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Nonadiabatic transitions in Landau-Zener grids: Integrability and semiclassical theory
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We demonstrate that the general model of a linearly time-dependent crossing of two energy bands is integrable.
Namely, the Hamiltonian of this model has a quadratically time-dependent commuting operator. We apply
this property to four-state Landau-Zener (LZ) models that have previously been used to describe the Landau-
Stückelberg interferometry experiments with an electron shuttling between two semiconductor quantum dots.
The integrability then leads to simple but nontrivial exact relations for the transition probabilities. In addition, the
integrability leads to a semiclassical theory that provides analytical approximation for the transition probabilities
in these models for all parameter values. The results predict a dynamic phase transition, and show that similarly
looking models belong to different topological classes.
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I. INTRODUCTION

The Landau-Zener (LZ) model describes an evolution for
amplitudes of two states with a time-dependent Hamiltonian

H =
(

b1t g
g∗ b2t

)
, (1)

where b1,2 are called slopes of diabatic levels and g is the
interlevel coupling. The basis in which the off-diagonal el-
ements of H (t ) are time independent is called the diabatic
basis. The LZ formula provides an exact analytical expression
for the probability to remain in the same diabatic state after
the evolution during time t ∈ (−∞,+∞):

PLZ = e−2π |g|2/|b1−b2|. (2)

This formula plays a special role in the theory of nonadia-
batic transitions because it can be used as an approximation
when the energy levels are mostly well separated. The adia-
baticity is then broken only in disjoint regions of time-energy,
in which the nonadiabatic dynamics is experienced only by
pairs of states and the parameter time-dependence can be
linearized.

For nanoscale systems of modern interest, however, many
states may experience the nonadiabatic transitions simultane-
ously, even when the linear approximation of the parameter
time-dependence near the nonadiabatic transitions is still
applicable. The state evolution is then described by the non-
stationary Schrödinger equation

i
d

dt
|ψ〉 = H (t )|ψ〉, (3)

and the time-dependent Hamiltonian of a multistate Landau-
Zener (MLZ) process has generally the form [1]

H (t ) = Bt + A, (4)

where A and B are time-independent matrices, and B is diag-
onal. Let E be the diagonal part of A. The nonzero elements
of Bt + E are called diabatic energies and the corresponding
eigenstates are called diabatic states. As t → ±∞, the dia-
batic states coincide with the Hamiltonian eigenstates. The
goal of the MLZ theory is to find the amplitudes Snm and
the transition probabilities, Pm→n = |Snm|2, from the diabatic
states m as t → −∞ to the states n as t → +∞. Among
the MLZ models, there is a class of Hamiltonians that has
attracted special attention previously. It corresponds to the
time-dependent crossing of two bands with parallel diabatic
levels, as shown in Fig. 1. Let N and M be the integer numbers
of the parallel levels in these bands. Matrices A and B then
have the dimensions (N + M ) × (N + M ), and

A =
(

E1 G
G† E2

)
, B =

(
b11N 0

0 b21M

)
, (5)

where 1N and 1M are the unit, respectively, N × N and M × M
matrices. The diagonal matrices

E1 ≡ diag{e1
1, e2

1, . . . , eN
1 }, E2 ≡ diag{e1

2, e2
2, . . . , eM

2 }
are responsible for the spacing between the parallel diabatic
levels; b1,2 are the slopes of the bands. The lower indices 1 and
2 in bi

1,2, ei
1,2 refer, respectively, to the N-level and M-level

bands. G is a N × M matrix that describes direct coupling
between the two bands. All elements of G can be nonzero and
complex-valued.

The band crossing MLZ model (5) was discussed originally
in relation to the physics of the Rydberg atoms [2,3]. Optical
realization of this model was used to create an optical Galton
board [4]. The early work sometimes referred to the level
crossing pattern in the two-band model as to the LZ grid of
energy levels. Later, LZ grids attracted attention in relation
to the two-state systems that are coupled to an environment,
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FIG. 1. The linearly time-dependent diabatic levels in the model
of two crossing bands are forming a pattern that we call the LZ grid.
The first and the second bands have, respectively, N and M parallel
levels. The diabatic basis states of the same band do not interact with
each other directly but any such a state can be coupled directly to
arbitrary diabatic states of the other band.

which splits the two levels of the LZ model into the two bands
of many parallel levels [5–9], and more recently LZ grids
emerged in the study of qubits coupled to optical modes, such
as in circuit QED systems [10–15].

