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Nernst coefficient within relaxation time approximation
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Analytical solutions based on the Boltzmann transport equation within the relaxation time approximation
are developed to relate the Nernst coefficient to materials band structure and relaxation times parameters in
simple conductors. The dependence of the Nernst coefficient on the effective mass, anisotropy of bands, energy
bandgap, and scattering parameters are investigated. The obtained relations are compared to the existing solutions
presented in the past using different approximations.
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I. INTRODUCTION

Thermomagnetic energy conversion based on the Nernst
effect and thermomagnetic refrigeration based on the Etting-
shausen cooling provides a solid-state technique for direct
conversion of heat to electricity and pumping of heat from
the cold reservoir to the hot one. Thermomagnetic modules
are similar to thermoelectric modules (see Fig. 1). A temper-
ature gradient applied to a conductor results in a longitudinal
Seebeck voltage which is the base of the thermoelectric heat
to electricity, energy conversion. When a magnetic field is
applied normal to the imposed temperature gradient, there
will be a secondary transverse voltage, the so-called Nernst
voltage. [1] The Nernst coefficient, N, is then defined as the
transverse voltage gradient divided by the temperature gra-
dient (we do not divide by the magnetic field and assume
N is in the units of V/K), has the same dimensions as the
Seebeck coefficient, and is the base of the thermomagnetic
energy conversion (Fig. 1).

The thermomagnetic efficiency of materials for power gen-
eration and refrigeration applications is evaluated by their
dimensionless figure of merit, zT MT defined as (N2σyyT )/κxx

where σyy is the electrical conductivity in the y direction (di-
rection of the Nernst voltage), κxx is the thermal conductivity
along the direction of the applied thermal gradient, and T
is the average temperature of the material [2]. Historically,
the Nernst coefficient was first observed in bismuth in 1886
[1]. It was then measured in many metals [3–7] semimetals
[8–11], and narrow-gap semiconductors [12–15]. Previous
studies have shown that extremely mobile quasiparticles in
dilute metals generate a noticeable Nernst signal. [16] Within
the Fermi liquid picture, it is shown that the Nernst effect
roughly measures the ratio of electron mobility to Fermi en-
ergy in a given metal [17,18].

In addition to power generation and cooling, the Nernst
effect has been used as an experimental probe in study-
ing various physical systems, for instance, in determining

the carrier-scattering mechanisms involved in semiconductors
and semimetals [14,19–22].

The theory of the Seebeck coefficient is well developed and
the analytical solutions for the Seebeck coefficient are well
known. For instance, we know that the Seebeck coefficient, α,
in metals follow Mott’s formula and is an increasing function
of the derivative of the logarithm of the electrical conduc-
tivity, σ , with respect to energy, ε, at the Fermi energy, ε f

(α = π2k2
BT

3q
dlog(σ )

dε
|ε f where kB is the Boltzmann constant, T is

the temperature, and e = 1.6 × 10−19C is the unit of charge).
This suggests that materials with a large slope of the density
of states and relaxation times with respect to energy own a
large Seebeck coefficient.

In nondegenerate semiconductors, the Seebeck coefficient
increases as the bandgap increases. Within the single-band
model, the further the chemical potential from the band edge,
the larger the Seebeck coefficient. Within the two-band model
that includes the conduction band and the valence band, the
Seebeck coefficient increases with the ratio of the effective
masses of the two bands and is zero close to the middle of the
bandgap. Understanding how the Seebeck coefficient depends
on the materials parameters helps in the design of highly
efficient thermoelectric materials [23–25]. Perhaps, a better
criterion is the thermoelectric power factor, but the Seebeck
coefficient comes as the first step.

Similarly, the Nernst theory has also been studied in
the past. Sondheimer studied the galvanometric and ther-
momagnetic effects in metals with s and d bands [17,26].
Putley [15] studied the Nernst signal in semiconductors
through the Lorentz-Sommerfeld theory [27]. He started
from a formalism developed by Sommerfeld and Frank [28]
for metals and extended it to semiconductors and mixed
conductors [29]. Theoretical predictions of the Nernst coef-
ficient of PbTe and PbSe appeared to be reasonably close
to experimental values. Price [30] obtained a relatively
simple formula for the Nernst coefficient in the case of

2469-9950/2021/103(14)/144404(11) 144404-1 ©2021 American Physical Society

https://orcid.org/0000-0002-9170-2707
https://orcid.org/0000-0003-3177-3463
https://orcid.org/0000-0001-9181-6491
https://orcid.org/0000-0003-1969-0956
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.103.144404&domain=pdf&date_stamp=2021-04-12
https://doi.org/10.1103/PhysRevB.103.144404


ZEBARJADI, REZAEI, AKHANDA, AND ESFARJANI PHYSICAL REVIEW B 103, 144404 (2021)

FIG. 1. Schematic of the (a) Seebeck effect, (b) Nernst effect, (c)
Thermoelectric module for refrigeration, and (d) Thermomagnetic
modules for refrigeration.

isotropic two-band semiconductors using Boltzmann statis-
tics. In terms of electrical conductivity (σ ), and Hall mobility
(μH ) of each band, the Nernst coefficient was defined
as N = kB/e[( σeσh

