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Functional analysis of the polarization response in linear time-varying media:
A generalization of the Kramers-Kronig relations
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We explore the mathematical theory to rigorously describe the response of media with linear time-varying,
generally dispersive, electromagnetic constitutive parameters. We show that, even when the temporal inho-
mogeneity takes place on a timescale comparable—or shorter—than the driving fields’ time period, one can
still define a physically meaningful time-varying dispersion. Accordingly, a generalized set of Kramers-Kronig
relations is investigated to link the real and imaginary parts of the time-varying frequency-dispersive spectra
characterizing the medium’s constitutive response. Among others, we study the case of a Lorentzian dielectric
response with time-varying volumetric density of polarizable atoms and present the varying circuital equivalents
of the governing differential equation, which in turn allow us to use the notion of generalized time-varying
impedances/admittances of a time-dependent resistor, inductor, and capacitor.
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I. INTRODUCTION

The field of “dynamic” (i.e., time-variant) metamaterials
has recently emerged within the metamaterial community
and is rapidly expanding as the next generation of meta-
materials. Their predecessors, “static” (i.e., time-invariant)
metamaterials [1], are regarded as artificial materials engi-
neered through the (deeply) subwavelength—both in size and
periodicity—space variation of some of their physical proper-
ties (such as permittivity, permeability and/or conductivity),
which opens up fascinating possibilities in harnessing light
in ways that were unimaginable years ago, although photonic
crystals [2] (with spatial features electrically larger than in
metamaterials) already allowed for other interesting phenom-
ena like bandgaps [3,4] and slow light [5]. Time-invariant
metamaterials gave rise, in the first decade of the 21st cen-
tury, to new paradigms in the way the electromagnetic waves
interact with matter, including left-handedness [6,7], cloak-
ing [8–10], epsilon-near-zero media [11–13], and magnetless
nonreciprocity [14], to name a few. Their two-dimensional
equivalents, “static” metasurfaces have also gained a lot
of momentum in this present decade, given their ability
to tailor the amplitude, phase and polarization of waves,
yet without the bulkiness or loss-related limitations of their
three-dimensional counterparts. A plethora of metasurface-
supported exotic effects and applications have been reported,
e.g., strong nonlinear responses [15], dramatic enhancement
of the local density of states via hyperbolic dispersion [16],
photonic topological states [17], all-optical real-time signal
processing [18], angular filtering [19], and photonic quantum
vortices [20].

Dynamic metamaterials (and metasurfaces) add yet an-
other degree of freedom and controllability by inducing, with
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some external source of energy, a temporal change in some of
the materials’ properties and are therefore spatio-temporally
variant. Despite the embryonic stage of this research field,
there are already numerous examples of possible appli-
cations enabled by such time-varying materials, ranging
from more efficient frequency mixers [21] and matching-
networks [22,23] to spatiotemporal-based nonreciprocity [24]
for magnetic-free optical isolators/circulators [25–28], angu-
larly selective nonreciprocal transmission [29], time-reversal
mirrors [30], and antireflection coatings [31]; moreover, see-
ing as time-invariant spatially inhomogeneous metastructures
have proved to perform mathematical operations [18,32], the
idea of adding time variation to expand the range of applica-
bility of these metastructures to, e.g., the linear compansion of
a pulse [33] is especially promising. Particularly, the amount
of research devoted to the spatio-temporal modulation of light
with active metasurfaces [34] has grown exponentially in the
last few years [35–43].

One possible way of achieving time variation is by tempo-
rally modulating (electro-optically, for instance) the dielectric
function of a medium. In Ref. [44], a high-power electro-
magnetic pulse was reported to ionize a plasma, creating
a nonstationary interface. This rapid change in the dielec-
tric permittivity produces a “time interface” or step transient
[45–47] which, from temporal continuity considerations for
both the electric displacement and the magnetic induction
fields, is seen to produce frequency-shifted forward and back-
ward waves described by the time equivalent of the Fresnel
coefficients (these discontinuities have also been looked into,
e.g., in a half-space [48], whereas arbitrary transients have
been explored too [49,50]). Time-periodic inhomogeneities
in the dielectric function have also been addressed in the
context of wave propagation in a half-space [51], a slab
[52,53] or a space-time-periodic medium [47,54–56]. In this
regard, it is well-known that the application of the Bloch-
Floquet theorem to spatially homogeneous time-periodic
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media yields a frequency-periodic band-structured dispersion
relation exhibiting forbidden wave-vector gaps [53], dual of
the band gaps found in space-periodic media and intimately
linked to parametric amplification [52,57,58]. Importantly,
this phenomenon is described through exceptional point the-
ory in Ref. [59] and, interestingly, also in connection with
a time-aperiodic medium, where PT -symmetric wave states
are substantiated not only without the spatially symmetric
loss/gain induced by a time-varying complex optical potential
as in Ref. [60], but without the time-periodicity itself of other-
wise lossless/gainless non-Hermitian Time-Floquet systems
as in [61–63].

The above scenarios mainly contemplate, however, only
nondispersive electric susceptibilities. In Ref. [64], the
Green’s function of an impulse pointlike source in a cold ion-
ized plasma of time-varying plasma frequency was presented
in closed form for some specific cases (radiation from a more
arbitrary pulsed source was later tackled in Ref. [65], but for
nondispersive nonstationary media only). Remarkable efforts
have very recently been made to address the interaction of
waves with a meta-atom when its load is time-modulated [66],
the radiation from nonharmonic dipole moments [67], and the
coupling of a dipole of arbitrarily time-varying Drude-Lorentz
polarizability kernel with an incoming harmonic illumination
[68]. Also, Ref. [69] has dug into the dynamics of plane-wave
propagation in a time-discontinuous Lorentzian medium. In
this manuscript, we dig into this latter aspect of the local (i.e.,
wave propagation is not the object of study here) dynamics of
media with a susceptibility that is time-variant and dispersive
in general, and we study the transient behavior of the polar-
ization that arises under such conditions. More specifically,
we tackle the problem by adopting the methodology of linear
systems theory in order to develop rigorous mathematical
tools enabling us to investigate the time-varying impulse re-
sponse of such temporal media, allowing us to generalize the
Kramers-Kronig relations [70,71] for noninstantaneous time-
varying media.

II. THEORETICAL ANALYSIS

There is a well-developed body of knowledge describing
linear time-variant (LTV) channels in the signal processing
community, inasmuch as mobile communications rely on mul-
tipath fading channels modeled as time-variant linear filters
[72,73] (in this regard, we should mention that extensive
research work has also been done on time-varying circuits,
for example in the context of (i) microwave engineering:
from parametric amplifiers [74] and nonreciprocal devices
[75] in the 1960s, to the unlimited energy accumulation re-
cently proposed in Ref. [76], (ii) control engineering: both
from the perspective of functional analysis [77–80] and state-
space theory [81,82], or (iii) the model reduction of the
time-varying equivalents that result from linearizing nonlinear
circuits [83–85]). We will therefore borrow the mathematical
apparatus describing multipath propagation and start by writ-
ing the response of an LTV system to an arbitrary input x(t )
as the following Fredholm integral:

y(t ) =
∫ ∞

−∞
h(t, τ )x(τ )dτ, (1)

in which case it is straightforward to see that h(t, τ ) is defined
as the system response at time t to an impulse applied at time
τ (note that, throughout this text, we intentionally leave the
upper integration limit of the superposition integrals go to
+∞, i.e., we choose to define these integrals in a general form
by making no a priori assumptions on the causality of their
kernels). Indeed, inserting x(t )=δ(t − τ ) into the previous
integral and changing the integration variable from τ to τ ′ for
ease of notation, one can write

y(t ) =
∫ ∞

−∞
h(t, τ ′)δ(τ ′ − τ )dτ ′ = h(t, τ ). (2)

