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Thermal resistance at a twist boundary and a semicoherent heterointerface
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Traditional models of interfacial phonon scattering, including the acoustic mismatch model and diffuse
mismatch model, take into account the bulk properties of the material surrounding the interface, but not the
atomic structure and properties of the interface itself. Here, we derive a theoretical formalism for the phonon
scattering at a dislocation grid, or two interpenetrating orthogonal arrays of dislocations, as this is the most
stable structure of both the symmetric twist boundary and semicoherent heterointerface. With this approach, we
are able to separately examine the contribution to thermal resistance due to the step-function change in acoustic
properties and due to interfacial dislocation strain fields, which induces diffractive scattering. Both low-angle
Si-Si twist boundaries and the Si-Ge heterointerfaces are considered here and compared to previous experimental
and simulation results. This work indicates that scattering from misfit dislocation strain fields doubles the thermal
boundary resistance of Si-Ge heterointerfaces compared to scattering due to acoustic mismatch alone. Scattering
from grain boundary dislocation strain fields is predicted to dominate the thermal boundary resistance of Si-Si
twist boundaries. This physical treatment can guide the thermal design of devices by quantifying the relative
importance of interfacial strain fields, which can be engineered via fabrication and processing methods, versus
acoustic mismatch, which is fixed for a given interface. Additionally, this approach captures experimental and
simulation trends such as the dependence of thermal boundary resistance on the grain boundary angle and
interfacial strain energy.
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I. INTRODUCTION

Given the ubiquity of interfaces and grain boundaries in
engineering materials, estimating their influence on thermal
transport is essential to the design of devices like integrated
circuits and thermoelectrics, particularly in the age of nanos-
tructuring [1–3]. The current standard models of thermal
boundary resistance (or Kapitza resistance, RK), which are
the acoustic mismatch model (AMM) and diffuse mismatch
model (DMM), only consider the properties of the media
surrounding the interface, but ignore the interfacial defect
structure [4–10]. Even the recently introduced strain mis-
match model (SMM) [7], an ab inito framework applied to
compute the phonon coupling to the long-range dilatation
at a Si-Ge heterointerface, neglects the periodic, local strain
fields induced by the interfacial defects [7]. Therefore, trends
in thermal resistance with modifications to the local inter-
face structure cannot be easily discerned. Molecular dynamics
(MD) simulations, however, have revealed an interplay be-
tween RK and the interface structure and geometry [5,8,11].

While computational techniques such as MD have been
useful in probing the atomic-scale structure at interfaces
[5,8,11,12], the continuum-theory-based model presented
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here provides valuable insights into phonon scattering sources
at the nanometer to micron length scale from strain fields
at the interface. Therefore, our theoretical approach to ther-
mal boundary resistance enables the multiscale modeling
of thermal materials in an integrated computational ma-
terials engineering (ICME) framework [1,13,14]. Atomic
simulation-based techniques require separate evaluations for
every interface structure, whereas this model provides a crit-
ical analytical link between thermal boundary resistance,
material properties, and grain boundary configurations. As in
most work on this problem to date, we treat the scattering
in terms of a fixed perturbation. The dynamical degrees of
freedom within the interface are ignored, and inelastic scat-
tering in which an interfacial phonon is absorbed or emitted is
thus not accounted for. Treating inelastic boundary scattering
remains an open problem, although early molecular and lat-
tice dynamics simulations suggest that coupling to localized
interfacial modes can influence optical phonon transport at an
interface [15,16].

Recent experimental work on grain boundaries and het-
erointerfaces suggests that insights into the role of interfacial
dislocation structure on thermal resistance will be highly im-
pactful [17]. For example, the periodic dislocation structure
present at low-angle grain boundaries has been associated
with significant thermal conductivity reductions and improve-
ments in the thermoelectric performance of well-studied
materials such as bismuth antimony telluride [18,19]. While
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several experimental investigations exist for the ensemble av-
erage interface scattering in a polycrystal, individual grain
boundary types are difficult to study. However, recent RK mea-
surements using the 3ω method on fabricated twist bicrystals
of Si [20] and Al2O3 [21] point to evidence of dislocation
strain scattering as a dominant mechanism. For example, the
thermal boundary resistance RK of these twist boundaries is
shown to depend on the grain boundary angle or, equivalently,
the dislocation spacing, in addition to the interfacial strain en-
ergy. In both the Si and Al2O3 twist boundaries, transmission
electron microscopy (TEM) imaging has been used to verify
the presence of dislocation arrays at the interface [20,21].
Additionally, heterointerfaces are often intentionally created
in thermal materials through a variety of nanostructuring
techniques including heterostructures, thin-film superlattices,
and nanoprecipitate boundaries [1,22]. Thus far, it has been
difficult to experimentally determine the effect of misfit
dislocations—which can in some cases be controlled through
annealing and interlayer thickness—on thermal resistance.
Our model, which quantifies the relative importance of inter-
facial dislocation strain versus acoustic mismatch, can help
answer questions about the degree of disregistry at an inter-
face required to suppress phonon transmission.

In our previous work, a strain scattering theory was used
to model the one-dimensional (1D) array of edge disloca-
tions at a symmetric tilt grain boundary, which predicted a
frequency (ω)-dependent relaxation time, in contrast to stan-
dard models [23]. The frequency dependence was essential
to capture the anomalous low-temperature thermal conduc-
tivity trend of κ ∝ T 2 in polycrystalline materials [23–26].
Here, we extend this framework to interfacial structures in
which two interpenetrating arrays of dislocations form a cross
grid. The grid geometry allows us to describe the anharmonic
strain scattering of other low-energy grain boundaries com-
mon to engineering materials. These include twist boundaries
and semicoherent heterointerfaces, which can be decomposed
into a grid of screw-type and misfit edge-type dislocations,
respectively (see pp. 688–700 of Ref. [27]) (Fig. 1). The dislo-
cation strain scattering mainly affects mid-frequency phonons
with wavelengths on the order of the dislocation spacing.
High-frequency phonons would couple strongly to the atomic
inhomogeneities at the dislocation core. We arrive at the
interfacial strain scattering potential by superposing single-
dislocation-line scattering potentials. This strategy is only
applicable for grain boundary angles of less than 15◦ in most
materials, because the overlapping dislocation core regions
dominate at higher grain boundary angles [28].

There are two main contributions to the scattering potential
in this model. The first is the localized strain fields from
the dislocation cross grid, and the second is the mismatch
in acoustic properties between sides 1 and 2 of the interface.
To illustrate these two contributions, we show in Fig. 2 the
analytically calculated dilatational component εyy of the strain
tensor for a simplified heterointerface in which there is lat-
tice mismatch in one direction only and thus only one array
of misfit dislocations. As is evident, the dilatation behaves
asymptotically like a step function, but the large nonzero
value of εyy as |x| → ∞ is spurious, since it is being de-
fined with reference to a fictitious average lattice. The actual
reference lattice differs on the two sides of the interface.

FIG. 1. Interfaces described by a grid of linear defects.
(a) Schematic of a twist boundary with misorientation angle θ .
The black lines indicate screw dislocations and the blue and green
shading indicates shear strain. (b) A semicoherent heterointerface be-
tween two materials with lattice constants a1 and a2. The black lines
indicate edge dislocations and the blue and green shading indicates
hydrostatic strain.

The true or physical strain, εeff, must be defined with respect
to the true reference lattice, and is obtained by subtracting off
the dilatation step function. This strain is much more localized
to the vicinity of the interface. As highlighted in Fig. 2(b),
the physical strain scatters via the lattice anharmonicity, while
the step-function change in lattice parameter and the harmonic
properties of the lattice are treated as an acoustic impedance
mismatch. One benefit of our approach is the ease of sep-
arating the relative scattering contributions of the acoustic
mismatch and dislocation strain in each grain boundary type.