σ 2 )(μH
e + μH

h )(αe + αh) + σeϕe+σhϕh

σ
]B where

αi = T d (logni )
dT + γi and ϕi = γi(λH

i −μH
i ). Based on the kinetic

theory represented by Einstein [31], the γ parameter relates

diffusion coefficient to mobility by γi = eDT
i

μikB
and λH is a

mobility developed by both magnetic field and temperature
gradient. Clayhold studied the Nernst effect in anisotropic
materials and found that the value of the Nernst coefficient
depends on the correlation between the Hall angle and ther-
mopower at different points on the Fermi surface [6]. Masuki
et al., using a momentum-dependent relaxation time approx-
imation, showed that in FeSb2, a second peak appears in the
temperature dependence of the Nernst coefficient due to the
phonondrag effect [32]. Pikulin et al. compared the value of
the Nernst coefficient in cuprate superconductors calculated
using constant relaxation time approximation (CRTA) and
momentum-dependent relaxation time approximation [33].
They found that in the combined presence of the band and
scattering anisotropy, the CRTA is a poor approximation and
can result in an error significant enough to result in a Nernst
coefficient of the wrong sign. It is noteworthy to mention here
that, in their calculation, only the single band elastic quasipar-
ticle scattering was considered, and the response in the low
magnetic field limit was computed. In recent years, there has
been a surge in research activity concentrated on the Nernst
effect in Weyl and Dirac semimetals. Consequently, several
theoretical studies focusing on both the conventional and the
anomalous part of the Nernst coefficient have been performed
using the Boltzmann transport equation (BTE) [34,35]. The
contribution of Berry curvature [35–38], conformal anomaly
[39], gravitational and thermal chiral anomaly [40] in the
anomalous part of the Nernst coefficient in these material
systems have also recently been theoretically investigated.
These works focus on the topological aspects of the problem

but use approximations such as Mott’s formula, Sommerfeld
expansion, and small magnetic fields.

The goal of this paper is to find explicit and general
analytical expressions for the Nernst coefficient in simple
semiconductors and to develop an understanding of when
large Nernst coefficient values are expected theoretically,
hence narrowing down the search for good thermomagnetic
materials. We use the term simple semiconductors in contrast
to topological and ferromagnetic materials which are often
used in the study of the Nernst coefficient. When possible
and needed, we study the thermomagnetic power factor and
lay the criteria for thermomagnetic transport. While similar
results are available in past literature, there are several prob-
lems. First, they are scattered in past papers. Second, they
are obtained sometimes using phenomenological assumptions
and sometimes with little details of the assumptions used,
and third, different authors obtained different equations us-
ing different assumptions. Here we use a BTE approach
within the relaxation time approximation to study the Nernst
coefficient under different band structures and scattering
rates. When possible, we compare our results with previ-
ously obtained equations for the Nernst coefficient in simple
semiconductors.

II. ANALYTICAL SOLUTIONS

A. General definition of the response functions

First, we obtain the general solutions for the Nernst coeffi-
cient following Lundstrom’s [41] and Smith’s [42] notations.
We start by expressing the electrical current (J) in terms of the
electric field (E ) and the gradient of the inverse temperature
(∇( 1

T ))

J = σE + β∇
(

1

T

)
, (1)

where σ and β are 3 × 3 response function tensors repre-
senting, respectively, the electrical conductivity and thermo-
electric function. In the presence of an external magnetic
field (B), moving electrons experience an additional force
F = −eE − ev × B. As a result, the response functions are
modified, i.e., they become a function of the magnetic field
(σ (B) and β(B)).

We start by first expressing the Nernst coefficient in terms
of these matrices. The isothermal Nernst coefficient is defined
as the ratio of the transverse voltage to an applied thermal
gradient when the applied magnetic field is perpendicular to
the directions of measured voltage and temperature gradi-
ent: NT = Ey/∇xT . This is subject to open-circuit electrical
boundary conditions, i.e., J = 0.

Denoting the resistivity tensor by ρ = σ−1, we have E =
ρβ∇T/T 2. In the presence of a magnetic field, we define the
generalized Seebeck tensor as

α = ρβ

T 2
. (2)

In the case where the temperature gradient is along x,
and the applied magnetic field along z, the longitudinal xx
component in the B = 0 limit is the ordinary Seebeck coef-
ficient, while the transverse xy component contains the Nernst
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coefficient. We will show the explicit formula for NT = αxy in
the next section.

B. General solution of the BTE in the presence of a magnetic
field within the relaxation time approximation

If we denote the equilibrium distribution function by f 0,
for every electronic state of momentum, k, and band index, n,
the BTE is

∂ fkn

∂t
+ vkn · ∇r fkn − e(E + vkn × B) · ∇k fkn = − fkn − f 0

kn

τkn
.

(3)
From now on, for simplicity, we omit the indices k, n from

the velocities, electron energies, and distribution functions.
Following Smith et al. [42] we write the solution to this
equation in the form

f = f 0 + τv · S
(

−∂ f 0

∂ε

)
, (4)

where ε is the electron energy and the unknown vector S
is assumed to be only a function of energy ε. Plugging this
expression into BTE (3) yields the equation satisfied by S. It
is well-known that in the absence of a magnetic field, S is
the driving electrothermal force F on the electrons: S = F =
−∇ε f − ε−ε f

T ∇T , where ε f is the electrochemical potential
(we are using μ to denote mobility). In the presence of B, and
in steady-state, the BTE simplifies to

(1 + τ�) f1 = τv · F
(

−∂ f 0

∂ε

)
, (5)

where we defined � = −e
h̄ (v × B) · ∇k and f1 = f − f 0. The

operator � and namely ∇k acts on f1 which is postulated to be
of the form τv.S(− ∂ f 0

∂ε
).

