
PHYSICAL REVIEW B 103, 144306 (2021)

Temporal photonic (time) crystal with a square profile of both permittivity ε(t )
and permeability μ(t )
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We present a comprehensive study of a “temporal photonic crystal” or “time crystal” with a square profile of
both its permittivity ε(t ) and permeability μ(t ). The continuity of the displacement field D(t )eikx and magnetic
field B(t )eikx(where k is the wave number) across the (simultaneous) discontinuities of ε(t ) and μ(t ) facilitates
the Krönig-Penney methodology of Solid State physics, leading to an analytic photonic band structure (PBS)
that relates the wave frequency ω to k. It is periodic in ω, with the period given by the modulation frequency �

and exhibits k bands separated by k gaps. The PBS depends qualitatively on three parameters: the strengths of
the electric and magnetic modulations mε and mμ and τ = t1/(t1 + t2) associated with the intervals t1 and t2 that
comprise a modulation period T (= 2π/�). For equal electric and magnetic modulations the PBS is composed
of straight lines and there are no k gaps. This can be explained by the fact that for mε = mμ the wave impedance
is continuous at the abrupt interfaces of ε(t ) and μ(t ); hence no reflections occur. Conversely, the existence
of gaps for mε �= mμ can then be associated with diffraction occurring for the frequencies ω = (n/2)� in the
presence of discontinuities of the wave impedance. In comparison to harmonic modulation, where only the first
gap is appreciable, for square modulation large gaps, that increase with the difference |mε − mμ|, exist even
between distant bands. In the particular case mμ = −mε [with ε(t ) and μ(t ) oscillating out of phase], all the
gaps have equal widths. The field D(t ) displays the Bloch-Floquet behavior, namely, oscillations of frequency
� being modulated by an envelope of frequency ω(< �). For ω = (n/2)�, the fields are standing waves. We
also studied the optical response to a monochromatic wave incident at the modulated slab, namely, the spectral
behavior of the frequency combs that are transmitted and reflected by the slab, as well as the field profile inside
the slab. Especially interesting is the case of equal modulations mε = mμ where only the fundamental harmonic
n = 0 is transmitted if the modulations are out of phase, while no light at all is reflected if they are in phase.
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I. INTRODUCTION

We study propagation of a plane light wave in a magneto-
dielectric medium with time-dependent permittivity ε(t ) and
permeability μ(t ). While our medium is spatially uniform,
ε(t ) and μ(t ) are periodic in time, with simultaneous, abrupt
changes, as seen in Fig. 1. The dispersion relation in such a
modulated system takes the form of a photonic band structure
(PBS), which we seek to analyze in depth, as well as the
time-dependence of the EM fields. Our investigation con-
cerns both the infinite medium and a slab and is restricted to
stable solutions (characterized by real frequencies ω and wave
numbers k).

The interest in such “temporal photonic crystals” or, briefly
“time crystals,” goes back to F. R. Morgentahler [1] who con-
sidered a medium with abrupt change of its refractive index
without impedance variations. He demonstrated a change of
the electromagnetic wave velocity, conservation of electro-
magnetic momentum and possibility to increase the energy of
the electromagnetic wave. Another early paper, by T.M.Ruiz
et al. [2], deals with propagation in the presence of an abrupt
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change of the permittivity and demostrated the conversion
of an initial wave into “transmitted” and “reflected” waves
by the temporal interface. In spite of an abrupt shift of ε(t )
and μ(t ) the fields D(t ) and B(t ) remain continuous at the
instant of that shift [3,4]. At such a temporal interface the
transmitted fields can increase [4–6] because of energy being
supplied by the modulated medium to the wave [1]. These
calculations were extended by Pacheco-Peña et al. [7] to a
metallic slab with negative permittivity. For ε(t ) with har-
monic periodicity Zurita-Sánchez et al. [8] obtained a PBS
with k bands separated by wave number k gaps, rather than
ω gaps as in case of ordinary (spatial) photonic crystals. As
demonstrated by N.Wang et al. [9] such behavior holds good
even for a complex ε(t ). The WKB approximation [5], the
transmission matrix method [10,11], and topological analy-
sis [12,13] have been applied to the case of square (abrupt)
modulation of the permittivity, leading to a large number of
band gaps in comparison to harmonic modulation. Effects
on wave propagation due to modulation of both ε(t ) and
μ(t ) were researched by Martínez-Romero et al. [14]. Con-
tinuous wavelike modulation of the form ε(x − vt ) was also
investigated [15–18]. Repercussions of such “spatiotemporal”
modulation were covered at length by Caloz and Deck-Léger
[3]. For time crystals, the fields are superpositions of har-
monic waves with frequencies |ω − n�|, where �/2π is the
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FIG. 1. The permittivity ε(t ) and permeability μ(t ) are periodic
functions of time with period T , composed of sections t1 and t2. Here
ε̄ = (1/2)(ε1 + ε2) and μ̄ = (1/2)(μ1 + μ2).

modulation frequency and n runs over all integers; hence, the
optical response is manifested as a “frequency comb” [8].
Taravati and Kishk [19] show that in a spatiomodulated slab
with equal modulations of the permittivity and permeability
there are no reflections at the temporal interfaces, although
frequency combs do obtain at the slab surfaces. It was also
shown that in such media nonreciprocity with respect to the
direction of propagation is obtained [20], with this effect
increasing with the modulation strength. Other publications
report parametric resonances in time crystals with modulation
of the permittivity and/or permeability for specific thick-
nesses of a modulated slab (that depends on the modulation
frequency) [21–23].