In relation to the components of the scattering potential, a
unique aspect of our work is the ability to recognize the very
different character of phonon scattering with nonzero and zero
Q‖, the (lattice) momentum transfer parallel to the interface.
Scattering with Q‖ �= 0 necessarily arises from the dislocation
structure within the interface, and therefore emerges from
anharmonic interactions with the resulting strain. By contrast,
scattering with Q‖ = 0 washes out the atomistic variations
in the interfacial structure, and is dominated by the abrupt
change in the harmonic lattice properties in the bulk materials
on the two sides of the interface, or acoustic mismatch, analo-
gous to the refraction of light. In the twist boundary case, the
acoustic mismatch stems from a rotation of the elastic tensor
at the boundary. In the case of a semicoherent heterointerface,
it stems from entering a new elastic medium, with an attendant
change in the entire elastic tensor.

This separation of the two types of scattering manifests
itself in our analysis as follows. In Ref. [23], it was shown that
the periodic array of dislocations behaves like a diffraction
grating, whereby the momentum transfer parallel to the dis-
location lines vanishes and that in the direction of periodicity
is quantized in units of 2π/D with D being the periodicity
or the distance between the dislocation lines. An identical re-
striction must now apply to each of the two dislocation arrays
in the cross grid. Because these arrays are mutually orthogo-
nal, the constraints on momentum transfer imposed by each
one separately cannot be satisfied simultaneously, and there is
no interference between the scattering from one and the other.
The arrays act as essentially independent scatterers. The ex-
ception is when the momentum transfer is zero along both the
dislocation line directions, i.e., when Q‖ = 0. Such scatter-
ing events correspond to either specular reflection or forward
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(a) (b)

FIG. 2. Scattering at a semicoherent heterointerface stems from the periodic strain fields at a misfit dislocation array as well as the step-
function change in acoustic impedance. (a) Analytic solution for the dilatational strain field component εyy from an infinite array of misfit
dislocations periodically spaced along the y axis (see pp. 695–697 of Ref. [27]). (b) Cross section of three-dimensional (3D) dilatational strain
field, showing an underlying step function (dotted red line). This is indicating a change in lattice parameter (a) from material 1 to 2, rather
than long-range strain. We subtract off the step function in strain, and instead treat this effect with an acoustic mismatch scattering term. This
leaves the physical strain (εeff), which we treat with an anharmonic strain scattering potential.

scattering, which are precisely what the acoustic mismatch
addresses. For these events, therefore, we apply a different
scattering potential for acoustic mismatch by modeling it as a
step-function change in harmonic phonon properties, specif-
ically the acoustic velocity. While our treatment handles this
mismatch scattering within quantum perturbation theory, the
magnitude of the transmissivity agrees well with the classi-
cal acoustic mismatch model [29]. We acknowledge that the
limits of perturbation-type methods and their application to
phonon-grain boundary or phonon-interface interactions is an
open debate. We hope this work demonstrates the utility of
this approach.

The plan of the paper is as follows. In Sec. II we present
the interface scattering theoretical framework and apply it to
a grid of linear defects. We discuss the scattering kinematics,
and present the scattering potentials describing both the dislo-
cation strain and the acoustic mismatch. These potentials are
used to calculate a phonon scattering rate τ−1 using Fermi’s
golden rule. This rate is then used to compute a phonon
transmissivity and, in turn, the thermal boundary resistance
(RK). Next, we apply the framework to a twist boundary (Si-Si
in particular) in Sec. III, and to a semicoherent heteroint-
erface (Si-Ge in particular) in Sec. IV. For both cases, we
compare the RK results to experimental measurements and
various simulation techniques. The predicted RK values agree
with previous computational results from molecular dynam-
ics [8,11,30], lattice dynamics [15], and atomistic Green’s
function analysis [31], and capture experimentally observed
RK trends with grain boundary angle and interfacial energy.
Our model also shows that dislocation strain is the majority
contribution to RK for the Si-Si twist boundary and half of the
contribution to RK for the Si-Ge heterointerface. Our conclu-
sions are summarized in Sec. V. The details of the scattering
rate calculation, its relation to the Landauer formalism of
phonon transmissivity, and the strain fields of the two types
of interface, are given in the Appendixes.

II. THEORETICAL FRAMEWORK

The scattering theory employed here uses Fermi’s golden
rule to relate a real-space scattering potential V (r) to a phonon
scattering rate �(q), and follows the notation and methodol-

ogy of Hanus et al. [23]. The scattering probability Wq,q′ from
phonon mode q to q′ is defined in terms of the perturbation
matrix element 〈q| H ′ |q′〉 for the corresponding process while
enforcing conservation of energy [23]:

Wq,q′ = 2π

h̄
|〈q| H ′ |q′〉|2δ(Eq′ − Eq). (1)

Restrictions on allowed q-to-q′ transitions are discussed in
Sec. II A. The scattering rate or inverse relaxation time τ (q)−1

of a phonon mode q can then be calculated as the integral
of Wq,q′ over all possible final phonon states q′, weighted to
suppress nonresistive forward-scattering processes. Consider-
ing a grain of dimensions1 Lx × Ly × Lz, the scattering rate
expression simplifies to

τ (q)−1 = �(q)

= 2π

h̄LxLyLz

∫∫∫
d3q′

(2π )3
|M(Q)|2(1−q̂ · q̂′)δ(Eq′−Eq).

(2)

In the Born approximation, the scattering matrix element
M(Q) ≡ LxLyLz 〈q| H ′ |q〉 depends on the scattering vector
Q = q′ − q. The scattering matrix element can, in turn, be
written in terms of a real-space scattering potential V (r) as

M(Q) =
∫∫∫

d3r V (r)eiQ·r. (3)

We take this grain to contain a single low-angle grain bound-
ary or semicoherent interface planning the entire yz plane. As
explained in Sec. I, depending on whether Q‖ is nonzero or
not, we will model V (r) as the perturbation due to either the
strain fields of the periodic dislocation array, or the acoustic
mismatch produced by the step-function change in elastic
properties (see Sec. II B).

From the τ derived in Eq. (2), we can then compute the
phonon transmissivity α12 from side 1 to side 2 of the in-
terface. This is done by relating the Landauer and interfacial

1While the final solution is only dependent on intensive properties,
and is therefore independent of the volume or shape of the body, a
brick-shaped grain is assumed to simplify the calculation.
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scattering approaches for computing interfacial thermal resis-
tance [32]. The transmissivity α12 can be expressed in terms
of the relaxation time τ , side 1 group velocity vg1, and the
distance between interfaces or grain size Lx as

α12 = vg1τ
3
4 Lx + vg1τ

. (4)

In Appendix B, we provide a derivation of this equation along
with an analysis showing that our perturbation treatment for
acoustic mismatch transmissivity agrees within 5% of the
classical acoustic mismatch model (given in Ref. [4] and
here in Eq. (B12)), even when the relative change in phonon
velocity across the interface �v/v is as much as 50%.

The end product of our calculation is the thermal boundary
conductance (inversely, the thermal boundary or Kapitza re-
sistance, RK). This is computed from the perspective of either
side of the interface using the transmissivity as an input [29].
We integrate up to the maximum phonon frequency ωm, the
product of the side 1 spectral heat capacity C1(ω) and group
velocity vg1(ω), as well as the transmissivity at the interface
from side 1 to side 2, α12(ω), and the reverse direction, α21(ω)
[29,32–34]:

1/RK = 1

4

∫ ωm

0
C1(ω)vg1(ω)

(
α12(ω)

1 − α(ω)

)
dω. (5)

Here, α(ω) = (α12(ω) + α21(ω))/2. This treatment of the
transmissivity factor arises by considering the local equi-
librium temperature for incident and outgoing phonons
[29,33,34]. It resolves the Kapitza paradox where, if the factor
in the parentheses is replaced by α12(ω), a system with a
transmissivity of α12 = 1 would have a nonzero resistance,
which is unphysical. The modification of the parenthetical fac-
tor is important for interfaces with high transmissivities such
as twist boundaries. The transmissivity and phonon velocities
are often temperature independent, and so the temperature
dependence of RK enters solely through the spectral heat
capacity [29].

