin correlations for further dis-
cussion). Moving on to Jz = −1 (top right), DMRG correctly
captures the exact two-coloring ground state; for this state
the Fourier transform of the real-space spin-spin correlators
corresponding to the two-coloring wave function [Eqs. (7)
and (8)] can be computed analytically (Appendix E). Szz(q)
is precisely 1/4 at all points in the first Brillouin zone except
for q = (0, 0), where its value is exactly zero. This is a direct
consequence of the sum-rule Szz(0, 0) = 1

N 〈(∑N
i=1 Si

z )2〉 = 0
where N = LxLy. Sxy(q) has a Bragg peak at q0 = (π, π ) and
no peaks elsewhere as might be expected from the quantum-
classical correspondence mentioned previously.
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These features associated with perfect coplanar Néel or-
der in Sxy(q) are quantitatively modified on moving toward
the Heisenberg point. For Szz(q), there is also a qualitative
reorganization of spectral weight. The featureless Szz(q) at
Jz = −1 now starts to develop a maximum at q0. For example,
at Jz = 0.0 (middle left) the dip at (0,0) has broadened out
significantly. As Jz keeps increasing, the maxima at q0 also
acquire appreciable weight as shown for Jz = 0.6 (middle
right). These features are further enhanced as one approaches
the Heisenberg regime, and at exactly Jz = 1 (bottom left)
both correlators become identical due to SU (2) symmetry.
Beyond Jz > 1 (bottom right), the dominant correlations are
now present in the zz channel seen clearly as a Bragg peak at
q0 reflecting Ising LRO, while there are no peaks in the XY
channel but only a broad maximum at q0 in agreement with
lack of U (1) AFM LRO as surmised from Rxy on the Ising
side in Fig. 2.

III. THE TRIANGULAR LATTICE ANTIFERROMAGNET

A. Zero magnetization sector

In this and the next section, we turn our attention to the
triangular lattice AFM with its frustrated geometry. This ge-
ometry harbors a different solvable point H3c at H[Jz = −1/2]
as introduced in Sec. I such that the exact ground states are
three-coloring states. On the triangular lattice, there are two
distinct such ground states one which is sketched in Fig. 1.
Analogous to the two-coloring case, these ground states also
possess LRO in the XY plane. Based on our knowledge of the
120◦ ordered Heisenberg point [22], we expect that LRO of
the solvable point H3c extends to the SU (2) symmetric point
analogous to the situation on the square lattice.

In the zero magnetization sector, the two ground states may
be written down as

∣∣C(1)
Sz=0

〉 ≡ PSz=0

(∏
i∈A

⊗i|r〉i

∏
j∈B

⊗ j |b〉 j

∏
k∈C

⊗k|g〉k

)
,

∣∣C(2)
Sz=0

〉 ≡ PSz=0

(∏
i∈A

⊗i|r〉i

∏
j∈B

⊗ j |g〉 j

∏
k∈C

⊗k|b〉k

)
,

(11)

where A/B/C are the three sublattices, and |r〉 ≡ 1√
2
(|↑〉 +

|↓〉), |b〉 ≡ 1√
2
(|↑〉 + ω|↓〉), and |g〉 ≡ 1√

2
(|↑〉 + ω2|↓〉). ω =

ei2π/3 and ω2 = ω∗ are the cube roots of unity. |r〉, |b〉, |g〉 may
be chosen to be any triad of 120◦ states in the XY plane of
the Bloch sphere due to the presence of U (1) symmetry, this
choice being a global gauge choice.

Based on the existence of the Jz = − 1
2 point coupled with

linear spin-wave calculations, Ref. [26] argued the adiabatic-
ity of the coloring ground states to the ground state at the
SU (2) point. In what follows, we will work in a fixed magne-
tization sector and numerically demonstrate this adiabaticity
working with projected wave functions by calculating struc-
ture factors and correlation ratios.

For the N site triangular lattice, the overlap between the
two three-coloring states is given by

〈
C(k)

Sz=0

∣∣C(l )
Sz=0

〉 =
{

1, for k = l,
N/3CN/6
NCN/2

, for k �= l,
(12)

where k, l ∈ (1, 2). It goes to zero for k �= l exponentially
as N → ∞ due to the macroscopic difference in the col-
ors in the two wave functions. Perturbing away from the 3c
point toward the Heisenberg point brings in matrix elements
with magnitude that are exponentially small in N between
|C(1)〉 and |C(2)〉 at lowest-order resulting in an exponen-
tially small splitting. As one goes further away from the 3c
point, nonperturbative effects result in a finite splitting such
that there is a unique ground state at the Heisenberg point.
Alternatively, this can be understood by starting at the Heisen-
berg point which, being fully SU (2)-symmetric, harbors the
low-energy quasidegenerate Anderson tower of states whose
energy spectrum is given by ∼ S(S+1)

N [35]. Appropriate linear
combinations of these states are known to give symmetry
broken states [6]. Thus, the effect of XY anisotropy is to break
this quasidegeneracy of the Heisenberg point and lead to the
(two) AFM ordered states. At and near the Heisenberg point,
these states have significant quantum fluctuations [36] which
become effectively absent at the 3c point [Eq. (11)].

A similar calculation (see Appendix C) for the correlators
in either of the two ground states gives

〈
C(k)

Sz=0

∣∣Sz
mSz

n

∣∣C(k)
Sz=0

〉 = −1

4

1

N − 1
, (13)〈

C(k)
Sz=0

∣∣Sx
mSx

n

∣∣C(k)
Sz=0

〉 = 〈
C(k)

Sz=0

∣∣Sy
mSy

n

∣∣C(k)
Sz=0

〉
= εmn

8

N

N − 1
, (14)

where εmn = −1/2 for a pair of sites {m, n} with different col-
ors, and εmn = 1 for {m, n} with the same color. For N → ∞,
〈Sz

mSz
n〉 → 0 and 〈Sx

mSx
n〉 ∝ εmn reflect the three sublattice or

120◦ order solely lying in the XY plane.
The structure factors [Eq. (9)] Szz(q0) and Sxy(q0) at q0 =

(±4π/3, 0) are useful order parameters for this case. They
quantify the presence or absence of “diagonal” and “off-
diagonal” LRO, respectively, in terms of the mapping between
S = 1

2 degrees of freedom and hardcore bosons (S+
m → b†

m,
S−

m → bm and Sz
m → b†

mbm − 1/2 on site m). If Szz(q) is finite
as N → ∞, the system has a broken sublattice Sz symmetry
which corresponds to the boson occupation density wave at
wave-vector q, whereas a finite Sxy(q) as N → ∞ represent
a broken U (1) rotational symmetry which corresponds to su-
perfluid ordering of the bosons [37].