Interesting properties found in optical and electronic sys-
tems are leading to renewed interest in modulated systems.
For example, it was shown that modulation of a medium can
change and control the shape of an optical pulse [24–27],
nonreciprocal optical systems were designed with no recourse
to applied magnetic fields [28,29], and Y.Zhang et al. [30] re-
ported that the radiation from an antenna transmitted through
a weakly modulated medium can suffer a frequency shift.
Now, while it is very difficult in practice to substantially
modulate the permittivity or permeability, there exists a close
analogy with low pass transmission lines, valid in the long-
wavelength limit and negligible dissipation [31–33]. This led
to the first observation of a forbidden wave number (phase
advance) gap [34]. Nonreciprocal transmission lines for the
“front end” were designed using varactors modulated by a
pump wave [35–37]. Employing modulated varactors, low
noise parametric amplifiers were also designed [38]. Miscel-
laneous applications, based on space-time modulation, were
designed: a mixer-duplexer-antenna leaky-wave system [39]
and frequency mixing [40] for aperiodic modulation. It was
also demonstrated that the Bode-Fano limit can be extended
for short pulses by abrupt switching of the impedance trans-
mission line [41]. The accumulation of energy in reactive

elements has been recently found to have potential for the de-
sign of parametric oscillators [42]. The harmonics generated
in a weakly modulated spatiotemporal transmission line con-
serve energy according to the Manley-Rowe relation [39]. We
also note that the accumulation of energy in time-modulated
systems could lead to sustained growth of an emitted signal;
for this reason an analysis of stability, based on the transition
function of the system was developed [10,43].

The square modulations of Fig. 1 are ideally suited for
the Krönig-Penney methodology (KPM), introduced by these
scientists in 1931 to obtain a first quantum-mechanical band
structure of a crystal [44]. While it was a toy model as
far as real crystals are concerned, it showed the way for
more sophisticated metods. The constant sections have sim-
ple, well known solutions that have to be connected by
appropriate boundary conditions; in additon, the periodicity
is introduced by means of the phase advance over a single
period. The KPM has been also implemented for several su-
perlattices: of semiconductors [45], metal-dielectric [46], and
semiconductor-graphene [47]. Improvement of the thermo-
generating efficiency of a semiconductor superlattice was also
reported [48]. Moreover, a similar methodology was used the-
oretically and experimentally to treat random changes of the
dielectric layers [49]. The KPM also led to an interpretation
of PBS in terms of reflection and transmission coefficients
[50] and to PBSs of alternated plasma and dielectric layers
[51–53]. Further, this methodology was employed to layers
with nonlinear response, giving rise to solitons in 1D [54] and
2D [55] periodic structures. In addition, propagation through
parallel plate [56] and circular waveguides [57] with Krönig-
Penney morphology was also studied for application as filter.

In the next section, we will demonstrate the KPM by ap-
plying it to the problem of double square modulations of the
parameters in Fig. 1: both the permittivity and the permeabil-
ity; an analitic PBS or dispersion relation ω(k) will be derived.
In Sec. III, we will limit the generality to equal sections t1
and t2 in Fig. 1 and will provide graphical results for both
the eigenvalues ω(k) and the eigenfunctions D(t ) and E (t ).
We will consider both different and equal electric modulation
strengths and, in the latter case, out-of-phase, and in-phase
modulations, see Secs. III A, III B, and III C, respectively. In
Sec. IV, we deal with unequal sections t1 and t2 in Fig. 1.
Simple analytic expressions are derived throughout. Section
V is devoted to the optical response of a temporal photonic
crystal slab to an incident monochromatic wave. All the fields
are described in terms of real frequencies ω and real wave
numbers k, thus corresponding to stable solutions, as proved
in Appendix using the transition matrix method. The paper
concludes in Sec. VI.

II. PHOTONIC BAND STRUCTURE (PBS) AND
ELECTROMAGNETIC FIELDS

As shown in Fig. 1, the modulation periods T (and,
therefore, modulation frequencies �/2π = 1/T ) of the per-
mittivity ε(t ) and permeability μ(t ) are assumed to coincide.
Within every period T there are two intervals of time, t1 and
t2 (with t1 + t2 = T ) during which both parameters maintain
constant values; these are connected by discontinuous rises
or falls that occur simultaneously for ε(t ) and μ(t ) at all the
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instants t = nT and t = t1 + nT (n assumes all the integer
values). However, the two functions can oscillate in phase (as
in the example of the figure) or out of phase; we define them
for a single period 0 < t < T as

ε(t ) =
{
ε1 = ε̄(1 + mε ), 0 < t < t1

ε2 = ε̄(1 − mε ), t1 < t < T
, (1)

μ(t ) =
{
μ1 = μ̄(1 + mμ), 0 < t < t1

μ2 = μ̄(1 − mμ), t1 < t < T
. (2)

Here, ε̄ and μ̄ are simple averages of, respectively, ε1 and
ε2 and of μ1 and μ2 (even if t1 �= t2) and the modulation
strengths are

mε = (ε1 − ε2)/(ε1 + ε2), mμ = (μ1 − μ2)/(μ1 + μ2).

While our treatment is limited to positive values of ε1,2 and
of μ1,2, the modulations can assume any value in the interval
[−1, 1]. If the maximum values of both ε(t ) and μ(t ) occur in
the same time intervals (as, for instance, in Fig. 1), then both
mε and mμ can be taken to be in the interval [0, 1]. On the other
hand, if it is the maximum values of ε(t ) and minimum values
of μ(t ) (and vice versa) that fall in the same intervals then mε

and mμ differ in signs; we will choose mε in the interval [0, 1]
and mμ in the interval [−1, 0].

Our dynamic medium is assumed to be free of charges and
currents, spatially uniform, and isotropic. Then the Faraday
and Maxwell laws read as

∂E (x, t )/∂x = −∂B(x, t )/∂t, (3)

∂H (x, t )/∂x = −∂D(x, t )/∂t, (4)

where D(t ) = ε(t )E (t ) and B(t ) = μ(t )H (t ). Eliminating
the magnetic field, we get a wave equation for the
displacement D(t ):

∂2D(x, t )

∂x2
= ε(t )

∂

∂t

[
μ(t )

∂D(x, t )

∂t

]
. (5)

This allows a plane wave solution, characterized by a wave
number k:

D(x, t ) = D(t )eikx. (6)

This leaves us with a second-order differential equation for
the time-dependent amplitude D(t ),

ε(t )
∂

∂t

[
μ(t )

∂

∂t
(D(t ))

]
+ k2D(t ) = 0. (7)

Taking advantage of the fact that ε(t ) and μ(t ) are constant
within the intervals 0 < t < t1 and t1 < t < T , the solution
must have the form

D(t ) =
{

D+
1 e−iω1t + D−

1 eiω1t , 0 < t < t1

D+
2 e−iω2t + D−

2 eiω2t , t1 < t < T
. (8)

Substitution in Eq.(7) relates the parameters ω1 and ω2 to the
wave number k as

ω1 = k/
√

ε1μ1, ω2 = k/
√

ε2μ2. (9)

With Eq. (6) in mind, Eq. (8) describes right- and left-
propagating waves of the form ei(kx∓ω1,2t ).