To summarize, a real-space scattering potential V (r) is
defined from the defect perturbation and used to com-
pute the perturbation matrix element M(Q). The scattering
rate τ−1 is then calculated using Fermi’s golden rule. From
the relaxation time τ , additional transport properties including
the phonon transmissivity α and thermal boundary resistance
RK are computed.

We would like to note that our implementation of the model
is not polarization specific. Therefore, we do not evaluate the
complex mode conversions at the boundary of two elastic
solids. In this aspect, our implementation is similar to that
of analytic models such as the AMM and DMM [29]. The
phonons in this model are described by a Born–von Kármán
dispersion parametrized using the mode-averaged speeds of
sound listed in Table VI.

The following sections provide additional details about the
scattering kinematics of this problem, as well as the strain
and acoustic mismatch scattering potentials present at grain
boundaries and heterointerfaces.

A. Scattering kinematics

As mentioned, several grain boundary geometries are com-
posed of two dislocation arrays forming a cross grid. In the
twist boundary case, for example, two sets of screw disloca-
tion arrays each shear the crystal to induce a full rotation (see
Fig. 3) [35]. We adopt the configuration in Fig. 4(a), with the
x direction normal to the interface, and two orthogonal dislo-
cation arrays with dislocation lines in the y and z directions.
We will refer to the first dislocation array as the YZ array,
where the first label (y) indicates the direction of periodicity,
and the second label (z) indicates the direction of the disloca-
tion line [see Fig. 4(a)]. The second array is likewise called the
ZY array. The scattering potential of the cross grid is given by
summing over the single-dislocation-line scattering potentials
(V1; see Sec. II B 1) for each array and then combining both,

V (r) =
∞∑

n=−∞
V1(x, y − nD) +

∞∑
m=−∞

V1(x, z − mD). (6)

Here, n and m can assume all integer values from −∞ to +∞.
The infinite sums over n and m can be obtained analytically for
both the twist and heterointerface cases [27,36] and are shown
in Appendix C.

For simplicity, we focus on the contribution of the YZ array
in the following steps, but analogous expressions can be writ-
ten for the ZY array, by instead enforcing periodicity in the
z direction. The Fourier transform of this sum of dislocation
scattering potentials is

Ṽ YZ(Qx, Qy) =
∫∫

dx dy
∞∑

n=−∞
V1(x, y − nD)e−i(Qxx+Qyy)

=
∞∑

n=−∞
e−iQynDṼ1(Qx, Qy). (7)

We show the Fourier transform of the scattering potential
(Ṽ1) as a function of only Qx and Qy, because the scattering
vector along the line of the dislocation (Qz) is necessarily zero
[37]. By the Poisson summation formula [see Eq. (A3)], this
simplifies to

Ṽ YZ = 2π

D

∞∑
n′=−∞

δ(Qy − Qn′ )Ṽ1(Qx, Qn′ ), with

×
(

Qn′ = 2πn′

D

)
. (8)

As noted by Hanus et al. [23], this equation shows that
phonon diffraction peak conditions will occur whenever the
magnitude of the scattering wave-vector component Qy equals
2πn′/D in an infinite interface [37–39]. Equation (3) can
then be used to calculate the perturbation matrix element,
resulting in

M(Q) = 2πδ(Qz )Ṽ YZ(Qx, Qy) + 2πδ(Qy)Ṽ ZY(Qx, Qz ).

(9)

As enforced by the δ functions, the scattering due to the
YZ array is only nonzero when Qz = 0, while scattering
due to the ZY array is only nonzero when Qy = 0. As a
result, except when Qy = Qz = 0, the two dislocation arrays
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FIG. 3. Schematic of two orthogonal screw dislocation arrays, with Burgers vectors b1 and b2, respectively, producing a twist misorienta-
tion (θ ) at an interface.

scatter independently [see Fig. 4(b)]. The van der Merwe
method for calculating interfacial strain energies [36] makes
a similar assertion, namely, that the energy of both arrays
can be reasonably computed separately and then superposed.
Specifically analyzing the Qy = Qz = 0 condition reveals that
this scenario must represent either a nonresistive forward-
scattering case or a mirrorlike reflection. The underlying,
periodic structure of the interface is washed out at this long-
wavelength limit. We treat this scattering separately in terms
of the acoustic impedance mismatch (see Sec. II B 2). The
total scattering rate � is then the sum of the rates due to the YZ
and ZY array, as well as that due to acoustic mismatch (AM)
[see Eq. (15)]:

�tot = �YZ + �ZY + �AM. (10)

Here, �YZ entails only |Ṽ YZ|2, �ZY entails only |Ṽ ZY|2, and
�AM entails only |Ṽ AM|2 [see Eqs. (14) and (15)]. To avoid
misunderstanding, we note that the resemblance of Eq. (10)
to Matthiessen’s rule is superficial. The �AM component does
not represent a separate scattering channel but rather a com-
pletely independent kind of interface scattering, which is, in
addition, activated at a different frequency regime.

Specifically, the scattering rate �YZ due to periodic strain
from the YZ array is

�YZ(q) = nb

h̄2D2

∞∑
n′=−∞

∫∫∫
d3q′ δ(Qz )δ(ωq − ωq′ )

× |Ṽ YZ(Qx, Qy)|2(1 − q̂ · q̂′). (11)

Here, nb is equal to 1/Lx and represents the linear density of
boundaries in the material. The result for �ZY is similar.

With the scattering constraints imposed by defect geometry
handled, the final step is to define scattering potentials from
the interface properties. In the next section, we derive an an-
harmonic scattering potential from the interfacial dislocation
strain fields, as well as a scattering potential from acoustic
mismatch, which couples to phonons via harmonic elastic
constants.

B. Scattering potentials

1. Dislocation strain

The real-space strain scattering potential or lattice energy
perturbation is directly related to the induced internal strain
ε(r) at the interface via an anharmonic coefficient, which in
this case is the Grüneisen parameter [γ = (1/ω)dω/dε]. A
single Grüneisen parameter approximation is made wherein
γ is frequency and mode independent, so that the change
in phonon frequency due to internal strain is ωγ ε(r). This
approximation may lead to an underestimation of the phonon
scattering, but trends with misorientation and comparisons
of grain boundary geometry should still hold [23,40]. The
scattering potential due to the strain from a single interfacial
dislocation, ε1(r), is

V1(r) = h̄ωγ ε1(r). (12)

We use the dislocation strain fields from continuum elas-
ticity theory as given, for example, by Hirth and Loethe (see

(a) (b)

FIG. 4. (a) Diagram of orthogonal YZ and ZY arrays in dislocation cross grid. In this case, equal D spacing is assumed for both. (b) Phase-
space diagram portraying the independent scattering of the YZ and ZY dislocation array, which overlap only at the Q‖ = 0 (n′ = m′ = 0)
condition.
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pp. 60, 76 of Ref. [41]). As discussed in the previous section,
the sum over single-line-dislocation potentials is facilitated in
Fourier space, so all we require is the Fourier-transformed
strain fields for a single screw and misfit-edge dislocation
(similar to methods proposed in Refs. [7,23]). These are pro-
vided in Secs. III A and IV A, respectively.