This expression can be simplified if we assume the relax-
ation times depend only on the energy so that ∇kτ = ∂ε

∂k
∂τ
∂ε

=
h̄v ∂τ

∂ε
. Furthermore, its action on the velocity gives the ef-

fective mass tensor at the point k : ∇kv = h̄ 1
M where M is the

effective mass tensor. Inserting these relations into Eq. (5),
one finds that S must satisfy

S − ωτ B̂ × N S = F, (6)

where B̂ is the unit vector along the direction of the magnetic
field, ω = eB

m0
is the cyclotron frequency, and the dimen-

sionless 3 × 3 tensor N is the inverse effective mass matrix
normalized by the bare electron mass m0. Note that one can
substitute the cross product by the multiplication by an anti-
symmetric matrix which we call B:

B = −ωτ

⎛
⎝ 0 −B̂z B̂y

B̂z 0 −B̂x

−B̂y B̂x 0

⎞
⎠. (7)

So that the equation satisfied by S becomes a simple 3 × 3
linear system easily invertible,

S = QF with Q = (I + BN )−1. (8)

Therefore, in an actual calculation, if the band structure
is known at any k point of interest, one needs to calculate
the group velocity and inverse effective mass tensor at that k

point, and use the solution to Eq. (8) to deduce the components
of S, which will give the electrical current as

J = −e

V

∑
kn

vkn ⊗ vkn.Skn τkn

(
−∂ f 0

kn

∂ε

)
. (9)

This general solution has the advantage that is valid for
any arbitrary orientation of the fields with respect to each
other (no need to be perpendicular) or to the crystalline axes,
is valid even at moderately large magnetic fields (within the
semiclassical approximation) as long as we have a relaxation
time that is only energy-dependent. If that is not the case, as an
approximation, one may take its angular average over the con-
stant energy surfaces of interest: τn (ε) = ∑

k τnk δ(ε − εnk ).
Before proceeding further, we need to point out that al-

though the Nernst coefficient is linear in B at small magnetic
fields, the solution obtained above has, in principle, full mag-
netic field dependence as the distribution function has not
been Taylor expanded in powers of B as is commonly done.
In this limit, since we have S + BN S = F, the solution
becomes S = (1 + BN )−1F ≈ F − BN F, i.e., we obtain
the standard distribution function plus a correction linear in
B: BN = eBτ/m∗ usually denoted by ωτ .

Behavior at high magnetic fields. From the above equation
defining S, we can note that the behavior of response functions
will then start with a constant plus a term linear in B at low B,
and decays as 1/B at large fields. The crossover point is when
ωτ = μB � 1 where μ = e 〈τ/m∗〉 is the mobility of the
sample. The behavior at these intermediate fields may be less
straightforward in complex materials with large anisotropies
in effective mass and relaxation time, but the limiting behavior
will remain linear in B at low B and linear in 1/B at high
B. At yet higher fields such that the cyclotron radius defined
by l2

c = h̄/qB becomes smaller than other length scales in the
problem such as the electron mean free paths, quantization ef-
fects become important, and the semiclassical BTE approach
ceases to be valid.

Throughout the rest of this article, we fix the direction of
the applied thermal gradient to be in the x direction and the
external magnetic field to be in the z direction, irrespective of
the crystalline axes. The Nernst voltage is then collected along
y.

We focus on the isothermal Nernst coefficient NT , where it
is assumed there is no thermal gradient along y or z.

Using Eqs. (8) and (9), we can obtain the transport func-
tions. First, to simplify notations, we define un-normalized
transport averages as

〈〈A〉〉i j = 1

V

∑
nk

Ank vi
nk vl

nk Ql j (n)

(
−∂ f 0

nk

∂ε

)
, (10)

where implicit summation over repeated Cartesian indices
(i, j, l, . . .) is implied. From their definition in Eq. (1), the
general equations defining the response functions can be writ-
ten as

σi j = q2〈〈τ 〉〉i j ; βi j = qT 〈〈τ (ε − ε f )〉〉i j . (11)

The normalizing factor 〈〈1〉〉ii =
1
V

∑
nk vi

nk vl
nk Qli (n)(− ∂ f 0

nk
∂ε

) can be derived to be n
m∗ in
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the isotropic case where the effective mass tensor is a scalar
(n is the so-called free-electron density).

The Nernst voltage is measured under open-circuit condi-
tions implying Jx = Jy = 0. Setting these currents to zero, and
solving for Ex and Ey in terms of ∇xT by using Eqs. (1), in
agreement with previous work [10], the Nernst and Seebeck
coefficients become

NT = Ey

∇xT
= 1

T 2

σxxβyx − σyxβxx

σxxσyy − σyx σxy
;

αxx = Ex

∇xT
= 1

T 2

σyyβxx − σyxβxy

σxxσyy − σyx σxy
. (12)

Equation (12) is valid for any arbitrary band structure as
long as the x, y, z directions are defined along ∇T, �V, B
directions, respectively.

C. Weak magnetic field limit

In this section, we proceed to solve the problem in spe-
cial cases where it can be solved analytically. Starting from
Eqs. (12) and the following definitions, we need to find ex-
plicit solutions for σ (B) and β(B).

In the case of weak magnetic fields, Eq. (5) simplifies
to f1 ≈ (1−τ�)τv.F(− ∂ f 0

∂ε
). The first term is independent

of the magnetic field and we express it as f ′ = τv.F(− ∂ f 0

∂ε
)

and the second term is linear to B and we can express it as
f ′′ = τ 2 e

h̄ (v × B) · ∇k (v · F )(− ∂ f 0

∂ε
). In writing f ′′, we as-

sumed τ depends only on energy. The current is then written
as J = −e

V

∑
k v f1. Using the notation of Eq. (1) and after

inserting f1 into the current equation, we obtain [41]

σi j = e2

V

∑
k

τ

(
−∂ f 0

∂ε

)
vi

(
v j + e

h̄
τ∈mnpvmBn

∂v j

∂kp

)
, (13)

βi j = −ekBT 2

V

∑
k

τ

(
−∂ f 0

∂ε

)
vi(x − x f )

×
(

v j + e

h̄
τ∈mnpvmBn

∂v j

∂kp

)
. (14)

Implicit summation over repeated indices is implied. kB

is the Boltzmann constant, ∈mnp is the antisymmetric Levi-
Civita symbol, and x refers to dimensionless (reduced) energy
x = ε

kBT throughout this work.