Although certain facts about the LZ grids have been de-
termined analytically [5] as well as numerically [16], such
systems remain generally unsolvable. Due to the complex
oscillatory behavior of the transition probabilities as functions
of the parameters, the physics of LZ grids remains poorly
studied. Currently, there is no general analytical approach to
analyze the transition probabilities in multistate LZ models.
Approximations have been developed but only for limits of
either very small [17] or very large [18] separations of the
parallel levels in the bands. Such limits are approached very
slowly with decreasing/growing ei

1,2, so they usually give too
crude approximations to realistic choices of the parameters.
There is also one fully solvable LZ-grid model [19], but it
does not clarify many questions about the general problem.

Our article has two goals. First, we add to the analytical
understanding of the transition probabilities in all LZ grids
by applying the recent developments on the time-dependent
integrability [20,21]. Thus, in Sec. II, we show that all LZ
grids are formally integrable, in the sense that there is an
analytic expression for the time-quadratic-polynomial oper-
ator that commutes with the Hamiltonian, and satisfies an
additional condition that is needed for the integrability of
time-dependent Hamiltonians as defined in [20]. However, un-
like many known solvable cases [22–25], LZ grids generally
remain not fully solvable. Instead, the integrability leads to a
simple but nontrivial symmetry for the transition probabilities.

Our second goal is to apply this symmetry to a specific
four-state LZ-grid model that has attracted attention recently
due to experiments with Landau-Stückelberg interferometry
[26–28] in coupled quantum dots [29,30]. We will assume that
the electrostatic energy of one of the dots is changing linearly
with time and, in Sec. III, show that the integrability in such
models leads to nontrivial exact relations between different
transition probabilities.

Finally, one of the applications of the integrability is the
possibility to reduce the order of the differential equation for
amplitudes of LZ-grid states. This property leads to asymp-
totically exact expressions for leading exponents that describe
the transition probabilities in the nearly adiabatic limit, as it
has been recently demonstrated for the general three-state LZ
model [21]. In Sec. IV we apply this semiclassical approach
to the four-state quantum dot models to derive approximate
expressions for the experimentally most relevant probability
to remain in the same quantum dot after a linear sweep of the
gate voltage.

II. INTEGRABILITY OF THE GENERAL
BAND-CROSSING MODEL

The integrability conditions for a time-dependent Hamil-
tonian H (t ) are defined as the possibility to find a parameter
combination τ and an analytical form of a nontrivial operator
H ′ such that [20]

∂H

∂τ
− ∂H ′

∂t
= 0, (6)

[H, H ′] = 0. (7)

Such conditions are known in the theory of solitons [31], and
the existence of time-polynomial commuting operators in sev-
eral MLZ systems was originally noticed in [32]. Before we
discuss the applications, let us first prove that the conditions
(6) and (7) can be always satisfied for the LZ-grid Hamiltonian
with A and B given by (5).

Let us define a continuous family of operators

H (t, τ ) = B(τ )t + A(τ ), (8)

where B(τ ) and A(τ ) are obtained from the original B and A
by setting

B(τ ) ≡ Bτ, E1(τ ) ≡ τE1, G(τ ) ≡ G
√

τ , (9)

and keeping E2 intact. Note that at τ = 1, A(τ ) and B(τ ) are
the same as the original A and B.

Then, the pair of operators, H (t, τ ) and H ′(t, τ ), where

H ′(t, τ ) = ∂τ B(τ )t2

2
+ ∂τ A(τ )t − 1

2(b2 − b1)τ 2
A2(τ ),

(10)

satisfy (6) and (7). Indeed, (6) is trivial to verify, whereas (7)
leads to two independent conditions for the terms proportional
to, separately, t2 and t :

1

2
[∂τ B(τ ), A(τ )] + [∂τ A(τ ), B(τ )] = 0, (11)

[∂τ A(τ ), A(τ )] − 1

2(b2 − b1)τ 2
[A2(τ ), B(τ )] = 0, (12)

which can be verified by direct substitution of the τ -dependent
matrices (8) and (9).