It is oftentimes more convenient to resort to an alternative
formulation as introduced by Kailath [86] and use instead
τ̂=t − τ . A change of variable in Eq. (1) yields

y(t ) =
∫ ∞

−∞
h(t, t − τ̂ )x(t − τ̂ )d τ̂ =

∫ ∞

−∞
c(t, τ̂ )x(t − τ̂ )d τ̂ ,

(3)

where c(t, τ̂ ), known as the input delay-spread function [87],
is now the response measured at t due to an impulse ap-
plied at t − τ̂ . Proceeding similarly as before we have, for
x(τ̂ ′)=δ(τ̂ ′ − (t − τ̂ )),

y(t ) =
∫ ∞

−∞
c(t, τ̂ ′)δ(t − τ̂ ′ − (t − τ̂ )d τ̂ ′

=
∫ ∞

−∞
c(t, τ̂ ′)δ(τ̂ − τ̂ ′)d τ̂ ′ = c(t, τ̂ ). (4)

In essence, c(t, τ̂ )=c(t, t − τ ) moves the impulse time
frame reference from the origin over to t , very much in the
same way a Green’s tensor does in a translationally invariant
space domain when we write ¯̄G(r, r′)= ¯̄G(r − r′), with r and
r′ observation and source positions, respectively. One can
immediately see that h(t, τ ) = h(t − τ ) and c(t, τ̂ ) = c(τ̂ )
when there is time invariance. Besides, it is clear that causal-
ity implies h(t, τ ) = 0 for t <τ or, alternatively, c(t, τ̂ ) = 0
for τ̂ <0. Additionally, if c(t, τ̂ ) is separable, i.e., c(t, τ̂ ) =
ct (t )cτ̂ (τ̂ ), Eq. (3) is simplified to

y(t ) = ct (t )
∫ ∞

−∞
cτ̂ (τ̂ )x(t − τ̂ )d τ̂ = ct (t )(cτ̂ (t ) ∗

t
x(t )). (5)

Let us focus the discussion on time-varying systems that
can be characterized as a linear differential equation with
time-varying coefficients of the form [88]

an(t )
dny(t )

dtn
+ · · · + a1(t )

dy(t )

dt
+ a0(t )y(t ) = x(t ). (6)

The electric response of a linear dispersive time-varying
medium characterized by a Lorentzian resonance, but whose
volume density of polarizable atoms N (t ) is time-dependent,
falls under this category. This is one of the simplest scenarios
one can think of, since the relative amplitude of the coeffi-
cients in Eq. (6) remains unperturbed, as seen below:

d2P(t )

dt2
+ γ

dP(t )

dt
+ ω2

0P(t ) = ε0ω
2
p(t )E (t ), (7)

E and P being the electric field and (local) linear polariza-
tion, respectively, and ωp(t ) ∝ √

N (t ) the plasma frequency.
This is equivalent to a linear time-invariant (LTI) medium
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that responds to ω2
p(t )E (t ) rather than to E (t ). If we define

A(t ) = ω2
p(t ), this translates in the frequency domain to

P(ω) = ε0

1
2π

A(ω) ∗
ω

E (ω)

ω2
0 − ω2 + iγω

, (8)

where ∗
ω

denotes the convolution operation with respect to

ω and eiωt convention is chosen. One can arrive at a wave
equation for E (z, t ) of the form(

∂2

∂t2
+ γ

∂

∂t
+ ω2

0

)(
∂2E (z, t )

∂z2
− 1

c2

∂2E (z, t )

∂t2

)

= 1

c2

∂2
(
A(t )E (z, t )

)
∂t2

, (9)

which collapses to the wave equation for a time-varying loss-
less plasma (i.e., Drude-type medium) (ω0 = 0, γ = 0) in
Ref. [64]:

∂2E (z, t )

∂z2
− 1

c2

∂2E (z, t )

∂t2
= 1

c2
A(t )E (z, t ). (10)

If one wants to express Eq. (7) in terms of the system’s
input response as in Eq. (1), P(t ) = ε0

∫ ∞
−∞ χh(t, τ )E (τ )dτ ,

it suffices to recognize the time-invariance equivalence men-
tioned earlier: P(t ) = ε0

∫ ∞
−∞ χ (t − τ )A(τ )E (τ )dτ (inciden-

tally, note that this situation is different than the one depicted
in [68], which is rather described by P(t ) = ε0A(t )

∫ ∞
−∞ χ (t −

τ )E (τ )dτ ). It thus follows from inspection that χh(t, τ ) =
χ (t − τ )A(τ ), with

χ (t ) = 1√
ω2

0 − (γ /2)2
e−(γ /2)t sin

(
t
√

ω2
0 − (γ /2)2

)
U (t ), (11)

where we have used the well-known result for a time-invariant
Lorentzian medium and U (t ) is the step function. It is com-
pelling to point out that the response to an impulse applied at
τ is not a function of how N (t ) evolves for t > τ ; this is traced
back to the relative weights of the coefficients in Eq. (6) being
invariant. Perhaps a circuital analogy would be of use here
to better understand this behavior: this Lorentzian response
can be thought of as the (polarization) charge response to an
applied voltage across a time-varying series RLC circuit, such
that Eq. (7) is recast to

L(t )
d2P(t )

dt2
+

(
R(t ) + dL(t )

dt

)
dP(t )

dt
+ 1

C(t )
P(t ) = E (t ),

(12)

with L(t ) = 1
ε0ω2

p(t ) , R(t ) = γ L(t ) − dL(t )
dt , and C(t ) = 1

ω2
0L(t )

,
dP(t )

dt being the polarization current [as L(t )C(t ) and R(t )
L(t ) re-

main constant, so do the resonance and collision frequencies].
Consequently, the lossless plasma in [64] can be modeled
as a time-varying RL circuit with a resistor that cancels out
the time derivative of the inductor’s time dependence, i.e.,
R(t ) = − dL(t )

dt .
If we go back to our varying Lorentzian oscillator, we have

h(t, τ ) = χh(t, τ ) = A(τ )χ (t − τ ), (13a)

c(t, τ̂ ) = A(t − τ̂ )χ (τ̂ ), (13b)

whose Fourier domain representations can be found in Ap-
pendix A. Inserting Eq. (13a) into Eq. (1)—or Eq. (13b) into
Eq. (3)—we arrive at

y(t ) = χ (t ) ∗
t

(A(t )x(t )), (14)

at which point it appears natural to translate the observation
time-frame reference from the origin to τ , when the impulse is
applied, and define the so-called output delay-spread function
hc(τ̂ , τ ) = h(τ̂ + τ, τ ) [87], such that

y(t ) =
∫ ∞

−∞
hc(t − τ, τ )x(τ )dτ, (15)

where hc(τ̂ , τ ) = A(τ )χ (τ̂ ) is now separable.