D. Special cases

1. Case of isotropic single band

A single band with isotropic effective mass is the simplest
possible band structure and hence that will be our starting
point. In this case, the derivative of the velocity with respect to
momentum is the inverse of the effective mass ( ∂v j

∂ki
= h̄ δ ji

m∗ ).
Considering the magnetic field is in the z direction, Eq. (13)
for the isotropic case simplifies to

σi j = e2

V

∑
k

τ

(
−∂ f 0

∂ε

)
viv j

+ 1

V

∑
k

e3τ 2

m∗

(
−∂ f 0

∂ε

)
∈mz jvivmBz. (15)

If we now define normalized transport averages by 〈A〉i j =∑
k Ak viv j (− ∂ f 0

∂ε
)/

∑
k viv j (− ∂ f 0

∂ε
) we have

σxx = σyy = e2

V

∑
k

τ

(
−∂ f 0

∂ε

)
vxvx = e2

V

N

m∗ 〈τ 〉 = σ0, (16)

σxy = −σyx = − 1

V

∑
k

e3τ 2

m∗

(
−∂ f 0

∂ε

)
vxvxBz = −μHσ0Bz,

(17)

where N = ∑
k m∗ viv j (− ∂ f 0

∂ε
) is the number of free carriers,

and μH = e
m∗

〈τ 2〉
〈τ 〉 is the Hall mobility. Since we are dealing

with isotropic band structure, we drop the xx index from the
averaging.

Similarly, Eq. (14) under isotropic conditions is

βxx = βyy = −ekBT 2

V

∑
k

τ

(
−∂ f 0

∂ε

)
vxvx(x − x f )

= −eT

V
〈 τ (ε − ε f ) 〉 N

m∗ = β0, (18)

βxy = −βyx = kBT 2

V

∑
k

e2τ 2

h̄m∗

(
−∂ f 0

∂ε

)
vxvxBz (x − x f )

= −β0μβ Bz, (19)

where μβ = e
m∗

〈τ 2 (ε−ε f )〉
〈τ (ε−ε f )〉 and we refer to it as thermal mobil-

ity.
By substituting all transport functions obtained above in

Eq. (12) we find

NT = α0
(μβ − μH )(

1 + (μH Bz )2
)Bz where the zero−field Seebeck is

α0 = β0/T 2σ0. (20)

This is our first significant result stating that the Nernst
coefficient is proportional to the Seebeck coefficient (α0) and
also to the difference between the thermal and Hall mobilities.
We notice that under constant relaxation time approximation,
μβ and μH are identical and the Nernst coefficient is zero.
Hence, in the isotropic single band model, the Nernst coeffi-
cient is merely the result of energy-dependent scattering rates.

We can further include power laws for the relaxation times
to better understand the relation between the Nernst coeffi-
cient and the energy dependence of the relaxation times. It is
shown that the relaxation times can be approximated by power
laws in the form of τ = τ0xs for several common scattering
mechanisms. For instance, the scattering parameter (or char-
acteristic exponents), s, is −0.5 for acoustic phonon scattering
and 1.5 for weakly screened ionized impurity scattering [41].
In general since only electrons in a narrow Fermi window
contribute to transport, it is possible to fit the scattering rates
with a power law form. Assuming a power law for scattering
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rates, we obtain

μH = e

m∗
〈τ 2〉
〈τ 〉 = μ0

(2s + 1.5)

(s + 1.5)

F2s+0.5(x f )�(2s + 1.5)

Fs+0.5(x f )�(s + 1.5)
, (21)

μβ = μ0
(2s + 2.5)(2s + 1.5)F2s+1.5(x f ) − x f (2s + 1.5)F2s+0.5(x f )

(s + 2.5)(s + 1.5)Fs+1.5(x f ) − x f (s + 1.5)Fs+0.5(x f )

�(2s + 1.5)

�(s + 1.5)
. (22)

Here, s is the scattering parameter, μ0 = eτ0
m∗ is the constant

mobility, and x f = ε f

kBT is the reduced chemical potential. As
can be seen, it is possible to obtain analytical solutions in the
general case, but not simple to interpret as they include Fermi-
Dirac integrals (F j (x f )) and gamma functions (�). Figure 2
shows the plot of these solutions for the Nernst coefficient
as a function of the modified chemical potential for several
s values. We note that solutions do not exist for all possible
s values. The Nernst coefficient increases as the s parameter
increases. We can conclude that the Nernst coefficient is larger
when there is a stronger energy dependence of the differential
conductivity.

Nondegenerate case. Using nondegenerate (Maxwell-
Boltzmann) statistics, it is possible to further simplify the
equations. Doing so, we obtain

μβ − μH = μ0

(
s

s + 2.5 − x f

)
�(2s + 2.5)

�(s + 2.5)
, (23)

NT = α0(
1 + (μH Bz )2

)
(

s

s + 2.5 − x f

)
�(2s + 2.5)

�(s + 2.5)
μ0Bz.