2. Acoustic mismatch

In the case of the semicoherent heterointerface, the acous-
tic impedance mismatch stems from the change in material,
and resulting change in elastic tensor, across the interface.
In the twist boundary case, the long-range rotational defor-
mation induces acoustic mismatch through the anisotropy of
the acoustic properties. The rotation at a twist boundary is
described by a single misorientation angle θ (see Fig. 3),
which in the Read-Shockley model relates to the magnitude
of the Burgers vector (b) and the dislocation spacing (D) as
2 tan(θ/2) = b/D (see p. 688 of Ref. [27]). For a fixed phonon
angle of incidence, the crystal rotation can be interpreted as a
change in the acoustic impedance stemming from the rotation
of the stiffness tensor. For both grain boundaries and het-
erointerfaces, an acoustic mismatch scattering potential can
be determined, which is grounded in the same physics as the
classical AMM [8].

We define the scattering potential as the change in energy
of a phonon as it traverses an interface, which can be ex-
pressed in terms of the change in phonon phase velocity �vp

and incident phonon wave-vector magnitude q,

VAM(r) = h̄�ω(r) = h̄�vp(r)q. (13)

The spatial dependence of �vp(r) is taken as �v (x),
where �v = v2 − v1 is the magnitude of the phonon velocity
change from side 1 to side 2, and (x) is the Heaviside step
function. Since its Fourier transform is ̃(Qx ) = i/(Qx ),

Ṽ AM = h̄ �v q ̃(Qx ) = h̄�v
iq

Qx
. (14)

The magnitude of the velocity change �v depends on the
phonon angle of incidence and the degree of misorientation at
a grain boundary or homointerface, and, at a heterointerface,
the additional change in elastic tensor. We use the solver
provided by Jaeken et al. [42] to solve the Christoffel equation
(which is essentially the classical limit of the lattice dynamical
matrix diagonalization) and compute the direction-dependent
group and phase velocities of the acoustic phonons directly
from the stiffness matrix (Appendix E). From these direction-
dependent velocities, we can calculate �v for an incoming
phonon and capture the acoustic mismatch due to any grain
boundary misorientation or change in elastic coefficients, re-
gardless of crystal symmetry. Our implementation lies within
the continuum, long-wavelength limit, and so V AM computed
using the magnitude of either the group or the phase velocity
yields the same result given that the perturbation is set only by
the change in phonon frequency. The acoustic mismatch con-
stitutes planar defect scattering, and as mentioned previously,
will produce a specular reflection. Since forward scattering
does not contribute to the scattering rate, Qx in Eq. (14) will
simplify to 2qx.

Our treatment agrees with the conceptual conclusions from
the work of Brown [43], which suggests that rotations of
the crystal scatter phonons via harmonic elastic constants
while strain scatters via third-order elastic constants [43]. In
Appendix B, Fig. 10(b), we compare this perturbation the-
ory treatment of acoustic mismatch scattering to the classical
AMM result and show that they agree within 5% for velocity
mismatches typical of solid-solid interfaces. To avoid issues
with the change of reference frame, especially when handling
the scattering effects due to the long-range deformation, we
define the wave-vector directions and the lattice perturbations
with reference to a virtual average lattice and ensure that the
scattering potential is symmetric at the boundary [44].

Finally, the square of the Fourier space scattering potential
must be taken in the calculation of the matrix element (M).
In the work of Brown [43], it was shown that symmetry
constraints in the cubic crystal enforce that strain and rota-
tion contribute independently to the scattering potential. We
reach the same conclusion in our work by noting the distinct
scattering physics of strain (diffractive scattering) and rotation
(specular reflection). As a result, there are no nonzero cross
terms when we take the square and the full, squared scattering
potential can be written as

|Ṽ (Q)|2 = |h̄ωγ ε̃(Q)|2 + |h̄�ṽ(x)q|2. (15)

Figure 5 shows the phonon scattering rate plotted versus
the incident angle of the incoming phonon for a twist bound-
ary. It provides a visual representation of the rotation versus
strain scattering effects. At high frequency, the diffraction ef-
fects stemming from the periodic dislocation array are visible
as patterns in the directional plot of scattering rate, whereas
at low frequency, there are more isolated and broad scattering
“hot spots” corresponding to ranges in the phonon angle of
incidence which undergo large scattering due to an acoustic
impedance mismatch [10].

III. TWIST BOUNDARY SCATTERING

In this section, we aim to construct a model that explicitly
considers the strain effects of the interfacial screw dislocations
present at low-angle twist boundaries, while also treating the
rotational deformation.

A. Twist boundary strain fields

The strain scattering potential of a screw dislocation grid
can be described using Eqs. (6) and (12). We will maintain
the geometry of the previous section with the x direction nor-
mal to the interface and dislocation arrays with sense vectors
oriented along the y and z directions. The strain state of a
twist boundary is pure shear, such that all components εii are
zero. Only two independent components of the strain tensor
are nonzero for each dislocation array. These are given in
real space in Appendix C. Table I lists the strain component
Fourier transforms for a constituent screw dislocation in either
the YZ or ZY array.

It is a textbook result that while a single array of screw
dislocations produces a long-range shear stress, the two peri-
odic screw dislocation arrays in a twist boundary cancel each
other’s long-range stress field (see pp. 699–700 of Ref. [27]).
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FIG. 5. Three-dimensional polar plots of the scattering rate τ−1(q) (in GHz) versus incident angle (θi, φi) of an incoming phonon, holding
phonon frequency constant. The results shown correspond to a twist boundary with θ = 5◦ at the (a) long-wavelength limit (q = qmax/20),
where acoustic mismatch scattering dominates, and the (b) short-wavelength limit [q = (2/3)qmax}, where the periodic strain field scattering
effect is picked up.

This cancellation can be seen in the long-wavelength limit of
the Fourier-transformed strain fields, as Qy approaches zero
in the YZ array and Qz approaches zero in the ZY array. The
components ε̃13, ε̃12, and the sum of the two ε̃23 parts all van-
ish. The cancellation is additionally apparent in the |x| → ∞
limit of the real-space analytic solutions for the strain at infi-
nite screw dislocation arrays, as shown in Appendix C [27].
We can manually enforce this by omitting the n′ = 0 term in
the calculation of Ṽ YZ or Ṽ ZY [Eq. (8)] and instead treating
the corresponding scattering term in the long-wavelength limit
with the acoustic mismatch term Ṽ AM as shown in Eq. (14).

B. Twist boundary results and discussion

The results discussed here describe Si-Si symmetric twist
boundaries with various twist angles θ , and were calculated
using the Si parameters in Table VI.

As previously noted in the case of the tilt boundary, the
twist boundary exhibits a crossover in the frequency de-
pendence of the relaxation time (τ ) [23]. Long-wavelength
phonons view the boundary as a planar defect defined by
the rotational deformation, leading to the expected frequency-
independent scattering. The relaxation time at this long-
wavelength, or low-frequency, limit is plotted versus grain
boundary angle in Fig. 6(c) and is seen to vary periodically
with angle θ . This periodic relationship has been predicted
previously and is a result of the symmetry of the Si acoustic
properties [43]. Short-wavelength phonons, however, interact
with the underlying periodic strain from the dislocation grid
and pick up a phonon frequency dependence approaching
τ ∝ ω−1 [Fig. 6(b)]. As a result, the overall thermal bound-
ary resistance increases linearly with grain boundary angle
because of the increasing strain scattering effects.

TABLE I. Twist boundary Fourier strain field components.