In Fig. 4(a), we show the ground-state energy per bond
using both ED on toric and DMRG (with bond dimension
7000) on cylindrical geometries. Its behavior is featureless as
we scan from H3c to the Heisenberg point and beyond when
compared to the corresponding data set for the square lattice
[Fig. 2(a)]. In the inset of Fig. 4(a), we show the magnitude of
structure factors at the ordering vector q0 = (4π/3, 0). In the
range −0.5 < Jz < 1, Sxy(q0) dominates over Szz(q0). Their
finite-size dependence suggests the absence of boson occu-
pation ordering, and the presence of three-sublattice AFM
LRO lying in the XY plane tied to the 3c point [Eq. (14)]
corresponding to the superfluid state in the hardcore boson
language. In contrast, Szz(q0) dominates over Sxy(q0) for
Jz > 1. The finite-size dependence of Szz(q0) clearly shows
the presence of boson occupation order in this regime.
Moreover, the finite-size dependence of Sxy(q0) suggests a co-
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FIG. 4. For the triangular lattice XXZ Hamiltonian in the m = 0 sector, the left panel shows the ground-state energy per bond (E0) vs Jz

The inset of the left panel shows the evolution of the structure factors ( Szz (q0 )
N and Sxy (q0 )

N ), calculated at the ordering vector q0 = (4π/3, 0). The
right panel shows the correlation ratios (Rzz and Rxy), as defined in the text [Eq. (10)], vs Jz at the ordering wave-vector q0 for the representative
case of �q = ( 2π

Lx
, 4π√

3Ly
− 2π√

3Lx
).

existence of superfluid ordering in this regime, i.e., supersolid
order, in agreement with earlier studies [38–40].

However, inferring the thermodynamic behavior from the
finite-size dependence of order parameters can sometimes
be inconclusive, especially if the extrapolated value is small
as is the case for Sxy(q0) for Jz > 1 [inset of Fig. 4(a)]. In
such situations, correlation ratios as defined in Eq. (10), have
proved especially useful since they have been shown to be
less susceptible to finite-size effects [41]. Thus, we utilize
them to probe the coexistence of density wave and superfluid
LRO for Jz > 1 which is shown in Fig. 4(b), choosing a
representative �q for computations. In the XY regime, we
see that Rxy tends toward unity with increasing system size,
while Rzz decreases toward zero. This is consistent with the
presence of 120◦ AFM in the XY plane or superfluid order.
As we go beyond the Heisenberg point (Jz > 1), we see that
Rzz now increases toward one providing evidence for boson
density wave ordering. Furthermore, we see that Rxy is quite
appreciable and evidently consistent with a nonzero value that
is increasing toward unity as we go toward the thermodynamic
limit for the system sizes studied here. This provides strong
evidence for the coexistence of superfluid and boson density
ordering in the zero magnetization sector of the triangular
AFM on the Ising side.

Given the unusual coexistence of diagonal and off-diagonal
orders presented above unlike the square lattice case discussed
in the previous section, we address how they are reflected in
the spin structure factors. For the 12 × 6 cylinder we plot
Szz(q) and Sxy(q) as a function of Jz (Fig. 5). Our findings
bear many qualitative similarities to the square lattice case
on the XY side. At Jz = −1 (top left), there is ferromagnetic
order in the system with domains, and accordingly, the peaks
in Szz(q) occur at the smallest allowable nonzero |qx| = 2π

Lx

and the corresponding qy. Then, at Jz = −1/2 (top right),
DMRG spontaneously picks one of the two three-colorings,
and the features seen can be matched by exact computations
[Eqs. (13), (14), and Appendices E and F]. Szz(q) is again

precisely 1/4 at all points in the first Brillouin zone except
for q = (0, 0), where its value is exactly zero. Sxy(q) has
Bragg peaks at q0 = ( 4π

3 , 0) and symmetry related points in
the Brillouin zone. For Jz > −1/2, the sequence of panels in
Fig. 5 from Jz = −0.2 to Jz = 1.0 confirm that the features
associated with perfect coplanar 120◦ order at Jz = −1/2 are
only quantitatively modified on moving toward the Heisen-
berg point. Beyond Jz > 1 (bottom right), the correlations are
again dominated by the zz channel with pronounced Bragg
peaks seen at q0 signaling the diagonal LRO. However, the
maxima in the XY channel at q0 are also Bragg peaks as
confirmed through the size dependence of correlation ratio
Rxy on the Ising side (Fig. 4) which is the expected signature
of the coexistence of superfluid LRO in the structure factor,
as opposed to the square lattice case where only a broad
maximum was present at the ordering wave-vector (π, π ).

Our ED and DMRG results are in agreement with the
previous studies that have focused on Jz > 0. Our study shows
that the properties on the XY side originate from the 3c point
including the 120◦ order at the Heisenberg point. Thus, for
zero magnetization, we may say that the Heisenberg points on
triangular and square lattices are “inheriting” the long-range
AFM order of their respective solvable points H3c and H2c.
Moreover, on the Ising side past the Heisenberg point, the
correlation ratio data provides compelling evidence for the
coexistence of diagonal and off-diagonal LRO.

B. m
ms

= 1
3 sector

The ground state of the m
ms

= 1
3 sector of the triangular

Heisenberg AFM has been argued to be a magnetization
plateau state [27,42]. In this state, each triangle has two
spin-ups and one spin-down in a modulated pattern at the
wave-vector q0 = (4π/3, 0) (the “UUD” state) which is
equivalent to 1

3 filling of hardcore bosons ordering at the same
wave vector. A magnetization plateau state is an incompress-
ible state with a gap to excitations that change magnetization.
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FIG. 5. The panels show Sxy(q) and Szz(q) for the triangular lattice in the first Brillouin zone (highlighted by the dashed black lines) for
various representative Jz in the m = 0 magnetization sector for the N = 12 × 6 cylinder.

In contrast, coloring ground states are expected to be gap-
less with low-energy Goldstone modes lying above it. At the
classical level for m

ms
= 1

3 , the ground state in the XY regime
(0 < Jz < 1), is an “umbrella” state whose projection on to the
XY plane has 120◦ correlations (see a schematic in the inset of
Fig. 6) [43]. This classical umbrella state in fact extends all the
way to the 3c point. Since the 3c point exists for any magneti-
zation sector, it is natural to ask how the quantum counterpart
of the classical umbrella state that emerges from the 3c point
eventually transitions to the magnetization plateau state.

Starting from Eq. (6) in this m
ms

= 1
3 sector, i.e., setting

S∗
z = N/6, gives

〈
C(k)

Sz=N/6

∣∣C(l )
Sz=N/6

〉 =
{

1, for k = l,
N/3C2N/9
NC2N/3

, for k �= l,
(15)

and in the thermodynamic limit, the overlap between the two
three-coloring ground state again goes to zero. Similarly, we
have

〈
C(k)

Sz=N/6

∣∣Sz
mSz

n

∣∣C(k)
Sz=N/6

〉 = −1

4

[
8

9

N

N − 1
− 1

]
, (16)〈

C(k)
Sz=N/6

∣∣Sx
mSx

n

∣∣C(k)
Sz=N/6

〉 = 〈
C(k)

Sz=N/6

∣∣Sy
mSy

n

∣∣C(k)
Sz=N/6

〉
= εmn

9

N

N − 1
, (17)

where again εmn = −1/2 for a pair of sites {m, n} having
different colors, while εmn = 1 for {m, n} with the same color.
This again reflects 120◦ sublattice LRO in the XY plane in
triangular lattice. As expected, 〈Sz

mSz
n〉 is now finite as N → ∞

in this nonzero magnetization sector with the thermodynamic
value of this correlator in complete agreement with m

ms
= 1

3 .
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FIG. 6. For the triangular lattice XXZ Hamiltonian in the m
ms

= 1
3 sector, the left panel shows the ground-state energy per bond (E0) vs Jz.