The Bloch-Floquet theorem allows us to extend the solu-
tion Eq. (8) from the time-interval [0, T ] to arbitrary instants
of time t :

D(t + nT ) = D(t )e−inωT . (10)

The “Bloch frequency” ω plays the role of the Bloch wave
vector k in spatially periodic systems and is the same as the
excitation frequency in the presence of a source. On the other
hand, the frequencies ω1,2 in Eq. (9) merely describe the local
(in time) behavior in the intervals t1,2.

It follows directly from Eqs. (3) and (4) that the fields B(t )
and D(t ) must be continuous over an abrupt interface in time
td (where d stands for “discontinuity”). For the displacement
vector, we have

D(t−
d ) = D(t+

d ). (11)

Also, by Eq. (4), the continuity of B(t ) = μ(t )H (t )
implies that

μ(t−
d )∂D(t−

d )/∂t = μ(t+
d )∂D(t+

d )/∂t . (12)

Then applying Eq. (11) and Eq. (12) to td = t1, using Eq. (8)
we get

D+
1 e−iω1t1 + D−

1 eiω1t1 = D+
2 e−iω2t1 + D−

2 eiω2t1 , (13)

μ1ω1(−D+
1 e−iω1t1 + D−

1 eiω1t1 )

= μ2ω2(−D+
2 e−iω2t1 + D−

2 eiω2t1 ). (14)

Similarly, we also apply Eq. (11) and Eq. (12) at the disconti-
nuities td = 0 and td = T . In addition, we have to use Eq. (10)
for t = 0+:

D(T −) = D(T +) = D(0+)e−iωT . (15)

Then Eqs. (11) and (12) take the following form at the instant
td = T :

(D+
1 + D−

1 )e−iωT = D+
2 e−iω2T + D−

2 eiω2T , (16)

μ1ω1(−D+
1 + D−

1 )e−iωT μ2ω2
(−D+

2 e−iω2T +D−
2 eiω2T ).

(17)

Equations (13), (14), (16), and (17) can be rewritten com-
pactly in matrix form:

⎛
⎜⎜⎜⎜⎝

e−iω1t1 eiω1t1 −e−iω2t1 −eiω2t1

−μ1ω1e−iω1t1 μ1ω1eiω1t1 μ2ω2e−iω2t1 −μ2ω2eiω2t1

e−iωT e−iωT −e−iω2T −eiω2T

−μ1ω1e−iωT μ1ω1e−iωT μ2ω2e−iω2T −μ2ω2eiω2T

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

D+
1

D−
1

D+
2

D−
2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0

0

0

0

⎞
⎟⎟⎟⎠. (18)
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The condition that the determinant of the four by four matrix must vanish renders the eigenvalues ω(k), while these four
homogeneous equations determine three of the four D amplitudes in terms of a selected fourth. (In principle, the fourth,
undetermined amplitude is associated with the amplitude of the excitation.)

It is convenient to normalize the frequency ω and the wave number k by means of the modulation frequency �:

ω̂ = ω/�, k̂ = k/�
√

ε̄μ̄. (19)

We also introduce a parameter τ = t1/T . For τ < 0.5, t1 < t2. while for τ > 0.5, t1 > t2. The next section will be limited to
the simplest case, t1 = t2, namely. τ = 0.5. The aforementioned determinantal equation can be solved exactly, to yield—after
considerable algebra—the reduced frequency ω̂ as function of the reduced wave number k̂:

cos(2πω̂) = 1

2
(1 − MA)cos

{
2π k̂

[
τ

M+ − 1

M− (1 − τ )

]}
+ 1

2
(1 + MA)cos

{
2π k̂

[
τ

M+ + 1

M− (1 − τ )

]}
, (20)

M± = √
(1 ± mε )(1 ± mμ), (21)

MA = (1 − mεmμ)/M−M+. (22)

This transcendental dispersion relation involves three pa-
rameters: τ , the dielectric modulation mε and the magnetic
modulation mμ. It is periodic in ω̂ with the period 1 (corre-
sponding to the period � for ω), however it is not, in general,
periodic in k̂. This situation, of course, reflects the periodicity
in time, rather than space, of our parameters. For mμ = 0 and
τ = 1/2, Eq. (20) reduces to results previously reported in
Refs. [11–13].

It is instructive to examine the low-frequency, long-
wavelength limit, namely ω̂ → 0 and k̂ → 0, in which case
Eq. (20) is reduced to

ω

k
=

[√
ε̄(1 − m2

ε )

1 + mε − 2mετ

√
μ̄(1 − m2

μ)

1 + mμ − 2mμτ

]−1

. (23)

As seen, in this limit, the phase velocity is constant and the
ω(k) dispersion is linear. The same limit was investigated
in Ref. [8] (supplement D) for purely electric modulation
(mμ = 0 and ε̄ = 1) and ε(t ) with an arbitrary profile, with
the following result for the effective relative permittivity:

1/ε̃ = 1

T

∫ T

0
[1/ε(t )]dt . (24)

For the profile in Eq. (1) this reduces to

ε̃ =
√

ε̄(1 − m2
ε )

1 + mε − 2mετ
. (25)

This is the same as Eq. (24) for mμ = 0. This suggests that,
for purely magnetic modulation (mε = 0 and μ̄ = 1) the ω/k
slope is given by

μ̃ =
√

μ̄(1 − m2
μ)

1 + mμ − 2mμτ
. (26)

Thus, in the general case of modulation, ω/k = (ε̃μ̃)−1.