YZ array ZY array

ε̃13 = ibQy

2(Q2
x +Q2

y )
ε̃12 = − ibQz

2(Q2
x +Q2

z )

ε̃23 = − ibQx
2(Q2

x +Q2
y )

ε̃23 = ibQx
2(Q2

x +Q2
z )

We can also compare these results to the symmetric tilt
boundary scattering case (Fig. 7). In both grain boundary
types, the rotational scattering is calculated from Eq. (14)
using the grain boundary angle θ to determine the phonon
velocity change at the interface. It should be kept in mind,
however, that in the tilt case, the rotation is perpendicular
to the plane of the interface. The spectral τ in both cases
is approximately equal at the long-wavelength limit as a re-
sult of the cubic symmetry of the Si stiffness matrix and
acoustic velocities (Fig. 11). However, for the twist boundary,
the relaxation time decreases more rapidly with frequency
in the dislocation scattering regime [Fig. 7(a)]. In the work
of van der Merwe [36], a linear elasticity model for inter-
facial stresses and energies is applied to a generic material
with cubic or tetragonal symmetry, and shows that for the
same misorientation angle θ , twist boundaries exhibit slightly
higher strain energy than tilt boundaries. The higher strain
energy of the twist boundary can explain the reduced relax-
ation times at high phonon frequency, which leads to about
1.3 times the thermal boundary resistance of the tilt boundary
[Fig. 7(b)].

The RK from the Si-Si twist boundary model [Eq. (5)] is
close to, although consistently lower than, previously reported
molecular dynamics simulation results (see Table II). We also
compare model predictions against RK measurements of Si-Si
twist boundaries using the 3ω method, an AC technique suited
for thermal conductivity measurements of films, reported by
Xu et al. [20]. In both cases, the magnitude of the thermal re-
sistance depends on twist angle, and the RK ratio between the
6.9◦ and 3.4◦ twist boundaries is similar. However, the mea-
sured thermal resistance is more than an order of magnitude
larger than the model predictions. The model assumes a clean
interface, while the interface in the physical material serves
as a sink for additional defects and may contain roughness or
oxidation effects [46,47]. In this particular experiment, a Si
thin film was bonded to a Si substrate at varying twist angles.
TEM images revealed a nanometer-thick disordered region at
the boundary, which contributes additional thermal resistance
[20,48,49]. A detailed modeling of these contributions is nec-
essary to understand the experimental results.

A benefit of our approach is the ability to differentiate
between the scattering contributions of the rotational defor-
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FIG. 6. Si-Si twist boundary scattering relaxation times. (a) Spectral phonon relaxation times for a Si-Si twist interface at various grain
boundary angles. (b) The log-log plot of this relaxation time shows a power-law crossover from ω independent to ∼ω−1. (c) The long-
wavelength limit of the relaxation time is plotted against grain boundary angle, revealing a periodic variation.

mation and the dislocation strain. The percentage contribution
of the acoustic mismatch effect to RK is only about 4–5% for
most symmetric twist boundaries, and dislocation strain ac-
counts for the rest of the scattering. This breakdown illustrates
the significant role of the interfacial dislocation structure in
the thermal resistance.

Finally, experimental investigations of twist boundary RK

show a correlation with the Read-Shockley grain bound-
ary energy [50], which captures the strain energy produced
by the dislocation structure at the grain boundary [20,21].
This observation corroborates the idea that dislocation strain
is essential to understand the origins of interfacial ther-
mal resistance. The Read-Shockley grain boundary energy
is given by

E = Gb

4π (1 − ν)
θ (A − ln(θ )), (16)

with dependencies on the misorientation angle θ , Burgers
vector b, bulk modulus G, and Poisson ratio ν. The A factor
captures the ratio between the dislocation core energy and
strain energy contributions at the grain boundary. We set
A equal to 0.23, following the previous work of Tai et al.
[21], for the simple purposes of demonstrating the correlation
with RK. As shown in Fig. 8, RK from the twist boundary
model closely trends with the Read-Shockley strain energy, as
expected.

IV. SEMICOHERENT HETEROINTERFACE SCATTERING

In this section, we apply the formalism of Sec. II to a
semicoherent heterointerface.

A. Misfit dislocation strain and acoustic mismatch

Maintaining the geometry of Sec. II A, the semicoherent
heterointerface is defined in the yz plane with two interpene-
trating arrays of dislocations with misfit edge character [51].
As in the previous case of the tilt boundary [23], the defor-
mation tensor is broken down into dilatational strain (ε�),
shear strain (εS), and rotation (εR), which act as independent
scattering sources. These strain fields are related to those of
the tilt boundary by a simple rotation, which places the extra
half plane along the x axis, perpendicular to the boundary.
They are given in real space in Appendix D. Table III lists the
Fourier strain components for a single misfit edge dislocation
in both the YZ and ZY arrays.

Figure 2 shows a normal component of the strain field from
a single misfit dislocation array, and the cross section reveals
a step function change in the dilatation at the interface (see
pp. 695–697 of Ref. [27]). In fact, setting Qy = 0 in the YZ
array or Qz = 0 in the ZY array yields ε̃� ∝ i/Qx, which is
precisely the Fourier transform of the Heaviside step function.
As explained in Sec. I, this long-range dilatational strain effect
is artificial, since the reference lattice parameter differs on
either side of the interface. Therefore, the dilatational strain
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FIG. 7. The comparison of twist and tilt boundaries show that (a) the spectral relaxation time (τ ) converges at the long-wavelength limit,
but decreases faster in the frequency-dependent regime for the twist boundary. (b) The twist boundary, therefore, is predicted to have about 1.3
times the thermal boundary resistance (RK).
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TABLE II. Thermal boundary resistance (RK in m2 K/GW) com-
parison to previous theoretical and experimental literature results for
the Si-Si symmetric twist boundary.

RK, literature RK, this study
T (K) Angle θ MD [8,11,45] Born–von Kármán

500 11.42◦ 0.61, 0.76, 1.1 0.30
Experimental [20]

300 6.9◦ 9.0 0.21
300 3.4◦ 6.7 0.13
300 RK (6.9◦ )

RK (3.4◦ ) 1.3 1.6

at the long-wavelength limit is subtracted and treated via the
acoustic impedance mismatch term described by Eq. (14).

Recently, Varnavides et al. introduced the strain mismatch
model (SMM) [7], providing an ab initio framework for
inelastic phonon scattering due to an interfacial strain pertur-
bation. The SMM method is applied to treat a similar physical
system, studying the dilatational strain scattering from a misfit
dislocation array. By following the treatment of Carruthers
(Eq. 4.91 of Ref. [38]), the derived scattering rate is found
to be independent of the dislocation spacing and, as far as we
can interpret, neglects the periodic strain fields local to the
interface, which we find to be important in this work. Both
previous works [7,38] additionally treat the step change in di-
latation at a misfit dislocation array as a source of anharmonic
strain scattering, which differs from the acoustic mismatch
approach taken here.

B. Heterointerface results and discussion

The calculations below are performed for a Si-Ge interface
using the parameters found in the Table VI. As in the tilt and
twist boundary examples, the heterointerface relaxation time
crosses over between planar-defect and linear-defect scatter-
ing. However, as expected due to the larger acoustic mismatch,
the thermal resistance is significantly larger than in the twist
boundary case. The acoustic mismatch effect alone, however,
contributes only about 50% of the full thermal boundary
resistance (see Fig. 9) predicted by the model, indicating a
significant contribution of misfit dislocation strain scattering
to the thermal resistance.

Table IV shows the thermal boundary resistance (RK) re-
sults of our method assuming a Born–von Kármán (BvK)
model for the phonon dispersion. The results show good
agreement with previous calculations on Si-Ge heterojunc-
tions using the DMM and MD simulations [4]. In the diffuse
mismatch model, the overlap in the phonon density of states

TABLE III. Heterointerface Fourier strain field components.