A. Polarization in time-varying media

In Ref. [68], Mirmoosa et al. investigated the dipolar po-
lazability in time-varying media, and introduced the notion
of temporal complex polarizability. Here, we take a different
path by adopting from Ref. [80] the notion of a time-varying
admittance for the time-dependent RLC circuit modeling our
Lorentzian if we realize that

I (t ) = dP(t )

dt
=

∫ ∞

−∞

dχ (t − τ )

dt

1

L(τ )
V (τ )dτ, (16)

in which case YRLC (τ̂ , τ ) = dχ (τ̂ )
d τ̂

1
L(τ ) . Also, note that this ad-

mittance is defined purely in the time domain as a response
function. In the next two sections, we will delve into the
Fourier domain and rigorously characterize the spectra of the
impulse response of a time-varying system; this will allow us
to utilize generalized time-varying transformed impedances
and admittances. However, before this, let us first gain physi-
cal insights into this problem and consider the simplified case
of a time-varying inductor, parameterized by

L(t )
dI (t )

dt
+ dL(t )

dt
I (t ) = E (t ), (17)

where I (t ) = dP(t )
dt . By replacing the right-hand side of the

equation above by δ(t − τ ), the impulse response to this first-
order differential equation can be retrieved, for which we first
solve the homogeneous equation, which gives us

I (t, τ ) = K (τ )e− ∫ t
0

dL(t ′ )
dt ′

L(t ′ )
dt ′= K (τ )eln( L(0)

L(t ) ) = K (τ )
L(0)

L(t )
, (18)

with K (τ ) some unknown constant (with respect to t), to be
determined by imposing I (τ, τ ) = 1

L(τ ) [89]. It thus follows
that

K (τ ) = 1

L(τ )
e
∫ τ

0

dL(t ′ )
dt ′

L(t ′ )
dt ′ = 1

L(0)
, (19)

so I (t, τ ) is simply 1
L(t ) . The impulse response of this system

can finally be written as hI (t, τ ) = I (t, τ )U (t − τ ) = U (t−τ )
L(t )

[80]. If we assume, e.g., L(t ) = L0
1+
cos(�t ) , then K (τ ) = 1+


L0

and I (t, τ ) = 1+
cos(�t )
L0

[note that we could have more eas-

ily solved this problem by starting from d�(t )
dt = E (t ), where

�(t ) = L(t )I (t ) represents the magnetic flux linkage, and
write hI (t, τ ) = h�(t,τ )

L(t ) , with h�(t, τ ) = U (t − τ )]. By inte-
grating I (t, τ ) with respect to t and enforcing the initial
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condition of null polarization charge at t = τ , we obtain

hP(t, τ ) = U (t − τ )
∫ t

τ

I (t ′, τ )dt ′ = A(t, τ )

L0
U (t − τ ), (20)

with A(t, τ ) = (t − τ ) + 

�

(sin(�t ) − sin(�τ )). Equation
(20) becomes hP(t, τ ) = hP(t − τ ) = t−τ

L0
U (t − τ ) when


 = 0, with the t term connected to the pole at ω = 0. It is
revealing to compare this expression with the response for
the lossless plasma of [64], for which hI (t, τ ) = U (t−τ )

L(τ ) and

hP(t, τ ) = t−τ
L(τ )U (t − τ ), with L(τ ) = 1

ε0ω2
p(τ ) .

If we keep L(t ) = L0
1+
cos(�t ) and add a constant resistor R,

we will obtain

hI (t, τ ) = U (t − τ )

L(t )
e− R

L0
A(t,τ )

, (21a)

hP(t, τ ) = U (t − τ )

R
(1 − e− R

L0
A(t,τ ) ). (21b)

Similar derivations for an RC circuit with C(t ) = C0
1+
cos(�t )

allows us to arrive at

hP(t, τ ) = U (t − τ )

R
e− 1

RC0
A(t,τ )

, (22a)

hI (t, τ ) = dhP(t, τ )

dt
= −U (t − τ )

R2C(t )
e− 1

RC0
A(t,τ )

. (22b)

Incidentally, from Eq. (3) one can see that cI (t, τ̂ ) �= dcP (t,τ̂ )
dt ,

but cI (t, τ̂ ) = hI (t, t − τ̂ ), just as hcI (τ̂ , τ ) = hI (τ̂ + τ, τ ).
Obviously, Eq. (22a) collapses to Eq. (B4a) in Appendix B
for nondispersive media when R = 0. In addition, in the same
way that dL(t )

dt behaves as a resistance, we can observe from
the equation below, dual of Eq. (17):

C(t )
dV (t )

dt
+ dC(t )

dt
V (t ) = I (t ), (23)

that dC(t )
dt behaves as a conductance.

Let us now take a look at the dynamics of an RLC circuit
with constant R and L, and a capacitor with the same tempo-
ral profile as for the previous RC circuit, C(t ) = C0

1+
cos(�t ) .
Repeating the rationale that links Eqs. (7) and (12), it is clear
that this circuit models the behavior of a medium with a po-
larization response obeying a Lorentzian curve with varying
resonance frequency, described by

d2P(t )

dt2
+ γ

dP(t )

dt
+ ω0(t )2P(t ) = ε0ω

2
pE (t ), (24)

with ε0ω
2
p = 1

L , γ = R
L , and ω0(t ) = 1√

LC(t )
= ωp

√
ε0

C(t ) . The

homogeneous differential equation for the polarization
presents a closed-form solution in terms of even (MC) and odd
(MS) Mathieu functions [90], as shown below:

P(t, τ ) = (KC (τ )MC (a, q, z(t )) + KS (τ )MS
(
a, q, z(t )))

× e− R
2L t , (25)

with characteristic value a = 4
ω2

0−( R
2L )

2

�2 , parameter q =
−2
( ω0

�
)2, and argument z(t ) = �

2 t , as given by the Mathieu
differential equation y′′(z) + (a − 2qcos(2z))y(z) = 0, ω0 be-

ing 1√
LC0

. If we enforce P(t, τ ) = 0 and dP(t,τ )
dt |t=τ = 1

L , KC (τ )

is found to be

KC (τ ) = 2

L�
e

R
2L τ 1

dMC (z(t ))
dt

∣∣∣
t=τ

− MC (z(τ ))
MS (z(τ ))

dMS (z(t ))
dt

∣∣∣
t=τ

, (26)

while KS (τ ) = −MC (z(τ ))
MS (z(τ )) KC (τ ), where the terms a and q have

been dropped to simplify the notation. For τ = 0, KC (τ ) =
0 and KS (τ ) = 2

L�
1

dMS (z(t ))
dt |t=0

. The time-varying impulse re-

sponse will finally be hP(t, τ ) = P(t, τ )U (t − τ ), as was
previously done for the varying inductor.

B. Time-varying transfer functions

We saw before how the polarization/current responses of
Eq. (7), or of its RLC circuit equivalent in Eq. (12), do
not depend on the medium’s state after the impulse and,
consequently, derived a separable admittance YRLC (τ̂ , τ ) =
dχ (τ̂ )

d τ̂
1

L(τ ) which embodies a time-independent frequency de-
pendence. In order to understand what this statement really
means, it would be useful to properly define a suitable time-
varying transfer function (frequency response). Before going
any further, it is expedient to revisit the context of LTV
communication channels, whose underlying physical effects
are mainly multipath propagation and the Doppler effect,
which can be intuitively characterized in terms of time de-
lays and Doppler frequency shifts [72] (Doppler spectral
compression/dilation can be approximated as a frequency
shift in narrowband communications), respectively.