The inset of the left panel shows the evolution of the structure factors ( Szz (q0 )
N and Sxy (q0 )

N ), calculated at the ordering vector q0 = (4π/3, 0).
The right panel shows the correlation ratios (Rzz and Rxy) as defined in the text [Eq. (10)] vs Jz plot at the ordering wave-vector q0 for the
representative case of �q = ( 2π

Lx
, 4π√

3Ly
− 2π√

3Lx
). The inset of the right panel shows a schematic of classical spin configurations in the classical

umbrella state that correspond to the corresponding three-colored sites (Fig. 1).

This along with 〈Sx
mSx

n〉 ∝ εmn tells us that the state at the
solvable point in this magnetization sector is the quantum
counterpart of umbrella state illustrated in Fig. 6.

In Fig. 6(a), we show the ground-state energy (per bond)
for a wide range of Jz. It shows a sharp kink at Jc

z ≈ 0.75
on the XY side, indicative of a first-order phase transition
that occurs before the SU (2)-symmetric Heisenberg point. In
the range −0.5 < Jz < Jc

z , Sxy(q0) dominates over Szz(q0) at
q0 = (4π/3, 0) in accordance with an umbrella state. Due
to the net magnetization, Szz has a peak at the zero wave
vector (not shown) for all Jz. Once Jz > Jc

z , Szz(q0) becomes
the dominant order parameter, while Sxy(q0) is suppressed in
accordance with the UUD state.

We confirm the first-order nature of the transition using the
correlation ratio as shown in Fig. 6(b): To the left of Jc

z , Rxy

tends to unity while Rzz tends to zero. To the right of Jc
z , Rzz

tends toward unity, while Rxy tends toward zero. In this mag-
netization sector, the finite-size trends of the order parameter
and the correlation ratio are clear-cut, and we clearly see the
first-order behavior as sharp discontinuities in these quantities
near Jc

z . Our results for Jz > 0 are in agreement with previous
work on the triangular phase diagram [37,43] and extend it
to the solvable point. Through this work, we realize that the
umbrella state in the phase diagram as actually being inherited
from the 3c point, but quantum fluctuations eventually drive a
phase transition to the UUD plateau state.

IV. COLORS AND DIMERS IN THE ANISOTROPIC
MAJUMDAR-GHOSH CHAIN

We now study a model which illuminates the competi-
tion between three-coloring states and other quantum ground
states. Our inspiration stems from the Majumdar-Ghosh (MG)
model [16], one of the earliest known exactly solvable models
of frustrated 1d quantum magnetism. The model has nearest-

neighbor J1 and second-neighbor J2 isotropic Heisenberg
interactions in the ratio J2

J1
= 1

2 , which allows the Hamiltonian

to be written as HMG = 1
2

∑N
i=1 (�Si−1 + �Si + �Si+1)

2
up to an

innocuous constant for N sites and periodic boundary con-
ditions (i + 1 and i − 1 are taken modulo N). Each term in
this sum corresponds to the square of the total spin of three
consecutive sites schematically shown in Fig. 7.

For even N , all terms can be simultaneously minimized,
a property of “frustration free” Hamiltonians, i.e., each three-
site motif can be brought in a total S = 1

2 state in two different
ways. These correspond to the two dimer coverings of the
one-dimensional chain and are referred to as the valence bond
solid (VBS) states in the literature. Reference [44] rigorously
proved that these are the only two exact ground states of the
MG chain.

1 2 3 4 5
.... ....

6

.... ....

4

3

21 3

2

3 5

4

.... ....
1 2 3 2 3 4 4 53

FIG. 7. Decomposition of the Hamiltonian for the Majumdar-
Ghosh chain (and its anisotropic generalization), which can be
visualized as overlapping three-site contiguous chunks. Each three-
site motif has the XXZ Hamiltonian on a triangular motif which,
at Jz = − 1

2 can be three-colored and dimer covered consistently,
without creating any conflicts.
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=

=

FIG. 8. Dimer and three-color solutions on a six-site motif.
These patterns repeat for larger systems. For Jz = − 1

2 all four states
are exact ground states, for periodic chains that have sizes which
are multiples of six. (For exactly six sites, the four solutions are not
linearly independent.) For |D2〉, the sites on the boundary pair up into
a dimer for periodic boundary conditions.

We generalize the MG Hamiltonian to anisotropic
interactions,

HMG
XXZ = J1

N∑
i=1

(
Sx

i Sx
i+1 + Sy

i Sy
i+1 + Jz Sz

i Sz
i+1

)

+ J2

N∑
i=1

(
Sx

i Sx
i+2 + Sy

i Sy
i+2 + Jz Sz

i Sz
i+2

)
, (18)

with J2
J1

= 1
2 , which we fix for the rest of this discussion,

and Jz is a dimensionless parameter in this section. For this
ratio of J2

J1
= 1

2 , the entire Hamiltonian still remains a sum
of triangular pieces each of which has the 3c form for Jz =
− 1

2 ; this decomposition has been schematically depicted in
Fig. 7. The ground state of this Hamiltonian is thus locally a
three-coloring state on each triangular piece. As long as each
of these three-site motifs can be three-colored consistently,
without creating any “color conflicts” (no neighboring sites
have the same color, and each contiguous three-site motif has

three distinct colors), the resulting wave function is an exact
ground state of the anisotropic MG chain. For chain lengths
that are multiples of three, this can be done in precisely two
ways - rbgrbg... and rgbrgb..., as is shown in Fig. 8. For chain
lengths that are also even, i.e., multiples of six, we may project
the two three-colorings to the Sz = 0 sector and, as mentioned
earlier, this projection still preserves the property that it is an
eigenstate.

Additionally, the set of two dimer coverings are also exact
ground states at the 3c point of the anisotropic MG chain. This
is because on any three-site triangular motif, the two linearly
independent three-colorings (schematically |rgb〉 and |rbg〉)
may be linearly combined and then projected to Sz = ± 1

2 to
make a dimer or valence bond and a free spin- 1

2 . Indeed,
this is the situation at the familiar Jz = 1 MG point as well.
Requiring all three-site triangular motifs to have a dimer and
a free spin- 1

2 yields the two dimer covering states.
For a six-site chain, the proposed set of four solutions

(two three-colorings and two dimer coverings) are not linearly
independent. We establish this with an explicit enumeration of
the amplitudes of three-coloring and dimer wave functions for
all 20 Ising configurations in the Sz = 0 sector as shown in
Table II. We obtain the relation

|D1〉 + |D2〉 =
√

20

ω2 − ω
PSz=0(|rgbrgb〉 − |rbgrbg〉), (19)

where |D1〉 and |D2〉 are depicted in Fig. 8, and in our notation,
PSz=0|...〉 corresponds to a coloring wave function that has
been projected and normalized. In defining our sign conven-
tion for the dimer solutions, we have used that any local dimer

of sites i and i + 1 (modulo N) is 1√
2
(|↑〉i ⊗ |↓〉i+1 − |↓〉i ⊗

|↑〉i+1). For chains that are higher multiples of six, there is no
such linear dependence between the four states. On larger sys-

TABLE II. Amplitudes of dimer and three-coloring wave functions (and linear combinations) for all 20 Ising configurations in the Sz = 0
sector for the six-site chain with periodic boundary conditions. ω ≡ exp( i2π

3 ) is the cube root of unity.