III. BAND STRUCTURE AND FIELDS FOR t1 = t2

In the following three sections, we will limit the consider-
ation to the case of equal sections t1 and t2, namely, τ = 1/2.

A. Unequal modulations of the permittivity and permeability,
mε �= mμ

In Fig. 2, we present the PBS corresponding to the modula-
tions mε = 0.5 and mμ = −0.1; the different algebraic signs
indicate that ε(t ) and μ(t ) oscillate out of phase in this exam-
ple. The two frequency periods (corresponding to 0 < ω < �

and � < ω < 2�) indicate that the PBS is periodic in the
wave frequency, the period being the modulation frequency.
The first nine k-bands are labeled as p = 1, 2, . . . , 9 and are
separated by k gaps, 	kp,p+1 = kp+1 − kp, that are delimited
by the k values at its two sides taken for ω = (1/2)n� with
an arbitrary integer n. The inset in the figure zooms in at the
low-frequency, long-wavelength limit. As can be expected, the
slope of the straight line is indeed given by (23).

It is interesting to compare Fig. 2—for square
modulation—with PBSs for harmonic modulation. Examples
of the latter are given by Fig. 3 of Ref. [8] for mμ = 0
and Fig. 1 of Ref. [14] for mε �= mμ. There is a qualitative
difference, namely, for harmonic modulation there are no
band gaps between the bands p = 2 and p = 3, p = 4 and
p = 5, etc, while, for the square modulation, finite gaps
	k2,3, 	k4,5, etc. appear in Fig. 2. We also note a quantitative

FIG. 2. Photonic band structure (PBS) for the reduced frequency
ω̂ versus reduced wave number k̂, as defined in Eq. (19). Here
t1 = t2(τ = 0.5) and the electric and magnetic modulations are out
of phase, mε = 0.5 and mμ = −0.1. Two periods of the frequency
(period � = 2π/T ) are presented and the first nine k bands are
labeled by the index p. The PBS is depicted in blue lines for real ω.
The inset zooms in on the low-frequency, long-wavelength behavior,
comparing with the limiting value of the phase velocity (23).

144306-4



TEMPORAL PHOTONIC (TIME) CRYSTAL WITH A … PHYSICAL REVIEW B 103, 144306 (2021)

FIG. 3. Normalized displacement fields for the first two bands
(p = 1 in blue line and p = 2 in red line) in Fig. 2, calculated at
ω = 0.1�, namely at two pink dots there.

difference: while, for the harmonic modulation, only the first
gap 	k1,2 is appreciable, there are sizable gaps between all
the bands for the square modulation in Fig. 2. And, these
gaps do not diminish gradually as p increases; 	kp,p+1 has a
complicated dependence on the modulations. For example, in
Fig. 2, 	k5,6 is the smallest gap, although it is flanked by the
two largest gaps, 	k4,5 and 	k6,7. This behavior is apparently
related to the presence of high harmonics in the square profile
of Fig. 1.

Turning to the eigenvector problem of Eq. (18), the D1,2

coefficients depend on the values of ω and k and, therefore,
for a given ω must be determined separately for each band
p. (Only for a well defined system, excited by a source, is it
possible to determine the relative contributions to the fields
for each band p.) We will evaluate the fields at the point
x = 0, so, according to Eq. (6), D(x, t ) = D(t ). In Appendix,
we prove that the fields corresponding to the eigenvalues of
Eq. (18) are stable. A complete interpretation of the behavior
of D(t ) can involve oscillations with four frequencies: the
modulation frequency �, the Bloch-Floquet frequency ω, and
the auxiliary frequencies ω1 and ω2 given in Eq. (9). The gross
behavior can be understood by the following formulation of
the Bloch-Floquet theorem [from which Eq. (10) can be easily
derived]: D(t ) must be the product of e−iωt and a function
that has the periodicity of the modulation 2π/�. For ω < �

(as is the situation in the examples below), this means that
relatively rapid oscillations of frequency � are modulated by
a relatively slowly oscillating envelope of frequency ω. This
is clearly observed in Fig. 3 for the second band (p = 2) in
Fig. 2, displaying the periods T and 10T (corresponding to
our selection ω = 0.1�). On the other hand, D(t ) for the first
band (p = 1) has the form cos(ωt ) with ω = 0.1�, as would
be appropriate for a medium with constant permittivity and
permeability. This is hardly surprising, this mode is in the
low-frequency, long wavelength region, with phase velocity
given by Eq. (23).

Why is there no trace of oscillations with the frequencies
ω1 and ω2 in Fig. 3? That’s because the corresponding peri-
ods, T1 = 2π/ω1 = 13.51T and T2 = 2π/ω2 = 8.62T are too
large to visibly affect the behavior within a single period T .
We can expect ω1 and ω2 to make a difference if they are

FIG. 4. As in Fig. 3 for the band p = 15. Because of the large
k value of this band, the periods T1 = 2π/ω1 = 0.179T (blue line)
and T2 = 2π/ω2 = 0.1147T (red line) are clearly discernible within
each period T ; see Eq. (9).

sufficiently large to have T1 and T2 smaller than T . Eq. (9)
suggests that this could be achieved for large values of k,
namely for distant bands (p � 1). With this motivation, in
Fig. 4, we plot D(t ) for the band p = 15; now T1 = 0.179T
and T2 = 0.1147T . And now, indeed, we can observe oscil-
lations of period T1 (T2) in the first (second) half of each
period T .