1. Transfer functions for c(t, τ̂ )

Denoting by [ω, ν, ν̂] the frequency-domain counterparts
of [t, τ, τ̂ ], the specular single-path propagation via an ideal
point scatterer n can be captured, except for a complex at-
tenuation constant factor an, by c(t, τ̂ ) = eiωntδ(τ̂−τ̂n), which
leads to Cω(ω, τ̂ ) = FT

t→ω
{c(t, τ̂ )} = 2πδ(ω−ωn)δ(τ̂ −τ̂n), ωn

and τ̂n being a frequency shift and a time delay, respectively,
with FT

t→ω
the Fourier transform (FT) for the (t, ω) pair. Fol-

lowing Eq. (3) and using Fubini’s theorem [91], we can now
write

y(t ) = 1

2π

∫ ∞

−∞

(∫ ∞

−∞
Cω(ω, τ̂ )x(t − τ̂ )d τ̂

)
eitωdω. (27)

That is, the integral along ω can be viewed as a continuous
parallel connection of LTI channels, each parameterized by a
Doppler frequency ω (note that the term inside the parentheses
depends on t , so

∫ ∞
−∞ ()eitωdω in Eq. (27) is not an inverse

FT). Analogously, if we flip domains on both dimensions and
define Cν̂ (t, ν̂ ) = FT

τ̂→ν̂
{c(t, τ̂ )} = eiωnt e−iτ̂ ν̂ , after manipulat-

ing Eq. (3) it can be shown that

y(t ) = 1

2π

∫ ∞

−∞
Cν̂ (t, ν̂ )

(∫ ∞

−∞
x(t − τ̂ )eiτ̂ ν̂d τ̂

)
d ν̂

= 1

2π

∫ ∞

−∞
(Cν̂ (t, ν̂ )X (ν̂))eit ν̂d ν̂,

(28)

where X (ω) = FT
t→ω

{x(t )} and, again and for the same rea-

son,
∫ ∞
−∞ ()eit ν̂d ν̂ is not an inverse FT. Finally, using both
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transformed domains and Cω,ν̂ (ω, ν̂ ) = FT
(t,τ̂ )→(ω,ν̂)

{c(t, τ̂ )} =
2πδ(ω−ωn)e−iτ̂ ν̂ , it is easy to arrive at

Y (ω) = 1

2π

∫ ∞

−∞
Cω,ν̂ (ω − ν̂, ν̂ )X (ν̂)d ν̂. (29)

Cω(ω, τ̂ ) describes how the input signal is spread out
or broadened both in frequency (ω) and time (τ̂ ), whereas
Cν̂ (t, ν̂ ) expresses the response’s time (t) and frequency (ν̂)
selectivity. For an LTI system, there is no ω-broadening or t-
selectivity, so Cω(ω, τ̂ ) and Cν̂ (t, ν̂) are simplified to δ(ω)c(τ̂ )
and Cν̂ (ν̂), respectively. Note also that, if c(t, τ̂ ) is separable,
Cω,ν̂ (ω, ν̂) = Cω(ω)Cν̂ (ν̂) and thus Eq. (29) can be simplified
as

Y (ω) = 1

2π
Cω(ω) ∗

ω
(Cν̂ (ω)X (ω)), (30)

which is the frequency-domain version of Eq. (5).

2. Transfer functions for hc(τ̂, τ )

Although a detailed description of the transfer functions
of h(t, τ ) and hc(τ̂ , τ ) can be found in Appendices A and
B, respectively, it is worthy to focus on hc(τ̂ , τ ) and see that
Eq. (29)—and (A2) in Appendix A– can be rewritten as

Y (ω) = 1

2π

∫ ∞

−∞
HCν̂,ν (ω, ν + ω)X (−ν)dν, (31)

which, if hc(τ̂ , τ ) is separable, i.e., hc(τ̂ , τ ) = hcτ̂ (τ̂ )hcτ (τ )
and thus HCν̂,ν (ν̂, ν) = HCν̂ (ν̂)HCν (ν), adopts the form

Y (ω) = 1

2π
HCν̂ (ω)(HCν (ω) ∗

ω
X (ω)), (32)

which is the FT of Eq. (14) if we note that χ (τ̂ ) = hcτ̂ (τ̂ ) and
A(τ ) = hcτ (τ ). This shows an interesting duality between the
pairs of Eqs. (14), (32) and (5), (30).

Continuing with our varying Lorentzian, we have

HCν (τ̂ , ν) = A(ν)χ (τ̂ ), HCν̂ (ν̂, τ ) = A(τ )χ (ν̂), (33)

where we see the convenience of working with the (τ̂ , τ )
pair (note that, although A in A(ν) is the FT of A in A(τ ),
we deliberately choose to not add more notation and let its
argument resolve the ambiguity. The same applies to χ , and
to the circuital elements R, L, and C in the next section).
This stems from the fact that frequency broadening (time
selectivity), in sheer contrast with the Doppler ω spreading
(t selectivity) defined so far, is now given in the ν (τ ) domain.
The time variance of the Doppler channel entails ω broaden-
ing, whereas the Lorentzian’s varying nature reveals itself in
the width of N (ν). Note also that if one replaces HCν = A(ν)
and HCν̂ (ν̂) = χ (ν̂) = 1

ω2
0−ν̂2+iγ ν̂

in Eq. (32), what is obtained
is precisely Eq. (8), except for the constant ε0.

C. Time-varying impedances and admittances

Now that we have discussed a mathematical theory of LTV
systems, we can utilize, as in [80], the notion of time-varying
impedance for our RLC circuit’s time-varying impedance. It
is clear that ZR(t, τ̂ ) = R(t )δ(τ̂ ), ZC (t, τ̂ ) = U (τ̂ )

C(t ) and

ZL(t, τ̂ ) = L(t − τ̂ )δ′(τ̂ ) = L(t )δ′(τ̂ ) + dL(t )

dt
δ(τ̂ ), (34)

where, incidentally, note that the delta function and all of
its derivatives are causal distributions [92]. Therefore we can
write the transformed impedances as

ZRω(ω, τ̂ ) = R(ω)δ(τ̂ ), (35a)

ZLω(ω, τ̂ ) = L(ω)(δ′(τ̂ ) + iωδ(τ̂ )), (35b)

ZCω(ω, τ̂ ) = FT
t→ω

{
1

C(t )

}
U (τ̂ ), (35c)

and

ZRν̂ (t, ν̂ ) = R(t ), (36a)

ZLν̂ (t, ν̂ ) = L(t )iν̂ + dL(t )

dt
, (36b)

ZCν̂ (t, ν̂ ) = 1

C(t )

(
1

iν̂
+ πδ(ν̂)

)
, (36c)

or in the (ω, ν̂) domain as

ZRω,ν̂ (ω, ν̂ ) = R(ω), (37a)

ZLω,ν̂ (ω, ν̂ ) = iL(ω)(ν̂ + ω), (37b)

ZCω,ν̂ (ω, ν̂ ) = FT
t→ω

{
1

C(t )

}(
1

iν̂
+ πδ(ν̂)

)
. (37c)

These expressions clearly show how ω dispersion (ν̂ disper-
sion) in ZLω (ZLν̂) depends on τ̂ (t). By duality, the same
interdependence shows up in the capacitor’s admittance (see
Appendix C). It is paramount to realize, though, that the usual
time-invariant relation between impedance and admittance
does not apply now and, consequently, it cannot be used to
circumvent the lack of closed-form solution of, e.g., the FT
of Eqs. (21) and (22). For instance, noting that hI (t, τ̂ ) in
Eq. (22b) is the time-varying admittance response of the RC
circuit, and switching to the (t, τ̂ ) space, we have

YRCω(ω, τ̂ ) �= (ZRω(ω, τ̂ ) + ZCω(ω, τ̂ ))−1, (38a)

YRCν̂ (t, ν̂ ) �= (ZRν̂ (t, ν̂ ) + ZCν̂ (t, ν̂))−1, (38b)

YRCω,ν̂ (ω, ν̂) �= (ZRω,ν̂ (ω, ν̂) + ZCω,ν̂ (ω, ν̂ ))−1. (38c)

where, e.g., YRCω(ω, τ̂ ) = FT
t→ω

{hI (t, τ̂ )}.
Nonetheless, the impedance of the series RLC circuit that

models the Lorentzian resulting from a time-varying N (t ) can
be written in separable form, considering that R(ω) = (γ −
iω)L(ω) and FT

t→ω
{ 1

C(t ) } = ω2
0L(ω), as

ZRLC (t, τ̂ ) = L(t )ZRLCτ̂ (τ̂ ), (39a)

ZRLCω,ν̂ (ω, ν̂) = L(ω)ZRLCν̂ (ν̂), (39b)

where L(t ) plays the role of ZRLCt (t ) (the definition of
ZRLCω(ω, τ̂ ) and ZRLCν̂ (t, ν̂ ) is straightforward and thus omit-
ted for brevity), and with

ZRLCτ̂ (τ̂ ) = γ δ(τ̂ ) + δ′(τ̂ ) + ω2
0U (τ̂ ), (40a)

ZRLCν̂ (ν̂) = γ + iν̂ + ω2
0

(
1

iν̂
+ πδ(ν̂)

)
, (40b)

being the impedance of a time-invariant RLC circuit with nor-
malized elements R=γ = 1

L(t ) (R(t ) + dL(t )
dt ), L=1, and C= 1

ω2
0
.