Configuration 23/2|D1〉 23/2|D2〉 23/2(|D1〉 + |D2〉)
√

20PSz=0|rbgrbg〉 √
20PSz=0|rgbrgb〉

√
20

ω2−ω
(|rgbrgb〉 − |rbgrbg〉)

|↑↑↑↓↓↓〉 0 0 0 1 1 0
|↑↑↓↓↓]↑〉 0 0 0 1 1 0
|↑↓↑↓↓↑〉 −1 0 −1 ω2 ω −1
|↓↑↑↓↓↑〉 +1 0 +1 ω ω2 +1
|↑↑↓↓↑↓〉 0 +1 +1 ω ω2 +1
|↑↓↑↓↑↓〉 +1 −1 0 1 1 0
|↓↑↑↓↑↓〉 −1 0 −1 ω2 ω −1
|↑↑↓↑↓↓〉 0 −1 −1 ω2 ω −1
|↑↓↑↑↓↓〉 0 +1 +1 ω ω2 +1
|↓↑↑↑↓↓〉 0 0 0 1 1 0
|↓↓↓↑↑↑〉 0 0 0 1 1 0
|↓↓↑↑↑↓〉 0 0 0 1 1 0
|↓↑↓↑↑↓〉 +1 0 +1 ω ω2 +1
|↑↓↓↑↑↓〉 −1 0 −1 ω2 ω −1
|↓↓↑↑↓↑〉 0 −1 −1 ω2 ω −1
|↓↑↓↑↓↑〉 −1 +1 0 1 1 0
|↑↓↓↑↓↑〉 +1 0 +1 ω ω2 +1
|↓↓↑↓↑↑〉 0 +1 +1 ω ω2 +1
|↓↑↓↓↑↑〉 0 −1 −1 ω2 ω −1
|↑↓↓↓↑↑〉 0 0 0 1 1 0
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FIG. 9. Energy spectrum of the 18-site periodic anisotropic
Majumdar-Ghosh chain as a function of Jz (J⊥ = 1) in the Sz = 0
sector. For a given Jz, only the lowest 30 energies in each momentum
sector are plotted. The ground-state energy is subtracted out at each
value of Jz. There is a phase transition at Jz = − 1

2 . For Jz > − 1
2 the

ground state is exactly two fold degenerate (one state in k = 0 and
the other in k = π ), which correspond to linear combinations of the
two Majumdar-Ghosh dimer (valence bond) solutions. These ground
states persist all the way to the Heisenberg point (Jz = 1) and beyond
(not shown), consistent with the analytic arguments.

tem sizes N = 12, 18, 24, 30, we find the number of solutions
to be four or greater. We have empirically observed the precise
number to be ( N

6 + 2) but do not have an explanation for the
extra solutions.

We now address the case of Jz � − 1
2 . We rewrite the

anisotropic MG Hamiltonian (up to a constant) as

HMG
XXZ = HMG

3c +
(
Jz + 1

2

)
2

N∑
i=1

(
Sz

i−1 + Sz
i + Sz

i+1

)2

≡ HMG
3c + HZZ. (20)

As the second term involves the square of the sum over
only the Sz components, therefore for (Jz + 1

2 ) � 0 this
term is minimized for any state that satisfies (Sz

i−1 + Sz
i +

Sz
i+1)2|ψ〉 = ( 1

2 )2|ψ〉 for any three consecutive sites {i −
1, i, i + 1}. While HMG

3c and HZZ do not commute, any wave
function that simultaneously minimizes their individual con-
tributions is guaranteed to be a ground state of the anisotropic
MG model. This condition is indeed achieved by the dimer
VBS states since, as discussed earlier, they respect the condi-
tion that any three-site triangular motif is composed of a dimer
and a free spin- 1

2 . Thus, they are indeed the lowest-energy
eigenstates of HMG

3c and HZZ simultaneously and therefore of
HMG

XXZ. This analytic result is confirmed with exact diagonal-
ization, and demonstrated for the representative example of
the 18-site periodic chain in Fig. 9. While the dimer solutions
break translational invariance, appropriate linear combina-
tions of them restore this symmetry, these linear combinations
appear in exact diagonalization (with momentum symmetry).
We observe two exactly degenerate states, one with momen-
tum k = 0 and the other k = π that are selected from the
degenerate manifold at Jz = − 1

2 , and stay degenerate for all
Jz > − 1

2 , gapped out from the rest of the spectrum.
The three-coloring states (projected or unprojected) pos-

sess LRO, and in accordance with the Mermin-Wagner
theorem are not allowed to be the ground state of a Hamilto-

nian with continuous symmetry in one dimension. However,
at precisely the Jz = − 1

2 point which is a critical point in
parameter space, both the short range ordered solutions (dimer
VBS) and the three-coloring states coexist [45]. This leads us
to conclude that the presence of competing states at the solv-
able point can strongly influence the stability of the coloring
ground state, and in this particular case, they immediately lose
out to the VBS ground states for any Jz > − 1

2 .

V. CONCLUSION

In this work, we have reported a ground-state solvable
point H2c in the XXZ phase diagram of lattice translation-
ally invariant bipartite quantum magnets in any magnetization
sector. The associated U (1) symmetric XY Néel order in
the zero magnetization sector is numerically demonstrated
to be adiabatically connected to the SU (2) symmetric Néel
order at the Heisenberg point. This is unified with a simi-
lar thread in the tripartite triangular lattice with 120◦ AFM
order and associated solvable point H3c with finite num-
ber of three-colorings. For the case of the m

ms
= 1

3 sector
on the triangular lattice, we found that the umbrella state
at H3c extends up to Jz ∼ 0.75, after which the magneti-
zation plateau UUD state is obtained. We also studied the
anistropic generalization of the MG chain and found it to
be ground-state solvable. Both long-range ordered colorings
and valence bond ordered states coexist at the 3c point, while
the latter are the only ground states on moving toward the
SU (2)-symmetric point and beyond. This offers an interesting
contrast to the previous results that we presented on magnetic
LRO.

It is also interesting to ask whether the existence of the
2c point offers a natural explanation for the numerically ob-
served existence of LRO on diluted unfrustrated AFM at
their percolation threshold [46–51]. This problem has seen
several conflicting opinions, owing to the possible small-
ness of the order parameter (the staggered magnetization).
Parts of the system become dimer covered with dominant
VBS correlations, and hence magnetically inert, yet LRO
tenuously survives on such fractal clusters. LRO at the
2c point on such bipartite clusters is obviously guaranteed
[Eq. (8)], and one would anticipate that it adiabatically per-
sists to the Heisenberg point, but this remains to be firmly
established.