(24)
The results of Eq. (24) are only valid in the nondegenerate

limit when the chemical potential is in the gap (negative). The
analytical solutions of Eq. (24) are plotted in Fig. 2 (solid

FIG. 2. The ratio of the Nernst to Seebeck coefficient as a func-
tion of the reduced chemical potential (x f = ε f

kBT ). Zero is the band
edge. Dashed lines are the general solutions of the isotropic bands,
Eq. (20), obtained by subtracting Eq. (21) from (22) (the two mobil-
ities). Solid lines at the negative side are showing the nondegenerate
solutions of Eq. (24). As expected only at negative Fermi levels, non-
degenerate solutions match the full solutions. Solid lines at positive
Fermi levels are degenerate approximations using the Sommerfeld
expansion Eq. (27). Note that the absolute values are plotted, and the
second-order B terms (μH Bz )2 are ignored.

lines in the negative x f range. They can closely reproduce the
full solutions represented in Eqs. (20), (21), and (22) (dashed
lines). In the nondegenerate case, the N

α0
ratio decreases as

the chemical potential moves away from the band edge (as
1

s+2.5−x f
). However, we note that the α0 increases linearly as

the chemical potential moves away from the band edge as
(x f − s − 2.5). Hence, N does not have any significant chem-
ical potential dependence. The results obtained in Eq. (24) are
similar to what Delves [10] presented in his comprehensive re-
view for spherical bands and nondegenerate statistics (see Eq.
5.10 of Ref. [10]). The difference is the extra factor of �(2s+2.5)

�(s+2.5)
in our results. Delves obtained his results by modifying the
distribution function by a 1

(1+(ωτ )2 )
factor in the presence of

an external magnetic field where (ω = eB
m∗ ) is the cyclotron

resonance frequency.
Degenerate case. We can also estimate the solutions in the

metallic (degenerate case). To find μH , we approximate ∂ f 0

∂ε
∼

δ(ε − ε f ) and we obtain

μH = e

m∗
∫ τ 2δ(ε − ε f )vxvxg(ε)dε

∫ τδ(ε − ε f )vxvxg(ε)dε
= μ0 xs

f . (25)

The same approximation for μβ gives zero due to the
(ε − ε f ) term and hence, we use the Sommerfeld expansion
to obtain

μβ = μ0
∫ x2s

(
∂ f 0

∂ε

)
vxvxg(ε)(ε − ε f )dε

∫ xs
(

∂ f 0

∂ε

)
vxvxg(ε)(ε − ε f )dε

= μ0

2(2s + 1.5)x2s+0.5
f

2(s + 1.5)xs+0.5
f

= μ0xs
f

(2s + 1.5)

(s + 1.5)
. (26)

Plugging Eqs. (25) and (26) into 20 we obtain

NT = α0

(1 + (μH Bz )2)
xs

f

s

(s + 1.5)
μ0Bz. (27)

The results of Eq. (27) are only valid in the degenerate
(metallic) case when the chemical potential is well inside the
band (positive). These results are also plotted in Fig. 2 (solid
lines on the positive x f side) and can reproduce full solutions
especially when s is larger than 1. In Eq. (27), when s is
positive, NT

α0
increases with the chemical potential. When s

is negative, the ratio decreases with increasing the chemical
potential. We also remind the reader that α0 itself has 1

x f

dependence. Hence in this limit, N is proportional to xs−1
f .

Within the same approximations used to obtain
Eq. (27), the Seebeck coefficient can be expressed as
(α0 = π2

3
kB
e

(s+1.5)
x f

) and hence the Nernst coefficient is

NT = π2

3
kB
e

s xs−1
f

(1+(μH Bz )2 )
μ0Bz, ignoring the second-order B term.

This is similar to (but not identical to) NT = π2

6
kB
e

1
x f

μ0Bz

obtained by Feiber et al. [43,44]. They used nearly

144404-5



ZEBARJADI, REZAEI, AKHANDA, AND ESFARJANI PHYSICAL REVIEW B 103, 144404 (2021)

free-electron picture with a phenomenological relaxation
time approximation and assumed the Fermi level is
much larger than the thermal energy (strong metal) to
obtain their expression. Moreau [45] has developed a
phenomenological relation for the Nernst coefficient in
metals (NT = RHσ (T dα0

dT )B). It seems that Moreau argument
has been an analogy to the Hall effect which he attributed
to some sort of deformation. While he has not provided
a convincing proof, he has shown that his relation can

explain some of the experimental observations in metals
[46]. It has shown that his relation can also explain some
of the semiconductor trend [14,47]. We notice that within
single band degenerate model, α0 is linear in T and hence
T dα0

dT = α0 and RHσ = μH = μ0 xs
f . Hence, Moureau’s

relation is similar to what we obtained here in Eq. (27).
Ignoring the second-order B term, the difference is a factor of

s
(s+1.5) .

2. Case of ellipsoidal single-band

The analysis of the isotropic case points to the fact that anisotropy can increase the Nernst coefficient. Hence, here we study

the case where the effective mass is different along different axes and the dispersion relation is ε = h̄2

2 ( k2
x

mx
+ k2

y

my
+ k2

z

mz
). Using the

same steps as before and observing that dvi
d p j

= δi j

mi
, we can start from Eq. (13) to obtain

σxx = e2

V

∑
p

τ

(
−∂ f 0

∂ε

)
vxvx, (28)

σxy = − 1

V

∑
p

e3τ 2

m∗
y

(
−∂ f 0

∂ε

)
vxvxBz = −μHxyσxxBz, (29)

μHxy = e

m∗
y

∑
p τ 2

(− ∂ f 0

∂ε

)
vxvx∑

p τ
(− ∂ f 0

∂ε

)
vxvx

= e

m∗
y

〈τ 2〉xx

〈τ 〉xx
. (30)