The impedance’s ν̂ dispersion is t-independent [the whole ν̂

spectrum is modulated by the same factor L(t )], just like τ̂
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broadening is ω-independent. Besides, inserting Eq. (39b) in
Eq. (29), it is easy to see that

V (ω) = 1

2π
L(ω) ∗

ω
(ZRLCν̂ (ω)I (ω)) (41)

and therefore

V (t ) = L(t )(ZRLCτ̂ (t ) ∗
t

I (t )), (42)

both consistent with Eqs. (30) and (5), respectively.
That is, the voltage response at the observation instant t is

the product of L(t ) times the convolution of the input current
with the response of an LTI, in this case a “normalized” RLC
circuit. Except for the terms γ and iω [or, in the time domain,
γ δ(t ) and δ′(t )] which represent, respectively, the instanta-
neous response of the time-invariant normalized resistor R=γ

and inductor L=1, ZRLCτ̂ (t ) ∗
t

i(t ) is simply the ratio of the

total charge accumulated in the capacitor and C = 1
ω2

0
, i.e., its

voltage. We previously showed how the current response of
our varying Lorentzian at t to a voltage impulse at τ is only a
function of the system’s state at τ ; now we observe the oppo-
site behavior: the voltage response at t to a current impulse at
τ is only a function of the system’s state at t . This interrelation
is best seen by reordering and Fourier-transforming Eq. (42)
to arrive at

I (ω) = 1

2π
YRLCν̂ (ω)

(
FT
t→ω

{
1

L(t )

}
∗
ω

V (ω)

)
, (43)

where we have used the LTI equality YRLCν̂ (ν̂)=Z−1
RLCν̂ (ν̂),

which does hold now. Going back to the time domain, we have

I (t ) = YRLCτ̂ (t ) ∗
t

(
1

L(t )
V (t )

)
. (44)

This last pair of equations has precisely the form of Eqs. (14)
and (32), as expected. Finally, we can write

YRLC (τ̂ , τ ) = 1

L(τ )
YRLCτ̂ (τ̂ ), (45a)

YRLCν̂,ν (ν̂, ν) = FT
τ→ν

{
1

L(τ )

}
YRLCν̂ (ν̂), (45b)

and realize that YRLCτ̂ (τ̂ ) = dχ (τ̂ )
d τ̂

when the integration con-
stant P0 in P(t ) = P0 + ∫ t

−∞ I (τ )dτ , which translates into the
term πδ(ν̂) within ZRLCν̂ (ν̂), is omitted. The admittance’s ν̂

dispersion is τ -independent [the entire ν̂ spectrum is now
modulated by the same factor L(τ )].

D. Kramers-Kronig relations

Given that the Kramers-Kronig relations [70,71] connect
the real and imaginary parts of any complex function that is
analytic in the upper half of the complex plane, and that, for
any stable physical system, causality implies analyticity and
vice versa, we now explore these relations when the system
is time-varying (we stress that although the Kramers-Kronig
relations in a stationary medium—be it linear or nonlin-
ear [93]—are usually substantiated under the assumptions
of causality and passivity, the latter can be relaxed and re-
placed by stability: the transfer function of a causal active
system with bounded impulse response is still analytic, i.e.,

with no poles in the upper-half complex ω plane—perhaps
we should keep the engineering convention throughout the
paper and rather say right-half s plane to avoid confusion—as
shown in Ref. [94] for an active half-space or in Ref. [95]
for conditionally stable non-Foster circuits. Hence, as long
as our time-modulated (active) medium is stable, we can as-
sume analyticity). In the context of time-invariant media, it
is well known that the Kramers-Kronig relations constitute
a powerful tool to retrieve the real part of the permittiv-
ity from absorption measurements (e.g., electron energy loss
spectroscopy [96]). Moreover, they prove useful in obtaining
the real part of the effective nonlinear change of permittivity
from its imaginary part (e.g., in the case of metals, via the
change of interband transitions involving Fermi-level states
[97]), in which case the medium’s nonlinear response is slow
enough to consider it effectively time-invariant.

Going back to our time-varying impulse responses, it was
pointed out before that a causal LTV system requires h(t, τ )
to be zero for t <τ , and thereby c(t, τ̂ ) (and hc(τ̂ , τ )) must
also be zero for τ̂ <0. Ergo, it is evident that the Kramers-
Kronig relations have physical ground along the ν̂-dimension.
In the (t, ν̂) space and considering c(t, τ̂ ) first, we will have
t-varying Kramers-Kronig relations of the form

Re{Cν̂ (t, ν̂)} = 1

π
−
∫ ∞

−∞

Im{Cν̂ (t, ν̂ ′)}
ν̂ − ν̂ ′ d ν̂ ′, (46a)

Im{Cν̂ (t, ν̂)} = − 1

π
−
∫ ∞

−∞

Re{Cν̂ (t, ν̂ ′)}
ν̂ − ν̂ ′ d ν̂ ′, (46b)

or, alternatively, in the (ω, ν̂) space, ω-dependent Kramers-
Kronig relations as shown below

Re{Cω,ν̂ (ω, ν̂)} = 1

π
−
∫ ∞

−∞

Im{Cω,ν̂ (ω, ν̂ ′)}
ν̂ − ν̂ ′ d ν̂ ′, (47a)

Im{Cω,ν̂ (ω, ν̂)} = − 1

π
−
∫ ∞

−∞

Re{Cω,ν̂ (ω, ν̂ ′)}
ν̂ − ν̂ ′ d ν̂ ′, (47b)

where −
∫

stands for the Cauchy principal value of the integral.
In this regard, note that Cω(ω, τ̂ ) is not purely real in general,
but this fact does not compromise the validity of Eq. (47).
For each value of ω, one could use superposition and apply
the Hilbert transform to the real and imaginary parts of the
spectra of Re{Cω(ω, τ̂ )} and iIm{Cω(ω, τ̂ )} separately, the
only difference in the latter being the purely imaginary/real
character of the ν̂-spectra of its even/odd decomposition (see
Appendix D). The drawback of investigating the causality of
c(t, τ̂ ) along the τ̂ axis is that, in actuality, we are analyzing
the response of the system (medium) at a fixed t when con-
sidering all possible delays, which does not give an intuition
of the system’s dynamics to a single impulse response (the
explanation of Fig. 2 in the next section reveals this fact in
more detail). It is therefore more suitable in our case to resort
to hc(τ̂ , τ ) and write (in the following, only the retrieval of
the real part from the imaginary part is included for brevity):

Re{HCν̂ (ν̂, τ )} = 1

π
−
∫ ∞

−∞

Im{HCν̂ (ν̂ ′, τ )}
ν̂ − ν̂ ′ d ν̂ ′, (48a)

Re{HCν̂,ν (ν̂, ν)} = 1

π
−
∫ ∞

−∞

Im{HCν̂,ν (ν̂ ′, ν)}
ν̂ − ν̂ ′ d ν̂ ′. (48b)
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FIG. 1. Time-varying impulse responses h, c, and hc for
a nondispersive medium of polarization described by P(t ) =
ε0C(t )E (t ). (a) Both the observation time t axis and the impulse
time τ axis are represented in the temporal domain. c(t, τ̂ ) and
hc(τ̂ , τ ) are remapped from h(t, τ ) to better illustrate the effect of
changing the representation spaces. The inset in c(t, τ̂ ) represents
c(t, τ̂ =0) = C(t ) (b) The t axis is transformed to ω, while the τ axis
is left unchanged. (c) The t axis stays in the time-domain, while the
τ axis is transformed to ν. (d) Both time axes are transformed. Cω,ν̂

and HCν̂,ν are remapped from Hω,ν . Only the real part of the spectra
is depicted in (b-d). In (b) and (c), the magnified dots represent Dirac
delta functions.