YZ array ZY array

ε̃� = ib(1−2ν )
(1−ν )

Qx
(Q2

x +Q2
y )

ε̃� = ib(1−2ν )
(1−ν )

Qx
(Q2

x +Q2
z )

ε̃S = −ib
(1−ν )

QyQ2
x

(Q2
x +Q2

y )2 ε̃S = −ib
(1−ν )

QzQ2
x

(Q2
x +Q2

z )2

ε̃R = −2ibQy

(Q2
x +Q2

y )
ε̃R = −2ibQz

(Q2
x +Q2

z )
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FIG. 8. Thermal boundary resistance (RK ) correlates with Read-
Shockley grain boundary energy, as observed experimentally.

on either side of the interface determines the transmission
probability. In contrast, the molecular dynamics simulation
uses no model or assumption about the phonon scattering
mechanism. We compare to the results from the largest simu-
lation cell trialed in each of the previous MD studies [30,52].
Our results are also in line with the atomistic Green’s function
(AGF) approach, which circumvents the lattice dynamical
matrix equation, and instead studies the impulse response
of the system [53]. The AGF work additionally studied the
influence of alloying at the interface and observed that RK

doubles with an alloy layer of just 1 nm. Finally, in the SMM
[7], phonon transmission coefficients are evaluated through an
iterative solution of the phonon Boltzmann transport equation
to predict RK. The SMM predicts a larger RK, likely due to the
first-principles anharmonicity treatment and differences in the
treatment of the dilatation at the interface (see Sec. IV A).

The thermal boundary resistance RK of the Si-Ge interface
has also been investigated experimentally. The through-film
thermal conductivity of superlattice films can be converted to
a value for RK by assuming that bulk phonon scattering is
negligible [7], and the results for the largest reported period
L (i.e., thickness of interlayers) are summarized in Table IV.
While the RK calculated here is comparable to the superlattice
measurements, it is important to note that its value is affected
by the coherent phonon dynamics present in superlattices.
Additionally, Wang et al. [56] measured the RK of a Si film
bonded to a Ge substrate using the 3 ω method, and reported
an order-of-magnitude larger thermal boundary resistance. In
their study, however, a ∼3-nm alloy layer is shown to form
with additional interdiffusion persisting for ∼10 nm around
the interface, and this alloying effect predominates the inter-
facial thermal resistance. Interface quality can therefore have
order-of-magnitude effects on the thermal transport [57].

V. CONCLUSION

In this study, we have focused on the thermal resistance of
special low-energy interfaces, which can be decomposed into
periodic arrays of dislocations. Specifically, we provide a for-
malism for the scattering effects of two orthogonal dislocation
arrays combining to form a cross grid, and apply this model
to describe symmetric twist boundaries and semicoherent
heterointerfaces. Because our model explicitly incorporates
information about the dislocation structure, we can capture
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FIG. 9. Si-Ge heterointerface scattering using a Born–von Kármán phonon dispersion. (a) Spectral relaxation time for a Si-Ge heteroint-
erface with a misfit dislocation spacing of 7 nm, comparing model with acoustic mismatch and dislocation strain (solid line) to the acoustic
mismatch effect alone (dotted line). (b) Thermal boundary resistance predictions versus temperature from the heterointerface model with (solid
line) and without (dotted line) dislocation strain scattering.

the effects of dislocation spacing and strain energy on scat-
tering rates and transport coefficients. Additionally, whereas
standard models of boundary scattering yield ω-independent,
planar defect scattering, this model explicitly shows the onset
of ω-dependent scattering stemming from the interactions of
mid- to high-frequency phonons with interfacial dislocations.
Finally, we address long-range deformations at the inter-
face with an acoustic mismatch scattering treatment, within
our perturbation theory framework. The transport predictions
from this model agree well with results from molecular dy-
namics, but generally underestimate experimentally measured
thermal resistances. However, this discrepancy may demon-
strate the influence interfacial roughness and defect decoration
can have on thermal resistance. The discussion presented here
on interfacial thermal resistance, with comparisons of grain
boundary type, angle, and energy, can accelerate an ICME
microstructure engineering framework for thermal materials.

All scripts used to implement this boundary scattering
model are available [58].
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APPENDIX A: SCATTERING RATE CALCULATION

This Appendix outlines the main steps to arrive at the final
working formula [Eq. (A7)] for the scattering rate � due
to a dislocation grid. As before, the YZ array is composed
of dislocation lines oriented along the z direction that are
periodically spaced by D along the y direction. Conversely,
the ZY array has dislocation lines oriented along the y direc-
tion that are periodically spaced by D along the z direction.
Finally, the linear density of planar defects in the sample
is given by nD = 1/Lx. For ease of this discussion, we will
start with an alternative representation of Fermi’s golden rule,
which relates � to the number density of defects (nb), squared
matrix element (|M|2), and a phase-space factor (g) capturing
all the final phonon states q′ that the incident phonon could
scatter into:

�(q) = nb|M|2g(ωq). (A1)

Here, nb is the linear density of boundaries in the material and
is approximately equal to 1/L, where L is the average grain
size in the material. As shown in Sec. II A, the scattering rate

TABLE IV. Room-temperature thermal boundary resistance (RK in m2 K/GW) with comparison to theoretical and experimental literature
results for Si-Ge heterointerface.

Computational or theoretical

This work Ref. [30] Ref. [52] Ref. [7] Ref. [53]

BvK MD DMM MD DMM SMM AGF

3.75 2.83 2.40 3.00 3.71 5.22 3.36

Experimental (3ω method)

Ref. [20] Ref. [54] Ref. [55]

Bonded Films Superlattice (L = 14 nm) Superlattice (L = 15 nm) Superlattice (L = 27.5 nm)

31.4 2.14 3.62 6.28
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from the YZ and ZY dislocation grid can be computed sepa-
rately. Therefore, here we will focus on deriving the scattering
rate from the YZ array (�YZ), and the �ZY term can be written
by analogy by enforcing periodicity along the z direction.

Starting with Eq. (7) (reproduced below), the Fourier trans-
form of the periodic scattering potential for the YZ array is

Ṽ YZ =
∫∫

dx dy
∞∑

n=−∞
V1(x, y − nD)e−i(Qxx+Qyy)

=
∞∑

n=−∞
e−iQynDṼ1(Qx, Qy). (A2)

Here, V1 is the real-space strain field around a single dislo-
cation defect. We apply the Poisson summation formula to
explicitly show the Dirac comb:

∞∑
n=−∞

e−iQynD = 2π

D

∞∑
n′=−∞

δ(Qy − Qn′ ),

(
Qn′ = 2πn′

D

)
.

(A3)

Hence, Ṽ YZ can be written as

Ṽ YZ = 2π

D

∞∑
n′=−∞

δ(Qy − Qn′ )Ṽ1(Qx, Qy) (A4)

= 2π

D

∞∑
n′=−∞

δ(Qy − Qn′ )Ṽ1(Qx, Qn′ ). (A5)

We then square this result and integrate over all values
q′ when computing the squared matrix element. Invoking
Fermi’s golden rule [Eq. (1)], the scattering rate for a phonon
state q is then

�YZ(q) = nb

h̄2D2

∞∑
ñ=−∞

∫∫∫
d3q′ δ(Qz )δ(ωq − ωq′ )

× |Ṽ YZ(Qx, Qn′ )|2(1 − q̂ · q̂′). (A6)
This is the same as Eq. S41 of Ref. [23]. The phase-space
term is implicitly enforced by the momentum and energy con-
servation laws imposed by the δ functions. These conservation
rules restrict this integral to a discrete set of available q′ states.
Equations S42– S48 of Ref. [23] reexpress these δ functions
explicitly in terms of q′ to arrive at the final expression for �:

�YZ(q) = nD

h̄2vgD2

∞∑
n′=−∞

∑
σ=±

(
q2

x ∓ qx
(
q2

x + 2qyQn′ − Q2
n′
)1/2 + qyQn′

)
q
(
q2

x + 2qyQn′ − Q2
n′
)1/2 |Ṽ1(Qx,n′σ , Qn′ )|2. (A7)

This is the working formula that we use for numerical calcu-
lation of scattering rate due to the YZ array of dislocations,
and equivalently for the ZY array by switching the y and the z
components.