In defining mobility, the first index refers to the direction of velocities over which the averaging is performed, and the second
index refers to the effective mass direction

σ (B) =
[

σxx −σxxμHxy B
μHyx σyyB σyy

]
. (31)

The transport matrices are 3 × 3 but since we fixed B in the z direction, to keep things simple, we only use 2 × 2 matrices.
Similarly

β(B) =
[

βxx −βxxμβxy B
μβyx βyyB βyy

]
, (32)

μβxy = q

m∗
y

〈τ 2 (ε − ε f )〉xx

〈τ (ε − ε f )〉xx
. (33)

The Seebeck tensor is then

α(B) = ρβ

T 2
= 1

(1 + μHxy μHyx B2)

[
αxx + μHxy μβyx αyyB2 −αxxμβxy B + αyyμHxy B

−αxxμHyx B + μβyx αyyB αyy + μHyx αxx μβxy B
2

]
. (34)

The Nernst coefficient is the xy component of the Seebeck tensor

NT = αxy(B) = (αyy μHxy − αxx μβxy )B

(1 + μHxy μHyx B2)
. (35)

Within the constant relaxation time, this equation simplifies to

NT = αy − αx

(1 + μHxy μHyx B2)
μ0yy Bz. (36)

Here μ0yy = eτ0
m∗

y
is the mobility in the y direction. Eqation (36) shows that the Nernst coefficient is proportional to the

difference between the Seebeck coefficients in the x and y directions. The more anisotropic a sample is, the higher the Nernst
coefficient. For instance, in layered materials and superlattices, the in-plane transport coefficients are very different compared
to the cross-plane transport coefficients. Hence these are good candidates to explore large Nernst coefficients. An extreme case
would be if there is p-type transport in the x direction and n-type transport in the y direction. While unusual, materials with
different polarity transport in in-plane and cross-plane directions have been observed and studied in the past [48–53]. It would
be interesting to measure the Nernst coefficient of these materials.
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FIG. 3. Ellipsoidal case: The absolute value of the Nernst coefficient divided by the y component of the Seebeck coefficient versus reduced
chemical potential (x f = ε f

kBT ). The curves are plotted after Eqs. 37and 38 in the nondegenerate and degenerate limits, respectively. Solid lines

are referring to when ( αy
αx

= 1) which is then like the isotropic case. Dashed lines are referring to when (( αy
αx

= 4) and dotted lines are plotted
for ( αy

αx
= 10). Red, black, and purple refer to s parameters of −0.5, 0.5, and 1.5, respectively. Second order terms in B are ignored.

Similar to the isotropic case, one can include energy-dependent relaxation times in a power-law form. Upon doing so we
obtain

NT = μ0yy B

(1 + μHxyμHyx B2)

(
αyy − αxx

2s + 2.5 − x f

s + 2.5 − x f

)
�(2s + 2.5)

�(s + 2.5)
, (nondegenerate) (37)

NT =
(
αyy − αxx

(2s+1.5)
(s+1.5)

)
(1 + μHxyμHyx B2)

xs
f μ0yy B, (degenerate). (38)

As seen in Eqs. (37) (nondegenerate) and (38), and Fig. 3, the larger the ratio of the Seebeck coefficients in the two directions,
the larger the Nernst coefficient. As before the Nernst coefficient is also an increasing function of the s parameter.

3. The two-band model

The case of two bands is important since it allows investi-
gation of the effect of bandgap and mass mismatch between
electrons and holes. To keep the equations simple, here we
assume that there are two isotropic bands, one is the conduc-
tion band labeled by e for electrons hereafter, and the other
is the valence band labeled by h for holes. We start from
Eq. (12) and define each component in the presence of two
bands. Since the current of electrons and holes are additive,
we find that

σi j = σ e
i j + σ h

i j, (39)

βi j = βe
i j + βh

i j . (40)

We note that the conductivity term that does not have B
dependence has the same sign for electrons and holes, while
the conduction term that is linear in B has opposite signs for
electrons and holes. In the thermoelectric coefficients β how-
ever, the terms with no -field are linear in charge (and opposite
in sign) and those linear in B are in e2. We note that equations
for a single band were developed for electrons assuming a
charge of −e, hence some of the signs are modified for the
case of holes. To be able to address the two bands properly,
we revise our definitions with the isotropic conditions for each

band in mind. Each band starts at ε0 and goes to infinity. (That
is the axis is flipped when dealing with the valence band.)

Defining

σ0 =
∫ ∞

ε0

e2τ

(
−∂ f 0

∂ε

)
vxvxg(ε − ε0)dε

β0 =
∫ ∞

ε0

eτT

(
−∂ f 0

∂ε

)
vxvx(ε − ε f )g(ε − ε0)dε

μH = e

m*

〈τ 2〉
〈τ 〉

μβ = e

m*

〈τ 2(ε − ε f )〉
〈τ (ε − ε f )〉 , (41)

and using superscripts e/h for electrons and holes we obtain

σxx = σ e
0 + σ h

0

σxy = (−μe
Hσ e

0 + μh
Hσ h

0

)
Bz

βxx = −βe
0 + βh

0

βxy = (
βe

0μ
e
β + βh

0μh
β

)
Bz. (42)
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FIG. 4. The absolute value of the Nernst coefficient divided by (μ0B = eτ0
m0

B) is plotted versus reduced chemical potential (x f ) for the
two-band model assuming isotropic bands under CRTA and assuming same τ0 for both electrons and holes. Zero is the middle of the bandgap
(a) The bandgap is xg = 20, mr is the ratio of effective mass of the two bands. If holes are heavier, the shift of the peak is toward the conduction
band and vice-versa, e.g., mr = 2 is plotted once for me = 1 and mh = 2 and again for mh = 1 and me = 2 (b) The mass ratio is set to 1 and
the bandgap is changed.