Due to the satisfied integrability conditions, one can de-
form the integration path in the two-time space (t, τ ) without
changing the evolution amplitudes. Namely, let us define the
evolution operator

U = T̂P exp

(
−i

∫
P

H (t, τ ) dt + H ′(t, τ ) dτ

)
, (13)
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FIG. 2. The true time-evolution path P (blue arrows) with τ = 1
and t ∈ (−∞,+∞) can be deformed into the path Pτ , such that
the horizontal part of Pτ has τ = const 
= 1 (dashed black arrows).
These deformations do not change the evolution matrix. Vertical legs
of Pτ have t = ±T with T → ∞, so they contribute only to the
trivial adiabatic phases in the evolution matrix, and do not affect the
transition probabilities. For the three-state LZ model, the path Pτ can
be chosen so that b1 → ∞ along the horizontal piece of this path.

where T̂P is the path ordering operator along P in the
two-time space (t, τ ). Equations (6) and (7) mean that the
nonabelian gauge field with components A(t, τ ) = (H, H ′)
has zero curvature, so the result of integration in (13) does not
change after the deformations of P that keep only the initial
and final points of P intact [20], and avoid singularities of the
τ -dependent Hamiltonians, as in Fig. 2.

Let the physical evolution correspond to the changes of t
from −∞ to +∞ at τ = 1. Then, P starts at the point (t, τ ) =
(−∞, 1). We fix, initially, t and change τ from this point to
another value, and only then perform t-evolution at fixed new
τ . After this, we bring τ back to τ = 1 at t = +∞ [20,31].

The τ -evolution at fixed t = −T → −∞ or t = T → +∞
is strictly adiabatic due to the quadratic dependence of the
diagonal elements of H ′ on t . Therefore, the transition proba-
bilities in the LZ-grid models that differ only by τ within the
family (9), which is parametrized by τ , are identical.

This nontrivial invariance can now be used in combination
with a trivial symmetry that is common for all MLZ models.
Namely, by rescaling time in the Schrödinger equation (3),

t → t/
√

τ , (14)

we cannot change the transition probabilities for the evolution
in the interval t ∈ (−∞,∞) at fixed τ . On the other hand, this
rescaling corresponds to the change of the parameters in the
original model (5):

b1,2 → b1,2/τ, E1,2 → E1,2/
√

τ , G → G/
√

τ . (15)

Thus, the transition probabilities are independent of the
variable transformations, simultaneously, (9) and (15). Com-
bining them, we find that the transition probabilities in model
(5) are invariant of a simple transformation of the diagonal
matrices

E1 → E1
√

τ , E2 → E2/
√

τ . (16)

This is the most general exact result of our article. The
physical meaning of this result is illustrated in Fig. 3. For a
model with only two levels in each band in this figure, there
are only two independent level splittings

�e1 ≡ e1
1 − e2

1, �e2 ≡ e1
2 − e2

2,

FIG. 3. Varying the distances between parallel levels does not
change the state-to-state transition probabilities if the area enclosed
by the diabatic levels (filled by blue color) is conserved.

so Eq. (16) means that the transition probabilities depend only
on the combination �e1�e2 but not on the ratio �e1/�e2. It
is easy to verify that

S = �e1�e2/(b1 − b2)

has the physical meaning of an area enclosed by the diabatic
levels (the diamond plaquette in Fig. 3). Hence, we can also
formulate (16) as an invariance of the transition probabilities
of the transformations of the LZ grid that preserve the areas
enclosed by the diabatic levels, as well as the LZ parameters
|Gi j |2/(b1 − b2) if the slopes of the bands are also allowed to
change.

Unfortunately, the invariance under the transformations
(16) is not sufficient to solve the whole model, i.e., to express
the transition probabilities in terms of the known special func-
tions of the model’s parameters. Nevertheless, we will show
that this symmetry strongly simplifies the analysis, and even
leads to certain further exact relations for the transition prob-
abilities when a model has additional discrete symmetries.