In comparison to the ordered cases presented here, that
involved finite number of colorings of the lattice, the highly
frustrated Kagome lattice harbors a macroscopic degeneracy
due to an exponential number of three-colorings [20]. While
it is not clear which state is stabilized as one moves to-
ward the Heisenberg point, there is evidence of adiabaticity
of the Heisenberg point to H3c from DMRG computations
[21,52,53]. Evidence for adiabaticity to the XY point (Jz = 0)
was also observed previously in the context of chiral spin liq-
uid on the Kagome lattice in the m/ms = 2/3 magnetization
sector [54]. These findings suggest a unifying picture of the
ground-state behavior in XXZ models. A natural question to
ask then is what happens to the excited states and the asso-
ciated dynamics of coloring states on tuning the anisotropy.
(The question of nonequilibrium dynamics in the vicinity of
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the 3c point on the Kagome, as a function of anisotropy has
been addressed recently [55,56]). Finally, for completeness,
we note that our numerical evidence for adiabaticity from
solvable points toward the isotropic regime strictly applies to
finite-size systems, and rigorously showing this in the ther-
modynamic limit at the level of a mathematical theorem is an
open problem.
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APPENDIX A: TWO-POINT GROUND-STATE CORRELATORS FOR H2c

Here we calculate matrix elements for the unique two-coloring state |CSz=0〉 on any bipartite lattice with equal number of A
and B sublattice sites. We start with the overlap 〈CSz=0|CSz=0〉 as in Eq. (6) to highlight the basic algebraic manipulations that
will used throughout in these calculations. We recall that |c j〉 can be either |r〉 ≡ 1√

2
(|↑〉 + |↓〉) or |b〉 ≡ 1√

2
(|↑〉 − |↓〉), and |s j〉

are the Ising states |↑〉 or |↓〉 on site j. Terms of the form 〈c j |s j〉 follow from these definitions. Taking into account the overall
normalization of 2N

NCN/2
in the S∗

z = 0 sector as discussed in the main text, we have

〈CSz=0|CSz=0〉 = N
∑

p

∏
j

1

2
(eip/2 + e−ip/2)

(
where N = 1

N + 1

2N

NC N
2

)

= N
2N

N∑
k=0

(eikθ + e−ikθ )N

(
where p = 2πk

N + 1
= 2kθ and k is integer

)

= N
2N

N∑
k=0

N∑
m=0

NCm(eikθ )m(e−ikθ )N−m (using the binomial expansion)

= N
2N

N∑
m=0

NCm(N + 1)δN/2−m,0

= N N + 1

2N
NC N

2
= 1 , (A1)

as expected.
Analogous to Eq. (6), the general expression for diagonal correlation function in the zero magnetization sector is

〈CSz=0|Sz
mSz

n|CSz=0〉 = N
∑

p

⎡
⎣
⎛
⎝ ∑

sm,s′
m,sn,s′

n

eipsm〈cm|sm〉〈sm|Sz
m|s′

m〉〈s′
m|cm〉 eipsn〈cn|sn〉〈sn|Sz

n|s′
n〉〈s′

n|cn〉
⎞
⎠

×
⎛
⎝ ∏

j �={m,n}

∑
s j

eips j 〈c j |s j〉〈s j |c j〉
⎞
⎠
⎤
⎦. (A2)

Perfoming the sm, s′
m, sn, s′

n, s j sums, we get

〈CSz=0|Sz
mSz

n|CSz=0〉 = N
∑

p

[
1

4
(eip/2 − e−ip/2)

1

4
(eip/2 − e−ip/2)

∏
j �={m,n}

1

2
(eip/2 + e−ip/2)

]

= N
∑

p

[
1

4

(eip/2 − e−ip/2)(eip/2 − e−ip/2)

(eip/2 + e−ip/2)(eip/2 + e−ip/2)

∏
j

1

2
(eip/2 + e−ip/2)

]

= − N
2N+2

∑
p

[(eip/2 + e−ip/2)N−2 − (eip/2 + e−ip/2)N ]

= −N (N + 1)

2N+2

[
4 ×N−2 C N

2 −1 −N C N
2

]
= −1

4

1

N − 1
, (A3)
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where we use similar manipulations as in Eq. (A1). Similarly, the general expression for off-diagonal correlation function in the
zero magnetization sector is

〈CSz=0|S±
m S∓

n |CSz=0〉 = N
∑

p

⎡
⎣
⎛
⎝ ∑

sm,s′
m,sn,s′

n

eipsm〈cm|sm〉〈sm|S±
m |s′

m〉〈s′
m|cm〉 eipsn〈cn|sn〉〈sn|S∓

n |s′
n〉〈s′

n|cn〉
⎞
⎠

×
⎛
⎝ ∏

j �={m,n}

∑
s j

eips j 〈c j |s j〉〈s j |c j〉
⎞
⎠
⎤
⎦. (A4)

Again, perfoming the sm, s′
m, sn, s′

n, s j sums, we get

〈CSz=0|S±
m S∓

n |CSz=0〉 = N
∑

p

[
εmne±ip/2e∓ip/2

(eip/2 + e−ip/2)(eip/2 + e−ip/2)

∏
j

1

2
(eip/2 + e−ip/2)

]

= εmn
N
2N

∑
p

(eip/2 + e−ip/2)N−2

= εmn

4

N

N − 1
, (A5)

where we use similar manipulations as in Eq. (A1), and εmn = −1 in Eq. (A5) when {m, n} belongs to sites with different colors,
while εmn = 1 when sites {m, n} have the same color. Following Eq. (A5), it is straightforward to get the form of Eq. (8) in the
main text.

APPENDIX B: DETAILS OF THE GAPLESSNESS ARGUMENT

To show that the unprojected two-coloring state |C〉 is a gapless ground state of H2c, we consider the following state |C′〉 built
by modulating the two-coloring of |C〉 as mentioned in the main text:

|C′〉 ≡
∏
i∈A

⊗ie
iŜz

i δi |r〉i

∏
j∈B

⊗ je
iŜz

jδ j |b〉 j

=
∏
i∈A

(
cos

(
δi

2

)
|r〉 + i sin

(
δi

2

)
|b〉
)∏

j∈B

(
cos

(
δ j

2

)
|b〉 + i sin

(
δ j

2

)
|r〉
)

=
(∏

i

cos

(
δi

2

))
|C〉 + . . .

≡ √
ε|C〉 + . . . , (B1)

where ε ≡ ∏
i cos2 ( δi

2 ), and δi are to be small numbers → 0. Both |C〉 and |C′〉 are clearly normalized. Now, for the variational
excited state, we will consider a state |ψ〉 as that part of |C′〉 which does not contain any component along |C〉, i.e., 〈ψ |C〉 = 0.
This is simply achieved by

|ψ〉 ≡ |C′〉 − √
ε|C〉. (B2)

This state has to be renormalized to respect normalization, i.e., presently

〈ψ |ψ〉 = 〈C′|C′〉 + ε〈C|C〉 − √
ε(〈C′|C〉 + 〈C|C′〉)

= 1 − ε. (B3)

In the above, we simply used 〈C′|C〉 = 〈C|C′〉 = √
ε as defined in Eq. (B1). Now in the following, we establish a variational

upper bound for the excitation gap using |ψ〉 which being orthogonal |C〉 is a legitimate variational excited state. The energy in

144414-13



PAL, SHARMA, CHANGLANI, AND PUJARI PHYSICAL REVIEW B 103, 144414 (2021)

the properly normalized state will be

〈ψ |H2c|ψ〉
〈ψ |ψ〉 = 〈C′|H2c|C′〉 + ε〈C|H2c|C〉 − √

ε(〈C′|H2c|C〉 + 〈C|H2c|C′〉)

1 − ε

= 〈C′|H2c|C′〉 − ε〈C|H2c|C〉
1 − ε

, (B4)

where we make use of the fact that |C〉 is the (ground) eigenstate of H2c, i.e., H2c|C〉 = 〈C|H2c|C〉|C〉, and thereby 〈C|H2c|C′〉 =
〈C′|H2c|C〉 = √

ε〈C|H2c|C〉. Therefore, the variational estimate of the excitation energy is

�E ≡ 〈ψ |H2c|ψ〉
〈ψ |ψ〉 − 〈C|H2c|C〉 = 〈C′|H2c|C′〉 − 〈C|H2c|C〉

1 − ε
. (B5)

We are primarily interested in the N dependence or scaling of �E in the arguments below. For the numerator of �E in
Eq. (B5), for a single bond, the states on the sites that are part of the bond are relevant, and therefore we have for the bond 〈i, j〉
(with i ∈ A sublattice and j ∈ B sublattice without loss of generality):

〈C′|Hi j |C′〉 − 〈C|Hi j |C〉 = (
e−iŜz

i δi〈r|i ⊗ e−iŜz
jδ j 〈b| j

)
Hi j
(
eiŜz

i δi |r〉i ⊗ eiŜz
jδ j |b〉 j

)− (〈r|i ⊗ 〈b| j )Hi j (|r〉i ⊗ |b〉 j )

=
[
−1

4
(cos δi cos δ j + sin δi sin δ j ) + 1

4

]
= 1 − cos(δi − δ j )

4

� (δi − δ j )2

8
, (B6)

since δi → 0 ∀ i, and it is understood that j in the above expressions are the nearest-neighbor sites in the unit cell to which i
belongs.