Plugging Eq. (42) into Eq. (12) and ignoring second-order B terms, we find

NT = −1

T 2

(
σ e

0 + σ h
0

)(
βe

0μ
e
β + βh

0μh
β

) + (
μe

Hσ e
0 − μh

Hσ h
0

)(−βe
0 + βh

0

)
(
σ e

0 + σ h
0

)2 Bz, (43)

NT =
(
σ e2

0 Ne + σ h2

0 Nh
)

(
σ e

0 + σ h
0

)2 − 1

T 2

σ e
0 βh

0

(
μh

β + μe
H

) + σ h
0 βe

0

(
μe

β + μh
H

)
(
σ e

0 + σ h
0

)2 Bz, (44)

where Ne = 1
T 2

βe
0 (μe

β−μe
H )

σ e
0

Bz is the Nernst coefficient of the conduction band alone and Nh = 1
T 2

βh
0 (μh

β−μh
H )

σ h
0

Bz is the Nernst

coefficient of the valence band alone.

The first term in the Nernst coefficient is a weighted av-
erage of the Nernst coefficients of the electrons and holes,
weighted by conductivity squared. The second term is a mixed
contribution of the two bands. We refer to the first term as the
“average Nernst” and the second term as the “mixed Nernst”
term.

To keep the calculations simple, we study Eq. (44) under
CRTA. In the isotropic single band model case, the Nernst
coefficient was found to be zero under CRTA. The two mobili-
ties μH = μβ = eτ0

m∗ were identical, hence Ne = Nh = 0. In the
two-band model, and under CRTA, the average Nernst term is
therefore zero. However, the mixed Nernst term containing the
cross terms between the two bands results in a nonzero Nernst
coefficient [see Eq. (44)].

Under CRTA, μH = μβ = μ0 = eτ0
m∗ . Defining α0 = 1

T 2
β0

σ0
,

Eq. (44) simplifies to

N = − σ e
0 σ h

0(
σ e

0 + σ h
0

)2

(
αe

0 + αh
0

)(
μe

0 + μh
o

)
Bz. (45)

Observe that α0 is similar to the Seebeck coefficient, but
it has the contribution of only one band, and it is positive for
both the conduction band and the valence band. A puzzling
observation is that even when the two bands are identical and
when we are at the center of the gap (full symmetry), the
Nernst coefficient is not zero and it is equal to N = −α0μ0Bz.
While everything in our analysis of a single band model
pointed to the requirement of asymmetry, here, we observe
that the cross terms between the two bands result in a nonzero
Nernst coefficient in the case of symmetrical bands.

We can further study Eq. (45) assuming nondegenerate
statistics (chemical potential in the gap). In the nondegenerate
limit, we can define

σ e
0 = neμe

0; σ h
0 = peμh

0,

n = Nce−(xc−x f ); p = Nve−(x f −xv ),

αe
0 = kB

e

(
xc − x f + 5

2

)
; αh

0 = kB

e

(
x f − xv + 5

2

)
. (46)

Using these definitions, Eq. (45) simplifies to

NT = −kB

e
(xg + 5)

(
μe

0 + μh
0

)
(
nμe

0 + pμh
0

)2 NcNve−xgμe
0μ

h
0Bz. (47)

Figure 4 demonstrates the effect of bandgap and effective
mass ratio on the Nernst coefficient. Here we plot the abso-
lute value of Nernst divided by μ0 Bz = eτ0

m0
Bz versus reduced

chemical potential, and we take the middle of the gap as zero
and assumed both electrons and holes have the relaxation time
of τ0. Hence the only relevant parameters are the reduced
bandgap (xg = εg

kBT ), the reduced chemical potential, the effec-
tive mass ratio (mr = mh

me
), and the electronic mass me, which

is the mass relative to the free electron mass m0. Note that we
could have divided everything by mh instead and the results
would be similar):∣∣∣∣ NT

μ0Bz

∣∣∣∣ = kB

e
(xg + 5)e−xg

(mr + 1)m−0.5
r

me
(
e−( xg

2 − x f ) + √
mre−(x f + xg

2 ))2 .

(48)
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In the middle of the gap, where the Seebeck coefficient
is normally zero, the Nernst coefficient has its peak value.
Similar to the Seebeck coefficient, the values of the Nernst
coefficient increase as the bandgap increases. This is clear in
Fig. 4(b) where we fixed the mass ratio of electrons to holes
to 1 (me = mh = 1) and only modified xg. We observe that
the Nernst coefficient in this case linearly increases with the
bandgap. Increasing the mass ratio of the electrons to holes
(or vice versa) increases the Seebeck coefficient. However,
this is not the case for the Nernst coefficient. Increasing the
mass ratio lowers the Nernst coefficient as shown in Fig. 4(a).
Finally, we notice that in Eq. (48), there is a mass in the
denominator. This means that the Nernst coefficient is larger
for smaller effective mass values. Reducing the mass values
to half increases the Nernst coefficient by a factor of 2.