The case ω = (1/2)� (orange points in Fig. 2) merits spe-
cial attention. We find numerically that in Eq. (8) D−

1 = D+∗
1

and D−
2 = D+∗

2 , the asterisk meaning “complex conjugate.”
This implies that D(t ) is proportional to cos[(1/2)�t + φ1,2],
where φ1,2 are phase angles corresponding to k1,2(ω = �/2).
It then follows from Eq. (6) that Re(D(x, t )) is proportional
to cos(k1,2x) cos[(1/2)�t + φ1,2], hence describing stationary
waves for the first two bands. This is hardly surprising in view
of recent results for harmonic modulation [58] and explains
the behavior of both bands in Fig. 5 as given by a simple
oscillation of frequency (1/2)�, rather than the propagating
Bloch-Floquet wave form of Fig. 3 for p = 2.

The continuity of D(t ), explicitly stated in Eq. (11), is
manifest in Figs. 3–5. On the other hand, because ε(t ) is
discontinuous at the times td = (T/2)n (n being an arbitrary

FIG. 5. Normalized displacement fields for the first two bands
(p = 1, 2) in Fig. 2 for the frequency ω = 0.5� (at the orange dots
in Fig. 2).
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FIG. 6. The displacement field D(t ) (blue line) and the electric
field E (t ) (red line) for the first band in Fig. 2 at ω = 0.1�. While
D(t ), according to Eq. (11), is continuous across the discontinuities
of ε(t ) and μ(t ) at all the integer multiples of (1/2)T , E (t ) =
D(t )/ε(t ) is obviously discontinuous.

integer), we can expect to find corresponding discontinuities
in the electric field E (t ). This is confirmed by Fig. 6, that
compares the E (t ) and D(t ) fields.

B. Equal, out-of-phase modulations of ε(t ) and μ(t )

In this subsection we deal with electric and magnetic mod-
ulations of equal magnitude that are, however, out of phase.
This situation can be described by means of a single modu-
lation parameter m = mε = −mμ. Equation (20) then greatly
simplifies:

cos(
2π k̂√
1 − m2

) = m2 + (1 − m2)cos(2πω̂). (27)

This PBS is periodic in k̂, as see in Fig. 7.
The solutions for the odd and even k bands at their waists

(ω = �/2) can be written as follows:

k̂p =
√

1 − m2

2

(
p − 1 + |cos−1(2m2 − 1)|

π

)
,

FIG. 7. PBS for out-of-phase modulations of equal magnitudes:
mε = −mμ = m = 0.1 (blue line) and 0.5 (red line). The band gaps
are all equal for a given m, as given by Eq. (30).

FIG. 8. Gap/midgap ratios between the bands 1 and 2 (blue line)
and 3 and 4 (red line) in Fig. 7, as function of the modulation m,
according to Eq. (32).

p = 1, 3, 5 . . . , (28)

k̂p+1 =
√

1 − m2

2

(
p + 1 − |cos−1(2m2 − 1)|

π

)
,

p = 1, 3, 5 . . . (29)

with the understanding that 0 < | cos−1(2m2 − 1)| < π . The
separation between two adjacent bands is then

	k̂p,p+1 =
√

1 − m2

(
1 − |cos−1(2m2 − 1)|

π

)
(30)

independently of the band index p. It also follows that the
midgap point is

k̂p,p+1 = k̂p + k̂p+1

2
= p

√
1 − m2

2
(31)

and, therefore, the gap-midgap ratio is

	k̂p,p+1

k̂p,p+1
= 2

p

(
1 − |cos−1(2m2 − 1)|

π

)
. (32)

Unlike the behavior we’ve seen in Fig. 2, Eq. (30) indicates
that the band gaps 	k̂p,p+1 are all the same, as confirmed by
Fig. 7 for two values of the modulation m. It is noteworthy
that here there are no gaps between the bands 2 and 3, 4 and
5, etc (as found in the general case of modulation, Fig. 2). The
gap-midgap ratio, Eq. (32) is plotted in Fig. 8 for the first and
second gaps.

C. Equal, in-phase modulations of ε(t ) and μ(t )

In this subsection the electric and magnetic modulations
are assumed to be equal in sign, as well as in magnitude,
namely, mε = mμ = m. This is to say that the maximum (and
also the minimum) values of ε(t ) and of μ(t ) occur simulta-
neously in the same time intervals. Eq. (20) greatly simplifies,
resulting in

k̂p = (1 − m2)

{
(−1)p−1ω̂ +

[
p

2
− 1 + (−1)p−1

4

]}
(33)

with p being the band number. The PBS, displayed in Fig. 9
for two values of the modulation, is a collection of straight
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FIG. 9. The PBS for equal (in-phase) modulations are distin-
guished by constant (positive and negative) group velocities and by
the absence of band gaps. Two cases of modulation are considered:
m = 0.1 (blue lines) and m = 0.5 (red lines). The slopes are given
by Eq. (33).

lines with positive and negative slopes that increase with m,
diverging for m → 1. Not surprisingly, this is the same slope
as obtained in Eq. (23) in the ω → 0, k → 0 limit in the
special case that τ = 0.5 and mε = mμ = m. The most notable
aspect of Fig. 9 is the total absence of band gaps, as was also
found previously for harmonic modulations of ε(t ) and μ(t )
[14]. In order to explain this, we now explore the eigenvectors.

It turns out that, for ω/k > 0, D−
1,2 = 0, while, for

ω/k < 0, we get D+
1,2 = 0. This means that for the positive

(negative) slope there exist only waves that propagate to the
right (left). In other words, no reflections arise at the temporal
discontinuities td . This can be explained by means of the
characteristic impedances. For, it follows from Eqs. (1) and
(2) that μ1/ε1 and μ2/ε2 are both equal to μ̄/ε̄ for mε = mμ.
The characteristic wave impedances Z in the time intervals
t1(= T/2) and t2(= T/2) are then equal:

Z1 =
√

μ1

ε1
=

√
μ̄

ε̄
=

√
μ2

ε2
= Z2. (34)

The average impedance Z̄ = √
μ̄/ε̄ has been defined in

terms of the average permittivity ε̄ and the average perme-
ability μ̄ (see Fig. 1). This allows us to associate the k-gaps
with reflections of the fields at temporal interfaces that involve
discontinuities of the characteristic wave impedance.