As described in the main text, let us choose the following
modulation: δi = δ sin(q.ri ) with q = 2π

Lx
x̂ → 0 as Lx → ∞.

Let us recall that Lx, Ly, . . . are the linear dimensions, and the
number of sites N = ∏

i Li in d dimensions. We sum over all
the bonds along the x axis (since in other directions, δi − δ j =
0 identically in our choice of modulation) to get

〈C′|H2c|C′〉 − 〈C|H2c|C〉

=
N∑

i=1

δ2

8
[sin(q · ri ) − sin (q · (ri + x̂))]2

=
N∑

i=1

δ2

2

{
sin

(
q · x̂

2

)
cos

[
q ·
(

ri + x̂

2

)]}2

� δ2π2

2L2
x

{
N∑

i=1

cos2

[
q ·
(

ri + x̂

2

)]}
(B7)

by using small angle approximation as q · x̂ = 2π/Lx ∼
N−1/d . We also have

∑N
i=1 cos2[q.(ri + x̂

2 )] = 1
4

2C1 N ∼ N
by using very similar steps for the power of cosine sums as
in previous sections. Therefore, the numerator in Eq. (B5) for
�E scales as

〈C′|H2c|C′〉 − 〈C|H2c|C〉 ∼ δ2N1−2/d . (B8)

Another way to see the above scaling is by choosing i, j
such that ri = 0, i.e., δi = 0 and δ j = δ 2π

Lx
. For this choice, one

obtains the maximum value of (δi − δ j ) over all bonds (simply
because for f (x) = sin x, the variation or slope around x = 0
is maximum). This gives an upper bound for 〈C′|H2c|C′〉 −
〈C|H2c|C〉 which leads to the same scaling as before, i.e.,
N max[(δi − δ j )2] ∼ δ2N1−2/d .

If δ scales as δ ∼ Nα , then the numerator of �E in Eq. (B5)
scales as

〈C′|H2c|C′〉 − 〈C|H2c|C〉 ∼ N1+2α− 2
d , (B9)

which will → 0 (as is the goal of this Appendix) if α < 0 (for
d = 2). This is consistent with our initial assumption above
that the modulations are small, i.e., δi � 1 ∀ i. However, to
complete the argument, it remains to analyze the scaling of
the denominator of Eq. (B5) as well to make sure that �E
indeed scales to zero. We note here that the denominator 1 − ε

is directly related to the overlap of |C〉 and |C′〉. Going ahead,

ε =
N∏

i=1

cos2

(
δi

2

)
�

N∏
i=1

(
1 − δ2

i

4

)

⇒ log(ε) �
N∑

i=1

log

(
1 − δ2

i

4

)
�
∑

i

(
−δ2

i

4

)

⇒ ε � exp

[
−

N∑
i=1

δ2
i

4

]
= exp

[
−δ2

4

N∑
i=1

sin2(q · ri )

]
.

(B10)

Now we again use a power of sines sum identity to arrive
at
∑N

i=1 sin2(q · ri ) = N
22

2
C1 ∼ N . Therefore, for δ ∼ Nα , ε

behaves as

ε ∼ e−N.N2α = e−N1+2α

. (B11)

To ensure gaplessness, i.e., �E → 0 as N → ∞, we need
to ensure that the denominator 1 − ε remain finite and not
scale to zero simultaneously. Given Eq. (B11), this is clearly
ensured by 1 + 2α > 0 ⇒ −1/2 < α. Thus, we have arrived
at the desired scaling choice for δ such that the variational
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estimate for the excitation energy �E scales to zero when

−1/2 < α < 0, (B12)

which implies gaplessness for the spectrum at the solvable
point H2c as is to be expected for a U (1)-symmetry broken
Néel state. This completes our proof.

Finally, it is instructive to consider how the above gapless-
ness argument fails when α is not in the desired range stated
above. For example, when α is below the range, say α = −1,
then the numerator of �E indeed still scales to zero as desired,

however the denominator now also scales to zero! This tells
us that the modulation magnitude can not be too small either
on a finite lattice, otherwise the overlap does not scale to zero
fast enough to make the gaplessness argument work, inspite
of the naive expectation that ε is simply the product of N
factors each being less than one [of the form cos2(δi/2)]. On
the other side, when α is above the range, say α = 0, then the
denominator does scale to a finite value (one) as desired, but
now the numerator of �E does not scale to zero thus again
invalidating the gaplessness argument.

APPENDIX C: TWO-POINT GROUND-STATE CORRELATORS FOR THE m = 0 SECTOR OF H3c

In this section, we calculate matrix elements for triangular lattice where the coloring ground states is twofold degenerate
(see Sec. III A). We recall that |c j〉 on site j can be |r〉 ≡ 1√

2
(|↑〉 + |↓〉), |b〉 ≡ 1√

2
(|↑〉 + ω|↓〉) or |g〉 ≡ 1√

2
(|↑〉 + ω2|↓〉)

corresponding to the colors on the three sublattices of the triangular lattice. ω = ei2π/3 and ω2 = ω∗ are the cube roots of unity.
Therefore, if we associate integers 0, 1, 2 to c j for |r〉, |b〉, |g〉, respectively, it follows that 〈c j |s j〉 = ω(c j−2c j s j )/

√
2. Taking into

account the overall normalization of 2N

NCN/2
in the S∗

z = 0 sector, the overlap in general can be written as

〈CSz=0|C′
Sz=0〉 = N

∑
p

∏
j

1

2
(eip/2 + ei2πλ j/3e−ip/2), (C1)

where λ j = (2c j + c′
j ) (mod 3). Therefore, for the two three-coloring states, we get 〈C(1)

Sz=0|C(1)
Sz=0〉 = 〈C(2)

Sz=0|C(2)
Sz=0〉 = 1 as

expected using the very same steps as in Eq. (A1).
For the overlap between the two three-coloring states, we have

〈
C(1)

Sz=0

∣∣C(2)
Sz=0

〉 = 〈
C(2)

Sz=0

∣∣C(1)
Sz=0

〉 = N
∑

p

[
1

23
(eip/2 + e−ip/2)(eip/2 + ωe−ip/2)(eip/2 + ω2e−ip/2)

]N/3

= N
2N

∑
p

(ei3p/2 + e−i3p/2)N/3

=
N/3CN/6
NCN/2

. (C2)