Using Eqs. (B1a) and (B1c) in Appendix B, one can still
derive the following:

Re{eiτωHω(ω, τ )} = 1

π
−
∫ ∞

−∞

Im{eiτω′
Hω(ω′, τ )}

ω − ω′ dω′,

(49a)

Re{Hω,ν (ω, ν − ω)} = 1

π
−
∫ ∞

−∞

Im{Hω,ν (ω′, ν − ω′)}
ω − ω′ dω′,

(49b)

where Eq. (49a) can also be obtained by simply decomposing
h(t, τ ) into even and odd with respect to t = τ . A similar
expression can be derived for Hν (t, ν) using anticausality
(the expressions that relate the real and imaginary parts of
an anticausal—not to be confused with noncausal—signal’s
spectrum are the same as for a causal signal, but with the signs
flipped) and symmetry with respect to τ = t .

Let us shed some light onto these equations and provide
some more physical understanding by putting aside for a

FIG. 2. Time-varying impulse responses h, c, and hc for a
medium with time-varying Lorentzian response, with τ -independent
ν̂ dispersion. (a)–(d) are organized in the same way as Fig. 1. The
inset in (a) for h(t, τ ) represents the varying plasma frequency ω2

p(t )
in [rad/s]. The magnitudes of the response functions where χ shows
up in the time domain are divided by ω0 (similar considerations apply
to Figs. 4 and 5).

moment the concept of temporal impulse response and con-
sidering usual laboratory conditions where one can sweep
the frequency � of a continuous-wave input ei�t , i.e., a
frequency impulse of spectrum 2πδ(ω − �): the time re-
sponse will be ei�tCν̂ (t,�), of spectrum Cω,ν̂ (ω − �,�) [see
Eqs. (27) and (28)]. Analogously, the latter can be expressed
as Hω,ν (ω,−�) or HCν̂,ν (ω,ω − �), whereas the former is
equal to Hν (t,−�). Notably, Eq. (48a) would not be of much
use in this case, as the spectrum of the system’s response to
a frequency impulse cannot be directly mapped from HCν̂

[see convolution in Eq. (B2a) and discussion afterwards],
just like, by duality, the spectral response to a temporal im-
pulse δ(t −τ )—equal to Hω(ω, τ ) = e−iτωHCν̂ (ω, τ )—loses
its physical ground when mapped from Cν̂ (see Appendix A),
rendering Eq. (46) useless when measuring our system in
terms of time-impulse inputs.

III. NUMERICAL RESULTS

In order to visualize the relations between h, c and hc,
both in time and frequency, in Fig. 1, we first consider the
trivial scenario of the nondispersive time-varying medium
of Eqs. (B4) and (B5) and choose, for simplicity, C(t ) =
C0(1 + 
cos(�t )), such that C(ω) = C0π [2δ(ω) + 
(δ(ω −
�) + δ(ω + �))], with C0 = 4 and 
 = 0.9. It is evident that
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FIG. 3. Time-varying impulse responses h, c and hc for a single-
path propagation channel affected by Doppler shift. (a)–(d) are
organized in the same way as the previous figures.

c or hc are much more convenient than h, specially in (b)
and (c).

As a second example, let us now consider in Fig. 2 a time-
varying medium whose electric polarization follows Eqs. (7)
and (8), and focus on its Lorentzian-like impulse responses as
defined in Eqs. (13) and (33), with a ν̂ dispersion that remains
unchanged regardless of τ . The plasma frequency is chosen to
be periodically modulated as ω2

p(t ) = ω2
p0(1 + cos(�t )), with

ωp0 (and γ ) such that, in the LTI case of 
 = 0, χ (�) = 3 −
0.10i, with ω0 = 5�. 
 has the same value as in Fig. 1.

The black dashed straight lines in panel (a) of Fig. 2 (and
Fig. 4) illustrate how points in the (t, τ ) domain are remapped
onto the (t, τ̂ ) and (τ̂ , τ ) domains. If we have an input impulse
at a given τ0, the information about the causal’s system’s
response can be found in h(t >τ0, τ0), which is a straight
line parallel to the t axis. This same information can also
be found in c(t, t −τ0 >0), which forms a straight line at an
angle of 45◦ with respect to the t axis, crossing it at t = τ0.
One-dimensional (1D) cuts of c(t, τ̂ ) parallel to the t axis
restrict the response of the system vs. t to only a given delay τ̂ ,
implicitly implying an input to the system that is a continuous
train of impulses at t − τ̂ . This is very clearly visualized, ex-
cept for the cosinusoidal variation, in panel (a) of Fig. 1 for the
case of a medium with instantaneous response. Analogously,
1D cuts of c(t, τ̂ ) parallel to the τ̂ axis describe the response of
the system at a given t for all possible delays, again implying
a constant input.

FIG. 4. (a)–(d) display, in the same order as before, the impulse
responses h, c, and hc for the time-variant medium with polarization
charge characterized by Eq. (40). Unlike Figs. 1–3, which are en-
tirely analytical, the plots in the spectral domains are now calculated
numerically through fast Fourier transforms.

On the contrary, the system’s response for an impulse at
τ = τ0 is also contained in hc(t −τ0 >0, τ0), thereby draw-
ing a straight line parallel to the t axis, just as with h(t, τ ),
but with the advantage that now the causality condition is
τ -independent. 1D cuts of hc(τ̂ , τ ) parallel to the τ̂ axis have a
less useful meaning, as they characterize the system response
for a given delay τ̂ , which entails the aforementioned constant
input. Incidentally, note also that hc(τ̂ , τ ) in panel (a) is τ -
periodic.

In short, c(t, τ̂ ) is a powerful tool in mobile communica-
tions because c(t = t0, τ̂ ) synthesizes, at a given instant t0,
the signal at the receiver including all the delays; whereas
hc(τ̂ , τ ) is more revealing in our case because hc(τ̂ , τ = τ0)
tells us what the response of the varying medium is for a single
impulse occurring at τ0. We already addressed the advantage
of the former for mobile communications, when using the
simplified case c(t, τ̂ ) = eiωntδ(τ̂ − τ̂n) [see Eq. (27), e.g.],
which we now depict in Fig. 3 for ωn = 1.5� and τ̂n = T

3 ,
with T = 2π

�
. One can observe that our first example in Fig. 1

can actually be recast into the shape of a zero-delay (τ̂n = 0)
three-path channel with Doppler shifts 0, +� and −�.

Figure 4 represents the medium whose polarization re-
sponse is Lorentzian with time-varying resonance frequency,
according to Eq. (40). As mentioned earlier, this is equivalent
to an RLC circuit with a time-dependent capacitor. In a sim-
ilar fashion as Fig. 2, the capacitor is periodically modulated
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FIG. 5. 1D cuts of hc(τ̂ , τ ) for different fixed values of τ . (a) and
(b) correspond to Figs. 2 and 4, respectively. (a) shows how the
system response is the same regardless of τ , except for a constant.
Meanwhile, (b) presents three curves with totally different shape,
revealing how ν̂-dispersion does depend on τ in this case.

as C(t ) = C0
1+
cos(�t ) , with C0 (and γ ) such that, in the LTI

case of 
 = 0, χ (�) = 3 − 0.10i, with ω0 = 5�. We choose
again 
 = 0.9. Note that with this modulation, ω2

0(t ) follows
a sinusoidal pattern. Panel (b) in Fig. 5 illustrates how the
dispersion of this medium varies with τ , unlike the medium
with varying plasma frequency of Fig. 2, represented in panel
(a) of Fig. 5. Importantly, the response to an impulse applied
at τ is now a function of how C(t ) evolves for t > τ .