Finally, to get the spectral relaxation time, we must average
over the incident phonon wave-vector direction q̂. We com-
pute τ (ω) as the weighted orientational average of the inverse
scattering rate,

τ (ω) =
∫∫

�−1q2
x d�∫∫

q2
x d�

= 3

4π

∫∫
�−1 q2

x

q2
d�, (A8)

where d� is the element of solid angle for q̂.
The spectral relaxation time can then be used to compute

transport properties such as the lattice thermal conductivity in
the phonon gas model,

κL = 1

3

∫
Cs(ω)vg

2τ (ω) dω, (A9)

using the expression

Cs(ω) = 3h̄2

2π2kBT 2

ω4eh̄ω/kBT

vgvp
(A10)

for the spectral heat capacity Cs(ω).

APPENDIX B: RELATING LANDAUER AND
INTERFACIAL SCATTERING THEORY

There are several ways to model thermal transport in sys-
tems containing interfaces. Two common approaches are the
Landauer formalism, which defines a phonon transmissivity
and thermal boundary resistance, and scattering theory, which

models the interfacial thermal resistance via an additional
relaxation time that modifies the thermal conductivity of the
total system (bulk material plus interfaces). Figure 10(a) de-
picts the temperature profiles implied by the Landauer theory
(blue line) versus scattering theory (red line) approaches. If
the mean free path of a phonon is equal to or longer than Lx,
the homogeneously sloped red line better represents reality.
If the mean free path is much shorter than Lx, the distance
between interfaces, inhomogeneities in the temperature gra-
dient are expected near interfaces, and the blue line may be
more appropriate. It is important to keep in mind that materials
tend to have a wide distribution of mean free paths, so the
red line may better describe low-frequency phonons, while
the blue line may better describe high-frequency phonons.
Regardless, we can mathematically relate these two frame-
works and define a relationship between the relaxation time
and transmissivity.

The spectral thermal conductivity of the bulk, interface-
free system is given by

κbulk (ω) = 1
3Cs(ω)vg(ω)2τbulk (ω), (B1)

where τbulk describes scattering in the bulk material and may
contain phonon-phonon and phonon-point defect scattering,
for example. The thermal resistance due to a slab of this bulk
material of length Lx is (Lxκbulk )−1.

1. Landauer theory

Within the Landauer approach, we define a spectral thermal
boundary conductance hB based on the transmissivity from
side 1 to side 2 of the interface α12 and the reverse direction
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FIG. 10. (a) A schematic illustration of two common models used to describe heat conduction in materials with interfaces. The blue line
depicts the Landauer-based model where a thermal boundary resistance arising from the conduction channel having an interfacial transmission
probability or t (ω) > 0 induces a sharply localized drop in temperature. The red line depicts a model based on phonon scattering theory and
Matthiessen’s rule, where each scattering mechanism contributes a scattering rate (τ (ω)−1), and together they modify the material’s thermal
conductivity homogeneously. (b) A comparison between the transmissivity calculated using classical acoustic mismatch (AMM) theory and
quantum perturbation theory. The two cases differ by no more than 5% up to �v/v = 0.5.

α21 as

hB(ω) = 1

4
Cs(ω)vg(ω)

(
α12(ω)

1 − α(ω)

)
, (B2)

where α(ω) = (α12(ω) + α21(ω))/2. The thermal boundary
resistance of the interface is then defined by

1/RK = hB =
∫ ωm

0
hB(ω) dω. (B3)

Since the bulk material and interfaces are in series in this
model, the total spectral thermal resistance is given by the sum
of the bulk and interface resistances:

(LxκL(ω))−1 = (Lxκbulk (ω))−1 + (hB(ω))−1. (B4)

2. Interfacial scattering

The second interfacial resistance method treats the inter-
face as an additional scattering mechanism, which can reduce
the total phonon lifetime. The total thermal resistance of the
same length of material, Lx, is given by Matthiessen’s rule as
the sum of the resistance due to bulk phonon scattering and
the resistance due to boundary scattering,

(LxκL(ω))−1 = (Lxκbulk (ω))−1 + (LxκB(ω))−1. (B5)

In this work, we refer to the interface relaxation time as τB,
giving

κB = 1
3Cs(ω)vg(ω)2τB(ω). (B6)

We can rewrite Eqs. (B5) and (B6) as

κL(ω) = 1
3Cs(ω)vg(ω)2τtot (ω), (B7)

with τtot (ω) given by the sum of scattering rates due to bulk
processes such as phonon-phonon scattering (τ ph) and inter-
face scattering (τB):

τtot (ω)−1 = τph(ω)−1 + τB(ω)−1. (B8)

By equating Eqs. (B4) and (B5), we get LxκB(ω) = hB.
Now, when the relation τ12 = τ21(vg,1/vg,2) is obeyed—which
we will prove to hold true for our acoustic mismatch scattering
potential next—we obtain Eq. (4). Here, the subscript 12 ex-
plicitly indicates that the phonon is approaching the interface
from material 1, and vice versa for 21. This notation is omitted
in the main text.

We now aim to directly compare the treatment of acoustic
mismatch via our perturbation theory approach and the classi-
cal AMM treatment. To do so, we define an interface between
two Debye solids where v1 = v + �v/2, v2 = v − �v/2, and
density is unchanged, ρ1 = ρ2. Following the procedure pre-
sented by Hanus, Garg, and Snyder [23], and calculating
the relaxation time due to the scattering potential given in
Eq. (13), we find

τ12(q)−1 = �v2

2Lzv1| sin θ cos φ| . (B9)

At the acoustic mismatch limit, the planar defect produces
a specular reflection, which scatters back into the density of
states of side 1. The factor of vg in the denominator, which
comes from the density-of-states contribution, is therefore
equal to v1. The spectral relaxation time can be obtained by
using Eqs. (B9) and (A8):

τ12(ω) = 3

2
Lxv1 �v2. (B10)

Note that the relation τ12 = τ21(v2/v1) holds, since the factor
of v1 is associated with the density of states into which the
phonon is scattering (i.e., reflection back into material 1). The
details regarding the matrix element contribution to τ result in
no change to the final result when inverting the problem from
12 to 21.
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FIG. 11. Group velocity slowness plots for silicon: direction dependence of the acoustic phonon group velocities potted on a unit sphere.
Fast secondary and slow secondary correspond approximately to the two transverse branches, and primary is approximately the longitudinal
branch. Produced using the CHRISTOFFEL package [42].

Using Eq. (B10) with Eq. (4), we obtain for the perturba-
tion theory transmissivity

tPert = 1
1
2

(
�v
v

)2 + 1
. (B11)

In the classical AMM theory, the transmissivity is given by [4]

tAMM = 4Z1Z2

(Z1 + Z2)2
, (B12)

where Zi = ρivs,i is the acoustic impedance of side i, and
ρi is its mass density. The two cases are directly compared
in Fig. 10(b) and they differ by no more than 5% up to
|�v/v| = 0.5.