This overlap vanishes in the thermodynamic limit, i.e., N → ∞.
For the spin-spin correlations, we will make use of the following identities:

∑
sm,s′

m

eipsm〈cm|sm〉〈sm|Sz
m|s′

m〉〈s′
m|cm〉 = 1

4
(eip/2 − ei2πλm/3e−ip/2),

∑
sm,s′

m

eipsm〈cm|sm〉〈sm|S+
m |s′

m〉〈s′
m|cm〉 = 1

2
(eip/2 ei2πcm/3),

∑
sm,s′

m

eipsm〈cm|sm〉〈sm|S−
m |s′

m〉〈s′
m|cm〉 = 1

2
(e−ip/2 ei4πcm/3). (C3)

Then, starting from the analogs of Eqs. (A2) and (A4) for the three-coloring case, we have

〈
C(l )

Sz=0

∣∣Sz
mSz

n|C(l )
Sz=0

〉 = N
∑

p

[
1

4

(eip/2 − e−ip/2ei2πλm/3)(eip/2 − e−ip/2ei2πλn/3)

(eip/2 + e−ip/2ei2πλm/3)(eip/2 + e−ip/2ei2πλn/3)

∏
j

1

2
(eip/2 + e−ip/2ei2πλ j/3)

]

= − N
2N+2

∑
p

[(eip/2 + e−ip/2)N−2 − (eip/2 + e−ip/2)N ] (for c j = c′
j , λm/n/ j = 0 mod 3)

= −N (N + 1)

2N+2

[
4 ×N−2 C N

2 −1 −N C N
2

]
= −1

4

1

N − 1
, (C4)
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〈
C(l )

Sz=0

∣∣S+
m S−

n

∣∣C(l )
Sz=0

〉 = N
∑

p

[ (
1
2 ei2πcm/3eip/2

) (
1
2 ei4πcn/3e−ip/2

)
1
2 (eip/2 + e−ip/2ei2πλm/3) 1

2 (eip/2 + e−ip/2ei2πλn/3)

∏
j

1

2
(eip/2 + e−ip/2ei2πλ j/3)

]

= N
2N

ei 2π
3 (cm+2cn )

∑
p

(eip/2 + e−ip/2)N−2

= N

4(N − 1)
ei 2π

3 (cm+2cn ) (C5)

and similarly

〈
C(l )

Sz=0

∣∣S−
m S+

n

∣∣C(l )
Sz=0

〉 = N
∑

p

[ (
1
2 ei4πcm/3eip/2

) (
1
2 ei2πcn/3e−ip/2

)
1
2 (eip/2 + e−ip/2ei2πλm/3) 1

2 (eip/2 + e−ip/2ei2πλn/3)

∏
j

1

2
(eip/2 + e−ip/2ei2πλ j/3)

]

= N
2N

ei 2π
3 (2cm+cn )

∑
p

(eip/2 + e−ip/2)N−2

= N

4(N − 1)
ei 2π

3 (2cm+cn ), (C6)

where l ∈ (1, 2). Since we made the choice (cr, cb, cg) = (0, 1, 2) above, thus for sites {m, n} that have different colors, we
obtain

〈
C(l )

Sz=0

∣∣Sx
r Sx

b + Sy
r Sy

b

∣∣C(l )
Sz=0

〉 = N

8(N − 1)
ω(1 + ω) = − N

8(N − 1)
,

〈
C(l )

Sz=0

∣∣Sx
r Sx

g + Sy
r Sy

g

∣∣C(l )
Sz=0

〉 = N

8(N − 1)
ω2(1 + ω2) = − N

8(N − 1)
,

〈
C(l )

Sz=0

∣∣Sx
bSx

g + Sy
bSy

g

∣∣C(l )
Sz=0

〉 = N

8(N − 1)
1.(ω + ω2) = − N

8(N − 1)
. (C7)

In the above equations, we have used the identity 1 + ω + ω2 = 0. U (1) symmetry implies 〈C(l )
Sz=0|Sx

mSx
n|C(l )

Sz=0〉 =
〈C(l )

Sz=0|Sy
mSy

n|C(l )
Sz=0〉, and therefore 〈C(l )

Sz=0|Sx
mSx

n|C(l )
Sz=0〉 = 〈C(l )

Sz=0|Sy
mSy

n|C(l )
Sz=0〉 = − 1

2 ( 1
8

N
N−1 ) for sites {m, n} that have different

colors. For sites {m, n} that have the same color, putting cm + 2cn = 2cm + cn = 0 mod 3 in Eqs. (C5) and (C6), we obtain
〈C(l )

Sz=0|Sx
mSx

n|C(l )
Sz=0〉 = 〈C(l )

Sz=0|Sy
mSy

n|C(l )
Sz=0〉 = 1

8
N

N−1 . In general, we may write

〈
C(l )

Sz=0

∣∣Sx
mSx

n

∣∣C(l )
Sz=0

〉 = 〈
C(l )

Sz=0

∣∣Sy
mSy

n

∣∣C(l )
Sz=0

〉 = εmn
1

8

N

N − 1
, (C8)

where εmn = 1 and −1/2 for sites {m, n} with same and different colors, respectively. As cos(120◦) = cos(240◦) = −1/2 and
cos(0◦) = 1, this is often called as 120◦ or three sublattice order (in the XY plane).

APPENDIX D: TWO-POINT GROUND-STATE CORRELATORS FOR THE m
ms

= 1
3 SECTOR OF H3c

For the m
ms

= 1
3 sector, the calculation steps are similar to the m = 0 sector shown in the previous section with the only

difference being S∗
z = 0 gets replaced by S∗

z = N/6 and the overall normalization factor thus becomes 1
N+1

2N

NC2N/3
= N̄ . Therefore,

〈
C(1)

Sz=N/6

∣∣C(1)
Sz=N/6

〉 = 〈
C(2)

Sz=N/6

∣∣C(2)
Sz=N/6

〉 = N̄
2N

∑
p

(eip/2 + e−ip/2)N e−ipN/6

= N̄
2N

N∑
k=0

N∑
m=0

NCm(eikθ )m(e−ikθ )N−me−ikNθ/3

(
where p = 2πk

N + 1
= 2kθ

)

= N̄
2N

N∑
m=0

NCm(N + 1)δ2N/3−m,0

= N̄
2N

(N + 1) NC 2N
3

= 1 . (D1)
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Similarly, we have

〈
C(1)

Sz=N/6

∣∣C(2)
Sz=N/6

〉 = 〈
C(2)

Sz=N/6

∣∣C(1)
Sz=N/6

〉 = N̄
∑

p

[
1

23
(eip/2 + e−ip/2)(eip/2 + ωe−ip/2)(eip/2 + ω2e−ip/2)

]N/3

e−ipN/6

= N̄
2N

∑
p

(ei3p/2 + e−i3p/2)N/3e−ipN/6

=
N/3C2N/9
NC2N/3

. (D2)

In the thermodynamic limit, the right hand side of Eq. (D2) vanishes and the two three-coloring states become orthogonal to
each other similar to the m = 0 sector. The expression for diagonal correlation function in this sector is

〈
C(l )

Sz=N/6

∣∣Sz
mSz

n

∣∣C(l )
Sz=N/6

〉 = − N̄
2N+2

∑
p

[(eip/2 + e−ip/2)N−2 − (eip/2 + e−ip/2)N ] e−ipN/6

= −N̄ (N + 1)