III. QUANTUM DOT MODELS

In what follows, we will explore application of the sym-
metry (16) to two models, which have been studied to some
extent for various reasons previously. We will refer to these
models as to symmetric and antisymmetric. The symmetric
model has the Hamiltonian

H1(t ) =

⎛
⎜⎝

e1 0 g g
0 −e1 g g
g g bt + e2 0
g g 0 bt − e2

⎞
⎟⎠, (17)

and the antisymmetric one has the Hamiltonian

H2(t ) =

⎛
⎜⎝

e1 0 g −γ

0 −e1 γ g
g γ bt + e2 0

−γ g 0 bt − e2

⎞
⎟⎠, (18)

where all parameters are real. The symmetric model has
emerged previously in discussions of nonadiabatic behavior
in MLZ systems in the large coupling limit [33].

Physically, both models (17) and (18) can describe a single
electron that jumps between discrete levels of two quantum
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FIG. 4. The antisymmetric model describes a single electron
with spin shuttling between two quantum dots with the Hamiltonian
(18). Dashed lines show pairs of energy levels in each dot. Up
and down red arrows mark the orthogonal spin states. The splitting
within each pair is the effect of an external static magnetic field. The
relative energies of localized states in different dots are controlled by
time-dependent electric gate voltage. The couplings g and γ describe,
respectively, spin-conserving and spin-flipping electron tunnelings
that are permitted by the time-reversal symmetry of the system in
the absence of the magnetic field.

dots. The linear potential ramp in one of the dots is then
induced by applying a time-dependent electric gate voltage
difference between the dots, as in the experiments [29,30].
Each dot has two discrete energy levels. Most naturally, this
happens when electronic spin can flip during the tunneling
event due to the spin orbit coupling, as shown in Fig. 4.

In the antisymmetric case, with the Hamiltonian H2, the
couplings g and γ describe then the spin preserving and the
spin flipping tunneling between the two dots. The minus sign
near γ guarantees the time-reversal invariance of the model.
In fact, the Hamiltonian H2 at e1 = e2 = 0 is the most general,
up to gauge transformations, Hamiltonian that one can create
for a time-reversed four-state system with spin [34], and the
splittings e1, e2 
= 0 are induced by applying the external
magnetic field. Generally, different quantum dots have differ-
ent g-factors, which then means that e1 
= e2.

Both models, H1 and H2, have elementary discrete symme-
tries. For example, let

� =

⎛
⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠.

The Hamiltonian H1 has an elementary symmetry

H1(t ) = −�H1(−t )�,

which leads to the symmetry of the evolution operator
U (T | − T ) = T exp[−i

∫ T
−T H1(t ) dt], where T is the time

ordering operator

U = �U †�, (19)

from which follows that the amplitudes U12 and U43 in the
symmetric model are purely real. There are also relations
between different scattering amplitudes, such as, U13 = −U ∗

42,
U14 = −U ∗

32, which lead to the relations between the transi-
tion probabilities: P3→1 = P2→4, P4→1 = P2→3, P3→2 = P1→4,
and P4→2 = P1→3. For a reader interested in examples of
discrete symmetry effects in other MLZ models, we refer to
Refs. [34,35].

FIG. 5. Diabatic levels of the quantum dot models. (a) Dashed
colored arrows show the transitions from level 2 to level 1 (violet)
and from level 3 to level 4 (blue) with equal transition probabilities
in both the symmetric and the antisymmetric models. Due to the
difference, e1 
= e2, there is no obvious geometric symmetry between
such transitions. (b) Two semiclassical paths in the diabatic level
diagram that contribute to the transition probability from level 2 to
level 1 (red and green arrows). Due to the quantum interference, this
probability is expected to show oscillatory dependence on the area
enclosed by the diabatic levels S = e1e2/b.

Similarly, for the antisymmetric model, let

�A =

⎛
⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

⎞
⎟⎠,

then

H2(t ) = −�AH2(−t )�A,

from which follows that U12 and U43 are purely imaginary in
this model, and there is the same set of relations between the
transition probabilities as for the symmetric model.

Apart from this, the transition probability independence
of the area conserving transformations (Fig. 3), leads to less
intuitive constraints. Namely, since different quantum dots
generally have different level splittings, i.e.,

e1 
= e2

there is generally an asymmetry of dynamics in respect to the
initially chosen quantum dot. For example, the trivial symme-
try (19) does not predict any relation between the probabilities
P2→1 and P3→4, as we illustrate in Fig. 5(a).