APPENDIX C: TWIST BOUNDARY STRAIN
FIELD DETAILS

The displacement vector field for a screw dislocation
has only one nonzero component oriented along the line of
the dislocation. Therefore, a dislocation with Burgers vector
(b) parallel to ẑ has the following displacement field (see p. 60
of Ref. [41]):

un = (0, 0, uz ),

u3,n = b

2π
arctan

(y

x

)
. (C1)

The displacement produces a pure shear state, with only two
nonzero strain components:

εxz = εzx = 1

2

∂uz

∂x
= − by

4π (x2 + y2)
,

εyz = εzy = 1

2

∂uz

∂y
= bx

4π (x2 + y2)
. (C2)

Next, we will consider the YZ array of screw dislocations
spaced by D along the y axis in order to model a low-angle
twist boundary. The stress components from the dislocation
array εYZ

i j can be determined from the following summation:

εYZ
i j =

∞∑
n=−∞

εi j (x, y − nD). (C3)

Analytic solutions to the above summation can be obtained,
and are shown below (see pp. 698–700 of Ref. [27]):

εYZ
xz = − b

2D

(
sin (2πy/D)

cosh (2πx/D) − cos (2πy/D)

)
,

εYZ
yz = b

2D

(
sinh (2πx/D)

cosh (2πx/D) − cos (2πy/D)

)
. (C4)

One can then evaluate the limit as |x| → ∞:

lim
x→∞ εYZ

xz = 0, (C5)

lim
x→∞ εYZ

yz = sgn(x)
b

2D
.

The εYZ
yz shear strain component persists at the long-range

limit, converging to a constant value. This is energetically
prohibitive for the twist boundary as a whole and shows the
importance of including the ZY array of dislocations with
sense vector along the y axis, periodically spaced on the z
axis. The strain components from this array are the nega-
tive of Eq. (C4) with y and z swapped, and their long-range
limits are

lim
x→∞ εxz = 0, (C6)

lim
x→∞ εyz = −sgn(x)

b

2D
, (C7)

which exactly cancel the far-field strain of the first array if
both share the same b/D ratio [27].

APPENDIX D: HETEROINTERFACE STRAIN
FIELD DETAILS

As with the twist boundary, the heterointerface is taken
to lie in the yz plane with two interpenetrating arrays of
dislocations, but now with edge character. Therefore, the
strain fields are essentially equivalent to the tilt bound-
ary case, requiring only a rotation such that the extra
half plane points in the x direction. The strain field
components are listed in Table V for one dislocation
through the origin in each of the two arrays. The notation
follows Ref. [23].

Again, considering the YZ array, analytic solutions exist
for the real-space sum over the misfit edge dislocations pe-
riodically spaced by D. The analytic solutions for the three
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TABLE V. Heterointerface strain field components.

YZ array ZY array

ε� = −b(1−2ν )
2π (1−ν )

x
(x2+y2 )

ε� = −b(1−2ν )
2π (1−ν )

x
(x2+z2 )

εS = b
4π (1−ν )

y(y2−x2 )
(x2+y2 )2 εS = b

4π (1−ν )
z(z2−x2 )
(x2+z2 )2

εR = b
π

y
x2+y2 εR = b

π

z
x2+z2

independent nonzero strain components εYZ
i j in a Cartesian

basis are (see pp. 695–697 of Ref. [27]) [36]

εYZ
xx = b

4(1 − ν)D

[−2νSX (CX − cY ) + 2πX (CX cY − 1)

(CX − cY )2

]
,

(D1)

εYZ
yy = b

4(1 − ν)D

[
2(1−ν)SX (CX −cY ) − 2πX (CX cY − 1)

(CX − cY )2

]
,

(D2)

εYZ
xy = b

2(1 − ν)D

[
sY (

2πXSX − CX + cY

(CX − cY )2
)

]
, (D3)

where X ≡ x/D, Y ≡ y/D, sY ≡ sin2πY , cY ≡ cos2πY ,
SX ≡ sinh2πX , and CX ≡ cosh2πX .

We can again evaluate the limit as |x| → ∞:

lim
x→∞ εYZ

xx = sgn(x)
−bν

2(1 − ν)D
, (D4)

lim
x→∞ εYZ

yy = sgn(x)
b

D
, (D5)

lim
x→∞ εYZ

xz = 0. (D6)

Here, the dilatation strain components (εYZ
xx and εYZ

yy )
persist in the far-field limit, while the shear strain decays.
Additionally, the far-field dilatational strain is not canceled
out by the ZY array. However, as noted in the text, the nonzero
dilatation in the far field is artificial since the reference lattices
are different on either side of the interface. We reiterate that
this far-field dilatational strain is subtracted and treated with
an acoustic mismatch term capturing the step-function change
in stiffness matrix at the interface.

APPENDIX E: CHRISTOFFEL EQUATION

The Christoffel matrix C is obtained from the rank-4 stiff-
ness tensor ci jkl for a unit vector n̂ denoting the phonon
direction of propagation as follows [42]:

Ci j =
∑

jk

n jci jkl nk . (E1)

From this, one can then evaluate the following eigenvalue
problem to arrive at the phase velocity vp of an acous-
tic phonon traveling in the direction n̂ with polarization
vector ŝ: ∑

i j

(
Ci j − δi jv

2
p

)
s j = 0. (E2)

By solving this equation for different n̂, it is possible to
generate a slowness surface, or diagram of the direction-
dependent group (vg) or phase velocity (vp) of the acoustic
phonons in a material. As discussed in Ref. [42], the acous-
tic vg and vp differ slightly in terms of direction alone, as
described by the power flow angle �, where vp = vgcos�.
The group velocity direction indicates the direction in which
energy travels, which can deviate from the wave-front prop-
agation direction described by the phase velocity. Figure 11
shows the group velocity slowness plots of the three phonon
polarizations for Si.

Both the twist boundary and semicoherent interface mod-
els require solving the Christoffel equations to calculate the
magnitude change of phonon velocity at the boundary �v

for a fixed incident phonon direction. In the twist boundary,
�v comes solely from the misorientation or, equivalently, the
rotation of the slowness plots at the boundary. In contrast, in
the Si-Ge heterointerface, for example, we calculate slowness
plots for both the Si and Ge lattices, and compute �v from
the differences in acoustic velocity between the two materials
for a fixed phonon direction. A misorientation could also
be incorporated in the heterointerface by applying a relative
rotation to the Ge slowness plot with respect Si, for example.

APPENDIX F: MODEL PARAMETERS

The model parameters are summarized in Table VI with
the values used for the Si-Si twist boundary and Si-Ge
heterointerface examples discussed in the text. Across a tem-
perature range of 100–800 ◦C, the temperature dependence of
the input parameters due to lattice thermal expansion had a

TABLE VI. Parameters used in model.

Properties Silicon Germanium

Speed of sound, vs (m/s) [59] 6084 5400

Atoms per unit cell, N 2 2

Volume per atom, V (Å3) [59] 19.7 22.7

Density, ρ (kg/m3) 2330 5323

Stiffness coefficients, c11, c12, c44 (GPa) [60,61] 165.6, 63.9, 79.5 126.0, 44.0, 67.7

Bulk modulus, G (GPa) [60] 97.83

Grüneisen parameter, γ [23] 1
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negligible impact on the phonon relaxation time predictions.
However, temperature-dependent inputs could be determined
from quasiharmonic density functional theory calculations,
for example.

The most computationally demanding portion of the
model is the calculation of the spectral relaxation time,
owing to the integrals over incident phonon direction and

phonon frequency. Running serially on a laptop, the cal-
culation of each spectral relaxation time value τ (ω) takes
2.16 min. We find that a spline of 50 spectral relaxation
time τ (ω) values are sufficient to converge the thermal
boundary resistance RK. Therefore, running serially on a
laptop, each thermal boundary resistance calculation takes
approximately 2 h.
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