Let us compare these results with that of Put-
ley [15]. For mixed conductors, Putley obtained:

NT = − 3πkB
16e

(n2μ3
e+p2μ3

h )−npμeμh (μh+μe )(7+2xg)
(nμe+pμh )2 B. The first

parenthesis in Putley is the individual contribution of
conduction and valence band, which is the equivalent
of our average Nernst term. As discussed under CRTA
this term is zero. Hence his expression reduces to
NT = 3πkB

16e (7 + 2xg) npμeμh (μh+μe )
(nμe+pμh )2 B, which differs from our

equation by a factor of 3π
16 (7 + 2xg)/(5 + xg). Putley’s work is

based on drift-diffusion model and assumes that the scattering
is dominated by a Debye longitudinal lattice model. We can
also compare our results with what is presented by Aono
[54] where he assumed the same scattering mechanism
for electrons and holes. Similarly, keeping only mixed
band contributions, Aono’s expression can be written as
NT = AkB

eσ 2 (−σhσe)(μh + μe)(5 + 3s + xg)B. The A parameter
is described by Aono as a positive numerical coefficient
that is function of s. If we ignore this parameter and set
s = 0 (CRTA), then the results of Aono are similar to what
we obtained in Eq. (47). However, we note that the start
point of both Aono and Putley seems to be degenerate
conductors, and the equations were then extended to
mixed conductors. Finally, we compare the results to
those of Price who obtained the Nernst coefficient for
two isotropic bands using the drift-diffusion model. The
mixed term in Price’s analysis (See Eq. (12)’ of Ref. [30]) is
NT = kB

e (xg + 3 + γe + γh) (μe+μh )
σ 2 σeσhBz, wherein γe and γh

are unitless numbers connecting thermal diffusion coefficient
and Einstein diffusion coefficients for electrons and holes. We
see that the only difference between Eq. (47) and this one is
the replacement of (γe + γh) by 2, meaning our treatment is
equivalent to the ratio of 1 between the thermal and normal
diffusion constants in the Price analysis.

Beyond CRTA, it is easier to study the results numerically.
What we obtained previously for isotropic single bands and
ellipsoidal bands remains valid. For instance, when consid-
ering the power law for relaxation times [τ = τ0( ε

kBT )s], the
Nernst coefficient increases as the s parameter increases. This
is shown in Fig. 4(c) where we assumed identical bands
(effective mass of 1 and the same s parameter for the two
bands) and xg = 10. Results are plotted on the logarithmic
axis and indicate enhancement in the Nernst coefficient as
the s parameter increases. Note that Fig. 4(c) is obtained
numerically.

FIG. 5. Power factor (σyyN2) plotted after Eq. (52) using arbi-
trary unit. Parameters are similar to Fig. 4 parameters. (a) xg = 20
for all graphs; for mr = 1 :me = mh = 1; for mr = 2 :me = 1 mh = 2
and me = 2 mh = 1; for mr = 5 :me = 1 mh = 5 and me = 5 mh = 1.
(b) mr = me = 1, optimum PF [Eq. (56)] plotted vs reduced bandgap
(xg).

In analyzing the Nernst coefficient, we observed that the
Nernst coefficient increases as the bandgap increases. This
observation is against the general knowledge that the best
thermomagnetic materials are semimetals. To understand the
benefit of the semimetals, it is not sufficient to study the
Nernst coefficient, and we need to study the thermomagnetic
power factor.

PF = σ

μ0

∣∣∣∣ NT

μ0Bz

∣∣∣∣
2

= 2k2
B

e

(
2πkT

h2

) 3
2

(xg + 5)2 e−2xg

× (mr + 1)2

mrm1.5
e

(
e−( xg

2 − x f ) + √
mre−(x f + xg

2 ))3 . (49)

Figure 5 shows the behavior of the power factor. We ob-
serve that the power factor has a similar dependence on mass
ratio as the Nernst coefficient. We also note that the power
factor increases as the effective mass decreases. The optimum
power factor is when the mass ratio is 1. In this case, the
optimum power factor is in the middle of the bandgap. Under
these conditions, the thermomagnetic power factor can be
simplified to

PF ∝ (xg + 5)2e− xg
2

m1.5
e

. (50)

The power factor as a function of the reduced bandgap
(xg) is plotted in Fig. 5(b). We notice that the power factor
decreases as the bandgap increases. This is consistent with our
understanding that narrow gap semiconductors and semimet-
als are good thermomagnetic candidates. Hence while the
Nernst coefficient increases with bandgap, the thermomag-
netic power factor decreases with bandgap.

III. CONCLUSIONS

In this work, we presented a description of the Nernst
coefficient in simple conductors. Within an isotropic single
band model, we obtained that the Nernst coefficient is zero
in the CRTA. A nonzero Nernst coefficient in this case is
the result of energy-dependent relaxation times and is propor-
tional to the difference between thermal and Hall mobilities
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times the Seebeck coefficient. When using power laws and
the s parameter to describe the relaxation times, we obtained
that the Nernst coefficient is an increasing function of s. It is
proportional to the Seebeck coefficient times mobility times
magnetic field (N ∝ α0μ0Bz). There is a factor of 1

(1+(μH Bz )2 )
which comes from the determinant of the conductivity tensor.
In the nondegenerate limit, the Nernst coefficient does not
have any explicit dependence on the chemical potential, and
in the degenerate limit, it is proportional to xs−1

f .
When the bands are anisotropic, the Nernst coefficient is

nonzero even within the CRTA and it is proportional to the
difference in the Seebeck coefficient of the x and y direc-
tions. Hence, within the one-band model, anisotropy in the
x-y crystallographic direction is desired. Within the two-band
model, we observed however that identical bands result in
larger Nernst coefficient values. The Nernst coefficient peaks

close to the middle of the bandgap where the Seebeck coeffi-
cient is zero. It increases linearly as the bandgap increases.
However, we also obtained that the thermomagnetic power
factor reduces as the bandgap increases.

We conclude that identical electron and hole bands that are
anisotropic (in the crystallographic directions perpendicular
to the magnetic field) with large s parameters and zero or
overlapping bands are the best candidates for good thermo-
magnetic materials.
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