IV. UNEQUAL TIME INTERVALS t1 AND t2

Figure 1 shows an example of two steps of unequal lengths
t1 �= t2 that make up a modulation period (t1 + t2 = T ). In
terms of the parameter τ = t1/T , this can be expressed as
τ �= 0.5. However, the former Sec. III was restricted to the
simplest situation, t1 = t2 or τ = 0.5. In the present sec-
tion, we briefly explore how the parameter τ affects the first
band gap.

Figure 10 presents the gap/midgap ratio, as function of τ ,
for three cases of out-of-phase modulations (different signs
of mε and mμ). For mε = 0.5 and mμ = −0.5 (black line), the
largest ratio is obtained for τ = 0.5, decreasing symmetrically
as τ approaches the limiting values 0 and 1, at which the
ratio vanishes because ε(t ) and μ(t ) become constant in these

FIG. 10. First gap/midgap ratio as function of the fraction τ =
t1/T (see Fig. 1) for three cases of out-of-phase modulations: mε =
−0.5 and mμ = 0.1 (blue line), mε = 0.5 and mμ = −0.1 (red line),
and mε = 0.5 and mμ = −0.5 (black line).

limits. For τ = 0.5, the PBS is shown in Fig. 7 (blue line),
so the constant gaps 	k̂ there, given by Eq. (30), are the
largest that can be attained for mμ = −mε. On the other hand,
for |mε| �= |mμ| (blue and red lines), the gap/midgap ratios
are asymmetric with respect to τ , peaking at τ = 0.6104 for
mε = 0.5 and mμ = −0.1 and at τ = 0.3896 for mε = −0.5
and mμ = 0.1. These two values of τ are complementary in
the sense that they sum up to 1.

It is also possible to prove that, for given values of mε

and mμ the maximum gap/midgap ratio is obtained for the
following value of τ :

τ = 1

1 +
√

(1−mε )(1−mμ )
(1+mε )(1+mμ )

. (35)

V. OPTICAL RESPONSE

Up to this point we considered propagation in a boundless
modulated medium; in this section we deal with the optical
response of a dielectric slab whose permittivity and perme-
ability are modulated periodically in time. The slab extends
from x = −L/2 to L/2 and is bounded on both sides by media
of (static) permittivity ε1 and permeability μ1. We wish to
calculate the reflected and transmitted response to a normally
incident plane harmonic wave of circular frequency ω and
wave vector k0 = ω

√
ε1μ1; its electric and magnetic fields are

defined as
Einc(x, t ) =E0eik0(x+L/2)e−iωt , (36)

Hinc(x, t ) =
√

ε1

μ1
E0eik0(x+L/2)e−iωt . (37)

Our dispersion relation Eq. (20) predicts that inside the
dynamic slab the wave fields will be superpositions of plane
waves with wave vectors kp(ω), p = 1, 2, . . . Moreover, for
a given ω all the harmonics ω − n�, n = ±1,±2, . . . can be
excited. Therefore we express the electric field as follows:

Eslab(x, t ) =
∑

n

∑
p=1

epne−i(ω−n�)t [Apeikp(x+L/2)

+ Bpe−ikp(x+L/2)] (38)
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FIG. 11. Electric field amplitudes |e1n| for the first k-band (p =
1) and harmonics n from −10 to +10. The reduced frequency is ω̂ =
0.4 and the modulations are mε = 0.5, mμ = −0.1. These eigenvec-
tors were calculated by two methods: the Fourier representation of
Krönig-Penney approach, Eq. (18) (blue lines), and the eigenvalue
equation Eq. (39) for the bulk problem (red dots).

Here, Ap and Bp are the amplitudes, respectively, of the partial
waves that propagate to the right and left. The eigenvectors of
the electric field epn are obtained from the eigenvalue problem
for the boundless (bulk) medium, as in [14]:∑

m,n

[μ̂l−mε̂m−n(ω̂ − l )(ω̂ − m) − k̂2
pδlnδm0]epn(ω̂) = 0

l, m, n = 0,±1,±2, . . . (39)

Here, the normalized Fourier coefficients μ̂n and ε̂n must be
calculated, of course, for the square profiles of μ(t ) and ε(t )
in Fig. 1.

The magnetic field Hslab(x, t ) has the very same form as
Eslab(x, t ), Eq. (38), but with the epn replaced by the corre-
sponding eigenvectors hpn. These can be also obtained from
the Ampére-Maxwell law as

hpn =
∑

m

√
ε̄

μ̄

ε̂n−m(ω̂ − n)

k̂p
epm (40)

The reduced wave vectors k̂p(ω̂) in Eqs. (39) and (40) are
most conveniently obtained from (20). As for the eigenvectors
epn(ω̂), while they can be calculated by the KP approach
from (18), we find it more expedient to employ Eq. (39). The
results are practically the same provided that the matrix used
in Eq. (39) is large enough. To illustrate this, we apply both
methods to calculate the eigenvectors e1n(ω̂ = 0.4) for the
first band (p = 1) and 21 different harmonics n. The excel-
lent coincidence displayed by the frequency comb in Fig. 11
confirms the equivalence of the two methods.

The electric and magnetic fields that are reflected by the
slab and the transmitted electric and magnetic fields are given
by the following four equations:

Er (x, t ) =
∑

n

Er
n e−ikr

n (x+L/2)e−i(ω−n�)t , (41)

Hr
n (x, t ) = −

√
ε1

μ1
Er (x, t ), (42)

Et (x, t ) =
∑

n

Et
ne ikt

n(x−L/2)e−i(ω−n�)t , (43)

Ht (x, t ) =
√

ε1

μ1
Et (x, t ). (44)

The E and H fields must be both continuous at the slab
boundaries x = ±L/2 at every instant of time t . The corre-
sponding four equations are gotten by using Eqs. (36) and
(37) for the incident fields, Eqs. (41)–(44) for the reflected
and transmitted fields, and Eqs. (38)–(40) for the fields inside
the slab:

Er
n

E0
= rn =

∑
p=1

(Ap

E0
+ Bp

E0

)
epn − δn0, (45)

Et
n

E0
= tn =

∑
p=1

(Ap

E0
eik̂pν + Bp

E0
e−ik̂pν

)
epn, (46)

2δn0 =
∑
p=1

[
epn +

∑
m

ε̂n−m(ω̂ − n)Ẑ

k̂p
epm

]
Ap

E0

+
∑
p=1

[
epn −

∑
m

ε̂n−m(ω̂ − n)Ẑ

k̂p
epm

]
Bp

E0
, (47)

0 =
∑
p=1

[
epn −

∑
m

ε̂n−m(ω̂ − n)Ẑ

k̂p
epm

]
eik̂pν

Ap

E0

+
∑
p=1

[
epn +

∑
m

ε̂n−m(ω̂ − n)Ẑ

k̂p
epm

]
e−ik̂pν

Bp

E0
. (48)

In these equations, Ẑ is the average impedance of the slab√
μ̄/ε̄ normalized by the impedance

√
μ1/ε1 of the bounding

medium, namely, the relative impedance,

Ẑ =
√

ε1

μ1

√
μ̄

ε̄
. (49)

We have also normalized the slab thickness L by defining the
parameter [22]

ν = �
√

ε̄μ̄L. (50)

Equations (47) and (48) permit us to calculate the relative
electric field amplitudes Ap/E0 and Bp/E0. Once determined,
the reflection coefficients rn and transmission coefficients tn
can be found from the Eqs. (45) and (46), respectively. All
these fields display the characteristic discreteness |ω − n�|
(or, in normalized form, |ω̂ − n|) of the frequency comb.

In what follows, we show examples of partial reflection and
transmission spectra, |rn(ω̂)|2 and |tn(ω̂)|2, for three different
cases of the modulations mε and mμ. In all of these, we chose
the thickness parameter ν to have the value 1, well removed
from special values that give rise to parametric resonances
[20,21]. Such resonances for square modulations of the per-
mittivity and permeability will be investigated in future work.

In Figs. 12(a) and 12(b), we display the reflectance
and transmittance spectra |rn(ω̂)|2 and |tn(ω̂)|2 for mε =
0.5 and mμ = −0.1, namely, different and out-of-phase
electric and magnetic modulations. Summing over all
the harmonics n, in Fig. 12(c), we obtain the total re-
flectance R(ω̂) = |r0(ω̂)|2 + |r1(ω̂)|2 + . . . and transmittance
T (ω̂) = |t0(ω̂)|2 + |t1(ω̂)|2 + . . . While the oscillatory be-
havior reminds of Fabry-Perot oscillations, here we have
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FIG. 12. (a)Reflectance and (b)transmittance for the harmonics
n = 0, ±1, and ± 2 assuming a relative impedance Ẑ = 0.5 and
modulations mε = 0.5 and mμ = −0.1. The total reflectance R(ω̂)
(red line), total transmittance T (ω̂) (blue line), and R(ω̂) + T (ω̂)
(pink line), obtained by summing over all the harmonics n, is
shown in (c).

interference of multiple waves with wavelengths λp(=
2π/kp, p = 1, 2, . . . ). These obey a complex, nonlinear band
structure with k-gaps, see Fig. 2. It is for this reason that
the oscillations are not harmonic and that |rn(ω̂)| and |tn(ω̂)|
never reach the values 0 or 1. Moreover, we find that R(ω̂) +
T (ω̂) > 1, implying energy transfer from the source of mod-
ulation to the slab [22,23].

The case of equal, however out-of-phase modulations,
mε = 0.5 and mμ = −0.5, is taken up in Fig. 13, display-
ing the reflectances and transmittances for the same five
harmonics n as in Fig. 12, however with Ẑ = 1 for the rela-
tive impedance. Interestingly, only the harmonics n = ±1 are
prominent in the reflectance, while only the fundamental har-
monic n = 0 is appreciable in the transmittance. This signifies
that, for equal out-of-phase modulations, the transmitted light

FIG. 13. As in Fig. 12 for equal and out-of-phase modulations
mε = 0.5 and mμ = −0.5, with Ẑ = 1 and ν = 1.

is not given by a frequency comb, but rather, is essentially
monochromatic, just as the incident light. However, the am-
plitude of the transmitted energy is an oscillatory function of
the frequency. Further, |r±1(ω̂)| can vanish for certain values
of ω̂ and |t0(ω̂)| can reach the value 1 for some ω̂. It is seen
again that R(ω̂) + T (ω̂) > 1 for all ω̂.

Figure 14 shows the optical response of a slab with equal
in-phase modulations mε = mμ = 0.5 and relative impedance
Ẑ = 1. In this very special case, according to Eq. (34), the
impedance remains unchanged at each abrupt temporal transi-
tion of the permittivity and permeability. Moreover, there are
also no impedance changes at the boundary surfaces of the
slab; that’s because we made the choice Ẑ = 1 for the relative
impedance in Eq. (49). These conditions ensure that no light
is reflected at either the temporal or the spacial interfaces,
namely, rn = 0 for all the harmonics.

As a consequence, no light is reflected by the slab for
any frequency, rn = 0, n = 0, 1, . . . On the other hand, the
transmitted field displays oscillations for all the harmonics, as
seen in Fig. 14(a). Curiously, adding up the contributions from

144306-9



JOSÉ GABRIEL GAXIOLA-LUNA AND P. HALEVI PHYSICAL REVIEW B 103, 144306 (2021)

FIG. 14. (a)Transmittance for five harmonics n, assuming ν = 1,
Ẑ = 1, and mε = mμ = 0.5. (b)Total reflectance (dashed line) and
transmittance (blue line) by the slab.

all the harmonics, the total transmittance T (ω̂) is constant
(independent of frequency) at the value 1.4, approximately.
This corresponds to a huge transfer of energy from the source
of modulation to the transmitted light.