IV. CONCLUSIONS

In this work, we have borrowed the mathematical frame-
work that rigorously characterizes LTV systems in the signal
processing research field, of particular interest in mobile
communication channels, and adapted/extended it to address
the topic of time-variant generally dispersive electromagnetic
constitutive responses. In doing so we have shown that the
concept of time-varying frequency dispersion is still phys-
ically meaningful when the medium’s temporal variation is
fast with respect to the driving field’s frequency. In LTI sys-
tems, it is very well known that the causality of its impulse
response allows to relate the real and imaginary part of its
spectra through the Hilbert transform or, in the jargon of the
physics community, the Kramers-Kronig relations. We herein
described the response of a causal LTV system as a differen-
tial equation with time-varying coefficients and linked these
coefficients to time-dependent lumped circuital elements. We
then defined the different Fourier-transformed spaces that re-
sult from a twofold temporal variation: for each observation
instant τ , the system has a different impulse response, each
of them having an LTI equivalence when expressed with re-
spect to t − τ . We proved that these Fourier spaces give room
to time-varying transfer functions for which not only is it
possible to generalize the Kramers-Kronig relations, but also
allow us to utilize the generalized impedance and admittance
of varying resistors, inductors and capacitors. Furthermore, as
an example of medium with time-varying dielectric response,
we studied the Lorentzian dispersion resulting from a varying
number of polarizable atoms N (t ); interestingly, we saw that
the dielectric response of such medium to an impulse applied
at τ is only a function of N (t =τ ) and not of N (t >τ ).
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APPENDIX A: TRANSFER FUNCTIONS FOR h(t, τ )

The impulse response h(t, τ ) can be transformed under
FT
t→ω

, FT
τ→ν

and FT
(t,τ )→(ω,ν)

to yield Hω(ω, τ ), Hν (t, ν) and

Hω,ν (ω, ν), respectively, and express

y(t ) = 1

2π

∫ ∞

−∞

(∫ ∞

−∞
Hω(ω, τ )x(τ )dτ

)
eitωdω

= 1

2π

∫ ∞

−∞
Hν (t, ν)X (−ν)dν (A1)

and

Y (ω) = 1

2π

∫ ∞

−∞
Hω,ν (ω, ν)X (−ν)dν. (A2)

Likewise, it is straightforward to infer that

Hν (t, ν) = e−itνCν̂ (t,−ν), (A3a)

Hω,ν (ω, ν) = Cω,ν̂ (ω + ν,−ν). (A3b)

On the contrary, the link in the (ω, τ ) domain is more intricate
and reads Hω(ω, τ ) = 1

2π
e−iτω ∗

ω,τ
Cω(ω,−τ ), ∗

ω,τ
denoting a

double convolution operation across the ω and τ dimensions.
This convoluted connection can be traced back to the fact that
frequency ω-broadening loses its meaning when switching
from τ̂ to τ . This is better illustrated if we take a look at
h(t, τ ) = c(t, t −τ ) = eiωntδ(t −τ −τ̂n), with t now showing
up both within the complex exponential and the Dirac delta
function, rendering Hω(ω, τ ) = e−i(ω−ωn )(τ+τ̂n ). Going back to
our varying Lorentzian oscillator, from Eq. (13) it follows that

Hω(ω, τ ) = A(τ )χ (ω)e−iτω, (A4a)

Cω(ω, τ̂ ) = A(ω)χ (τ̂ )e−iτ̂ω. (A4b)

As far as the complementary domains are concerned, we now
have

Hν (t, ν) = 1

2π
A(ν) ∗

ν
(χ (−ν)e−itν ), (A5a)

Cν̂ (t, ν̂ ) = 1

2π
(A(−ν̂)e−it ν̂ ) ∗̂

ν
χ (ν̂), (A5b)

where it becomes apparent that Eq. (A3a) is satisfied if one
realizes that

Cν̂ (t, ν̂ ) = 1

2π

∫ ∞

−∞
A(−ν̂ − ν̂ ′)e−it (ν̂−ν̂ ′ )χ (ν̂ ′)d ν̂ ′

= 1

2π
e−it ν̂

∫ ∞

−∞
A(−ν̂ − ν̂ ′)eit ν̂ ′

χ (ν̂ ′)d ν̂ ′

= 1

2π
e−it ν̂ (A(−ν̂) ∗̂

ν
(χ (ν̂)eit ν̂ )). (A6)
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In addition, one can also write

Hω,ν (ω, ν) = A(ν + ω)χ (ω), (A7a)

Cω,ν̂ (ω, ν̂ ) = A(ω)χ (ν̂ + ω). (A7b)

APPENDIX B: TRANSFER FUNCTIONS FOR hc(τ̂, τ )

From hc(τ̂ , τ ) = h(τ̂ + τ, τ ), we can find that

HCν̂ (ν̂, τ ) = eiτ ν̂Hω(ν̂, τ ), (B1a)

HCν (τ̂ , ν) = 1

2π
eiτ̂ ν ∗

τ̂ ,ν
Hν (τ̂ , ν), (B1b)

HCν̂,ν (ν̂, ν) = Hω,ν (ν̂, ν − ν̂). (B1c)

Equivalently, hc(τ̂ , τ ) = c(τ̂ + τ, τ̂ ), and hence

HCν̂ (ν̂, τ ) = 1

2π
eiτ ν̂ ∗

ν̂,τ
Cν̂ (τ, ν̂ ), (B2a)

HCν (τ̂ , ν) = eiτ̂ νCω(ν, τ̂ ), (B2b)

HCν̂,ν (ν̂, ν) = Cω,ν̂ (ν, ν̂ − ν), (B2c)

which means we can rewrite Eq. (27) as

y(t ) = 1

2π

∫ ∞

−∞

(∫ ∞

−∞
e−iτ̂ωHCν (τ̂ , ω)x(t − τ̂ )d τ̂

)
eitωdω,

(B3)
that is to say, as a continuous sum of parallel LTI channels,
each with an impulse response h(t ) = e−itωHCν (t, ω). What
we cannot do is to reformulate the rightmost part of Eq. (28)
or Eq. (A1) in terms of HCν̂ or HCν , respectively, because
time τ̂ -broadening is not physically meaningful anymore, as
can be seen in our Doppler LTV channel, where hc(τ̂ , τ ) =
eiωn (τ̂+τ )δ(τ̂ −τ̂n).