2N+2

[
4 ×N−2 C 2N

3 −1 −N C 2N
3

]

= −1

4

[
8

9

N

N − 1
− 1

]
, (D3)

whereas the off-diagonal correlation function has the form

〈
C(l )

Sz=N/6

∣∣S+
m S−

n |C(l )
Sz=N/6

〉 = N̄
2N

ei 2π
3 (cm+2cn )

∑
p

(eip/2 + e−ip/2)N−2 e−ipN/6 = 2N

9(N − 1)
ei 2π

3 (cm+2cn ) (D4)

and 〈
C(l )

Sz=N/6

∣∣S−
m S+

n

∣∣C(l )
Sz=N/6

〉 = N̄
2N

ei 2π
3 (2cm+cn )

∑
p

(eip/2 + e−ip/2)N−2 e−ipN/6 = 2N

9(N − 1)
ei 2π

3 (2cm+cn ) . (D5)

Combining Eq. (D4) with Eq. (D5) and following the same steps as for the m = 0 sector, we have〈
C(l )

Sz=N/6

∣∣Sx
mSx

n

∣∣C(l )
Sz=N/6

〉 = 〈
C(l )

Sz=N/6

∣∣Sy
mSy

n

∣∣C(l )
Sz=N/6

〉 = εmn
1

9

N

N − 1
, (D6)

with εmn as defined in the previous section.

APPENDIX E: GROUND-STATE STRUCTURE FACTORS
FOR H2c AND H3c

Here we compute the exact structure factors of the
two-coloring and two three-coloring states for the square
and triangular lattice in the zero magnetization sector,
respectively. The calculations follow directly from the exact
expressions of real-space correlation functions derived
previously: (a) 〈CSz=0|Sz

mSz
n|CSz=0〉 = − 1

4
1

N−1 for m �= n
and 0.25 for m = n, and (b) 〈CSz=0|Sx

mSx
n|CSz=0〉 =

〈CSz=0|Sy
mSy

n|CSz=0〉 = εmn
8

1
N−1 for m �= n and 0.25 for m = n

for all the coloring states with appropriate definitions of εmn

for the square and triangular cases as noted in Appendices
A and C. For both cases, the diagonal structure factor has
the form

Szz(q) ≡ 1

N

∑
m,n

e−iq·(rm−rn )
〈
C(l )

Sz=0

∣∣Sz
mSz

n

∣∣C(l )
Sz=0

〉

= 1

N

[
0.25N − 1

4

1

N − 1

∑
m �=n

e−iq·(rm−rn )

]

= 0.25 − 1

4

1

N (N − 1)

[∑
m,n

e−iq·(rm−rn ) − N

]

= 0.25 − 1

4(N − 1)
[Nδq,0 − 1] (E1)

and therefore Szz(q) = 0 for Brillouin zone center and
Szz(q) = 0.25 + 1

4(N−1) for other points. The off-diagonal
structure factors has the form

Sxy(q) = 1

N

∑
m,n

e−iq·(rm−rn )
〈
C(l )

Sz=0

∣∣Sx
mSx

n

∣∣C(l )
Sz=0

〉

= 1

N

[
0.25N + 1

8

N

N − 1

∑
m �=n

εmn e−iq·(rm−rn )

]
. (E2)

For the 2c case, εmn = eiq0·(rm−rn ) with q0 = (π, π ). There-
fore,

Sxy(q) = 0.25 + 1

8

1

(N − 1)

[∑
m,n

ei(q−q0 )·(rm−rn ) −
∑

m

1

]

= 0.25 + 1

8

1

(N − 1)

[
N2δq,q0 − N

]
. (E3)
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FIG. 10. Real-space correlation functions (measured with respect to a central site c) 1
2 〈Sx

i Sx
c + Sy

i Sy
c〉 and 〈Sz

i Sz
c〉 for the triangular lattice in

the m = 0 (Sz = 0) magnetization sector, at various representative Jz. The correlation function of the spin at a site with itself is not plotted,
and is left empty. The size of the circles indicates the magnitude of the correlator and the color indicates the sign, blue being negative and red
being positive.

For the 3c case, εmn = eiq0 ·(rm−rn )+e−iq0 ·(rm−rn )

2 with q0 =
( 4π

3 , 0) or (− 4π
3 , 0), and therefore

Sxy(q) = 0.25 + 1

8

1

(N − 1)

[
N2

2
(δq,q0 + δq,−q0 ) − N

]
.

(E4)

These values are observed in ED and DMRG at the solvable
points (Figs. 2 and 4) as expected.

APPENDIX F: REAL-SPACE SPIN CORRELATIONS

In the main text, we discussed the evolution of features in
the static spin structure factor of the triangular and square
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FIG. 11. Real-space correlation functions (measured with respect to a central site c) 1
2 〈Sx

i Sx
c + Sy

i Sy
c〉 and 〈Sz

i Sz
c〉 for the 8 × 8 square lattice

cylinder in the m = 0 (Sz = 0) magnetization sector, at various representative Jz. The correlation function of the spin at a site with itself is not
plotted, and is left empty. The size of the circles indicates the magnitude of the correlator and the color indicates the sign, blue being negative
and red being positive.

lattice antiferromagnet as a function of the anisotropy Jz,
in the zero magnetization m = 0 (Sz = 0) sector. Here we
present the ground-state real-space spin correlation functions
on the 12 × 6 cylinder for the triangular lattice, and 8 × 8
cylinder for the square lattice. We plot 1

2 〈Sx
i Sx

c + Sy
i Sy

c〉 and
〈Sz

i Sz
c〉, with respect to a site c located in the bulk of the

cylinder, for various representative Jz values.
In Fig. 10 we discuss our results for the triangular case.

At Jz = −1.0, the system spontaneously forms two (equal
sized) ferromagnetic domains, one with spins pointing in the z
direction and the other with spins pointing in the −z direction,
consistent with the Sz = 0 constraint imposed in the DMRG
calculation. Due to the choice of the cylindrical geometry
(length being bigger than the width) the two domains are
placed horizontally, to minimize the energy cost of having
a domain wall. The transverse (XY plane) correlations exist
only along the domain wall.

At the exactly solvable point Jz = − 1
2 , the correlation func-

tions are consistent with the exact formulas derived for the
projected coloring wave function. The 〈Sz

i Sz
c〉 correlator is

constant, independent of sublattice. The transverse correla-

tions show correlations consistent with 120◦ order, and do
not depend on the distance between sites, but only on which
sublattice they belong to.

On moving away from the solvable point toward the
Heisenberg point, i.e., for Jz > − 1

2 , next nearest-neighbor
ferromagnetic correlations gradually begin to develop in the
z direction. The in-plane correlations qualitatively resem-
ble the pattern seen at Jz = − 1

2 , but the long range order
is weakened, as is evidenced from the fall off of the size
of the circles (see caption). At the Heisenberg point, both
patterns evolve to be identical (as they must) owing to
the full rotational symmetry of the Hamiltonian at Jz = 1,
and given that the ground state is nondegenerate. At Jz =
3, evidence of ordering in both channels is seen, at least
on the finite-size system studied here. This is the coexis-
tence of diagonal and off-diagonal ordering, discussed in the
main text.

For completeness, we also show the case of the square
lattice in Fig. 11. The ordering wave vector of Néel order is
now (π, π ) and the critical points in the XXZ phase diagram
are at Jz = −1 and Jz = 1.
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