To complete this study of the optical response, we also
investigated the behavior of the fields inside the plate. Again
we consider equal, in-phase modulations, mε = mμ = 0.5 and
parameter values ν = 1, Ẑ = 1, and ω̂ = 1/2. The normalized
electric field amplitudes of the same five harmonics n as in
Fig. 14 are shown in Fig. 15 as function of the position x
in the slab. At the left side interface (x = −L/2), the am-
plitudes of all the harmonics vanish, with the exception of

FIG. 15. Electric field amplitudes, as function of the position x
in the slab, for five harmonics n, normalized by the amplitude of the
incident field. Parameters as in Fig. 14 and ω̂ = 0.5.

the fundamental n = 0, this amplitude coinciding with that
of the incident field. This confirms the fact that no light is
reflected for Ẑ = 1 and equal, in-phase modulations, as we
have observed in Fig. 14(b), dashed line. As x increases, so
do the amplitudes of all the harmonics n �= 0, reaching max-
imum values at the right-side interface of the slab. As also in
Fig. 14(a), at x = L/2, the largest (second largest) amplitude
is obtained for the harmonic n = 0 (n = −1).

VI. CONCLUSION

We have presented a comprehensive study of the photonic
band structure and optical response of a temporal photonic
crystal with square modulations in time of its permittivity and
permeability (Fig. 1). Because the abrupt discontinuities of
ε(t ) and μ(t ) allow us to take advantage of the continuity
of the D(t ) and B(t ) fields, this problem is amanable to the
Krönig-Penney method of Solid State physics, leading to an
analytic formula for the band structure k(ω) Eq. (20). This
PBS is periodic in the frequency ω, the period being the
modulation frequency �. An infinite number of k bands,
separated by k gaps, is obtained; these gaps are typically
much larger than those found for harmonic modulation [8,14],
even for remote bands (with large k values), see Fig. 2. The
PBS strongly depends on the modulations mε and mμ of
the permittivity and permeability and on the parameter τ [=
t1/(t1 + t2)], see Fig. 11. For τ = 1/2 and equal out-of-phase
modulations (mμ = −mε ), the PBS is periodic in k and all
the prohibited bands have the same width 	k, see Fig. 7. If,
on the other hand, the modulations are in phase (mμ = mε )
the PBS degenerates into a system of intersecting straight
lines with no band gaps, see Fig. 9. This is a result of the
continuity of the impedance

√
μ/ε across the temporal inter-

faces, thus obviating reflections. It suggests that, in general,
k-gaps arise because temporal diffraction at discontinuities of
the impedance.

We have also calculated the eigenfunctions D(t ) of the
displacement field. As required by the Bloch-Floquet theo-
rem, they have the form of a periodic function with period
�, modulated by e−iωt , see Figs. 3–6. In the special case
that ω = (1/2)�, or (3/2)�, etc., they are standing waves,
see Fig. 5.

The optical response of a slab to a normally incident plane
monochromatic wave is polychromatic; namely, the reflected
and transmitted light are composed of “frequency combs” of
frequencies |ω − n�|, n = · · · − 1, 0, 1, . . . We have calcu-
lated the spectra of reflectances |rn(ω)|2 and transmittances
|tn(ω)|2, see Figs. 12–14, for five harmonics n and also the
electric field profile in the slab, Fig. 15. Interesting to note
that for equal, however out-of-phase modulations mμ = −mε

only the fundamental n = 0 is prominent in the transmission
spectrum. On the other hand, for equal, in-phase modulations
mμ = mε and unit relative impedance no light is reflected at
all by the slab.

APPENDIX: PROOF OF STABILITY

The stability of a temporal photonic crystal can be estab-
lished using the transition matrix method [43]. According to
the stability condition, the eigenvalues λ of the transition ma-
trix must obey the condition |λ| < 1. To create the transition

144306-10



TEMPORAL PHOTONIC (TIME) CRYSTAL WITH A … PHYSICAL REVIEW B 103, 144306 (2021)

matrix φ(T, 0) over the period T it is necessary to re-write the
Eq. (7) like a state equation where the displacement field D(t )
and magnetic field B(t ) are elements of the state vector. Due
to the square profiles of ε(t ) and μ(t ), Fig. 1, Eq. (7) can be
split in two and, for this reason, the state vector is the matrix
equation [D(t ), B(t )]T = W1,2 [D+

1,2, D−
1,2]T . Here, the matrix

Wh, Eq. (A1), contains the two linearly independent solutions
to the field D(t ) according to the Eq. (8) and the magnetic field
B(t ) calculated from Eq. (4).

W1,2 =
(

e−iω1,2t eiω1,2t

−μ1,2ω1,2

k e−iω1,2t μ1,2ω1,21
k eiω1,2t

)
. (A1)

The D+
1,2 and D−

1,2 are unknowns used to create a transition
matrix φ(tβ, tα ). The transition matrix (A2) relates the fields
[D(tβ ), B(tβ )] at the time tβ to the fields [D(tα ), B(tα )] at the

time tα as initial value:

φ(tβ, tα ) = W1,2(tβ )W1,2(tα )−1. (A2)

The transition matrix over the period T is the product of the
two transition matrices φ(T, t+

1 ) and φ(t−
1 , 0):

φ(T, 0) = φ(T, t+
1 )φ(t−

1 , 0)

= W2(T )W2(t+
1 )−1W1(t−

1 )W1(0)−1. (A3)

The stability condition Eq.(A4) is found when the charac-
teristic polynomial of Eq. (A3) is resolved:

|φ11(T, 0) + φ22(T, 0)| � 2. (A4)

After lengthy algebra, the following stability condition
is found:

∣∣∣∣1

2
(1 − MA) cos

{
2π k̂

[
τ

M+ − 1

M− (1 − τ )

]}
+ 1

2
(1 + MA) cos

{
2π k̂

[
τ

M+ + 1

M− (1 − τ )

]}∣∣∣∣ � 1. (A5)

Comparison of Eq.(A5) and the dispersion relation Eq. (18)
confirms that the fields D(t ) and B(t ) are stable when the

angular frequency is real and the wave number k correspond
to any k band.
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