If we assume a nondispersive (instantaneous) time-varying
medium with a varying capacitor, as given by P(t ) =
ε0C(t )E (t ), it is clear that

h(t, τ ) = C(τ )δ(t − τ ) = C(t )δ(t − τ ), (B4a)

c(t, τ̂ ) = C(t − τ̂ )δ(τ̂ ) = C(t )δ(τ̂ ), (B4b)

hc(τ̂ , τ ) = C(τ )δ(τ̂ ), (B4c)

so there is not much difference between expressing the sys-
tem’s time-dependence with respect to t or τ , other than

temporal shifts. In the transformed domains, we would have

Hω(ω, τ ) = C(τ )e−iτω, Hν (t, ν) = C(t )e−itν, (B5a)

Cω(ω, τ̂ ) = C(ω)δ(τ̂ ), Cν̂ (t, ν̂) = C(t ), (B5b)

HCν̂ (ν̂, τ ) = C(τ ), HCν (τ̂ , ν) = C(ν)δ(τ̂ ). (B5c)

APPENDIX C: TIME-VARYING ADMITTANCES

Given that YR(τ̂ , τ ) = 1
R(τ )δ(τ̂ ), YL(τ̂ , τ ) = U (τ̂ )

L(τ+τ̂ ) and
YC (τ̂ , τ ) = C(τ )δ′(τ̂ ), the transformed admittances become

YRν̂ (ν̂, τ ) = 1

R(τ )
, (C1a)

YLν̂ (ν̂, τ ) = 1

2π

(
FT
τ̂→ν̂

{
1

L(τ̂ )

}
eiτ ν̂

)
∗̂
ν

(
1

iν̂
+ πδ(ν̂)

)
,

(C1b)

YCν̂ (ν̂, τ ) = C(τ )iν̂, (C1c)

and

YRν (τ̂ , ν) = FT
τ→ν

{
1

R(τ )

}
δ(τ̂ ), (C2a)

YLν (τ̂ , ν) = FT
τ→ν

{
1

L(τ )

}
eiτ̂ νU (τ̂ ), (C2b)

YCν (τ̂ , ν) = C(ν)δ′(τ̂ ), (C2c)

or in the (ν̂, ν) domain as

YRν̂,ν (ν̂, ν) = FT
τ→ν

{
1

R(τ )

}
, (C3a)

YLν̂,ν (ν̂, ν) = FT
τ→ν

{
1

L(τ )

}(
1

i(ν̂ − ν)
+ πδ(ν̂ − ν)

)
,

(C3b)

YCν̂,ν (ν̂, ν) = C(ν)iν̂. (C3c)

In addition, the expressions for the admittances in the (t, τ̂ )
space and its transformed counterparts result from applying
duality to Eqs. (35)–(37).

APPENDIX D: DERIVATION OF EQ. (47) FROM EQ. (46)

Let us start by applying the operator FT
t→ω

{} on both sides of Eq. (46). By defining

CReν̂

ω,ν̂ (ω, ν̂ )=FT
t→ω

{Re{Cν̂ (t, ν̂ )}}, (D1a)

CImν̂

ω,ν̂ (ω, ν̂ )=FT
t→ω

{Im{Cν̂ (t, ν̂ )}}, (D1b)

we obtain

CReν̂

ω,ν̂ (ω, ν̂) = 1

π
−
∫ ∞

−∞

CImν̂

ω,ν̂ (ω, ν̂ ′)
ν̂ − ν̂ ′ d ν̂ ′, (D2a)

CImν̂

ω,ν̂ (ω, ν̂) = − 1

π
−
∫ ∞

−∞

CReν̂

ω,ν̂ (ω, ν̂ ′)
ν̂ − ν̂ ′ d ν̂ ′. (D2b)

144303-10



FUNCTIONAL ANALYSIS OF THE POLARIZATION … PHYSICAL REVIEW B 103, 144303 (2021)

Now, considering that

Re{Cω,ν̂ (ω, ν̂)} = Re
{
CReν̂

ω,ν̂ (ω, ν̂ )
} − Im

{
CImν̂

ω,ν̂ (ω, ν̂)
}
, (D3a)

Im{Cω,ν̂ (ω, ν̂)} = Im
{
CReν̂

ω,ν̂ (ω, ν̂ )
} + Re

{
CImν̂

ω,ν̂ (ω, ν̂)
}
, (D3b)

one arrives from Eq. (D2) at

Re{Cω,ν̂ (ω, ν̂ )} = 1

π
−
∫ ∞

−∞

Re
{
CImν̂

ω,ν̂ (ω, ν̂ ′)
} + Im

{
CReν̂

ω,ν̂ (ω, ν̂ ′)
}

ν̂ − ν̂ ′ d ν̂ ′, (D4a)

Im{Cω,ν̂ (ω, ν̂ )} = 1

π
−
∫ ∞

−∞

Im
{
CImν̂

ω,ν̂ (ω, ν̂ ′)
} − Re

{
CReν̂

ω,ν̂ (ω, ν̂ ′)
}

ν̂ − ν̂ ′ d ν̂ ′, (D4b)

which is seen to be equivalent to Eq. (47) after using Eq. (D3) on the right-hand sides. Incidentally, separating the real and
imaginary parts in Eq. (D2a) leads to

Re
{
CReν̂

ω,ν̂ (ω, ν̂ )
} = 1

π
−
∫ ∞

−∞

Re
{
CImν̂

ω,ν̂ (ω, ν̂ ′)
}

ν̂ − ν̂ ′ d ν̂ ′, (D5a)

Im
{
CReν̂

ω,ν̂ (ω, ν̂ )
} = 1

π
−
∫ ∞

−∞

Im
{
CImν̂

ω,ν̂ (ω, ν̂ ′)
}

ν̂ − ν̂ ′ d ν̂ ′, (D5b)

whose complementary expressions can be deduced from Eq. (D2b). Alternatively, as pointed out in the main text, one can also
derive Eq. (47) from the (ω, τ̂ )-domain: the fact that Cω(ω, τ̂ )=0 for τ̂ <0 allows to first write

Re
{
CReω

ω,ν̂ (ω, ν̂)
} = 1

π
−
∫ ∞

−∞

Im
{
CReω

ω,ν̂ (ω, ν̂ ′)
}

ν̂ − ν̂ ′ d ν̂ ′, (D6a)

Im
{
CReω

ω,ν̂ (ω, ν̂)
} = − 1

π
−
∫ ∞

−∞

Re
{
CReω

ω,ν̂ (ω, ν̂ ′)
}

ν̂ − ν̂ ′ d ν̂ ′, (D6b)

Re
{
CiImω

ω,ν̂ (ω, ν̂)
} = 1

π
−
∫ ∞

−∞

Im
{
CiImω

ω,ν̂ (ω, ν̂ ′)
}

ν̂ − ν̂ ′ d ν̂ ′, (D6c)

Im
{
CiImω

ω,ν̂ (ω, ν̂)
} = − 1

π
−
∫ ∞

−∞

Re
{
CiImω

ω,ν̂ (ω, ν̂ ′)
}

ν̂ − ν̂ ′ d ν̂ ′, (D6d)

where

CReω

ω,ν̂ (ω, ν̂)=FT
τ̂→ν̂

{
Re{Cω(ω, τ̂ )}}, (D7a)

CiImω

ω,ν̂ (ω, ν̂)=FT
τ̂→ν̂

{
iIm{Cω(ω, τ̂ )}}. (D7b)

Similarly to Eq. (D3), we now have

Re{Cω,ν̂ (ω, ν̂ )} = Re
{
CReω

ω,ν̂ (ω, ν̂)
}+Re

{
CiImω

ω,ν̂ (ω, ν̂)
}
, (D8a)

Im{Cω,ν̂ (ω, ν̂ )} = Im
{
CReω

ω,ν̂ (ω, ν̂)
}+Im

{
CiImω

ω,ν̂ (ω, ν̂)
}
, (D8b)

which from Eq. (D7) can be recast as

Re{Cω,ν̂ (ω, ν̂)} = 1

π
−
∫ ∞

−∞

Im
{
CReω

ω,ν̂ (ω, ν̂ ′)
} + Im

{
CiImω

ω,ν̂ (ω, ν̂ ′)
}

ν̂ − ν̂ ′ d ν̂ ′, (D9a)

Im{Cω,ν̂ (ω, ν̂)} = − 1

π
−
∫ ∞

−∞

Re
{
CReω

ω,ν̂ (ω, ν̂ ′)
} + Re

{
CiImω

ω,ν̂ (ω, ν̂ ′)
}

ν̂ − ν̂ ′ d ν̂ ′, (D9b)

and this is precisely Eq. (47), as seen from inspection of Eq. (D8).
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