However, the invariance of the transition probabilities of
the transformations (16) allows us to tune e1 = e2 in both
models without affecting the transition probabilities. Let us
also add the gauge transformation H1,2 → H1,2 − b14t/2,
which does not change the probabilities either. At such values
of the parameters, the Hamiltonians (17) and (18) have an
additional discrete symmetry. Namely, let

θ =

⎛
⎜⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠.

Then, H ′
1,2 = He1=e2

1,2 − b14t/2 satisfy

H ′
1,2(t ) = θH ′

1,2(t )θ,
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FIG. 6. Numerically found time dependence of transition prob-
abilities P2→1 (solid curves) and P3→4 (dashed curves) in the
antisymmetric model for {e1, e2} = {1, 3} (blue), {1, 2} (red). The
remaining parameters: b = 2, g = 2, and γ = 1. As both P2→1 and
P3→4 saturate at the same values at t = ±∞, their intermediate time
dynamics are different.

from which we obtain additional relations on the transi-
tion amplitudes, such as U12 = U ∗

43 and consequently P2→1 =
P3→4, and so on. Let us now summarize all the relations
among the transition probabilities that follow from simulta-
neously the integrability and the discrete symmetries of the
models. Although the latter symmetries are a bit different
for H1 and H2, they lead to the same relations between the
transition probabilities:

P1→3 = P4→2, (20)

P3→4 = P2→1, (21)

P3→1 = P2→4, (22)

P1→4 = P2→3 = P3→2 = P4→1. (23)

While for e1 = e2, the relations (20) to (23) are conse-
quences of trivial discrete symmetries, for e1 
= e2 they are
generally the results of the integrability of the LZ-grid model.
We also note that our analysis, and hence relations (20) to (23)
apply only to evolution from t = −∞ to t = +∞, whereas
they do not apply to the probabilities at intermediate times,
except for e1 = e2, as we illustrate in Fig. 6. Hence, Eqs. (20)
to (23) are our first nontrivial prediction for experimental
verification.

The integrability of time-dependent Hamiltonians is a type
of quantum symmetries that have not been studied experi-
mentally previously. The experiments on Landau-Stückelberg
interferometry provide an opportunity to detect the presence
of such unusual quantum symmetries by measuring the state-
to-state transition probabilities in already available solid state
and atomic systems. The deviations from the exact predictions
would mean the presence of the terms beyond the standard
Hamiltonian (18), which may emerge either due to the non-
linear time dependence of the gate voltage or effects of the
magnetic field on the tunneling amplitudes.

In addition to the integrability conditions, there are
six elements of the transition probability matrix that are

known exactly and explicitly due to the no-go rule and the
Brundobler-Elser formula [1,5,36]. For the antisymmetric
model they are

P1→2 = P4→3 = 0, (24)

P1→1 = P2→2 = P3→3 = P4→4 = e−2π (g2+γ 2 )/b, (25)

and for the symmetric model we should replace γ → g.
In addition to relations (20) to (23), (24), and (25), we can

only add the unitarity of the evolution constraints

4∑
n=1

Pm→n =
4∑

n=1

Pn→m = 1, ∀m ∈ {1, 2, 3, 4}.

It turns out that many of the later relations are not independent
after we include the already-mentioned relations. Thus, even
having so many constraints, the matrix of the transition prob-
abilities has three unknown independent parameters that have
to be calculated separately.

Fortunately, the integrability leads to another simplification
of the model’s analysis. Namely, it was shown in [21] that the
integrability enables a semiclassical approach for estimation
of the transition probabilities in the nearly adiabatic limit. It
was also noted in [21] that the analytical formulas that are
obtained by this approach often provide a reasonable approx-
imation for the numerical solutions at arbitrary values of the
parameters.

Hence, in the following sections we apply this semiclas-
sical approach to our four-state models, H1 and H2. For
simplicity, here we will restrict ourselves only to the transition
probability P2→1 = P3→4. This transition probability is the
most physically interesting, first because it is the only one that
is needed to estimate the probability to remain in the same
quantum dot after the time-linear sweep of the gate voltage.
Indeed, all the other needed for this probabilities are given
by the exact expressions (24) and (25). Moreover, a simple
analysis shows that the probability P2→1 should generally
dominate over P1→1 = P2→2 in the adiabatic limit because the
latter become nonzero after two, rather than one in the case of
P2→1, nonadiabatic overgap transitions.

Second, the transition from level 2 to level 1 is nontrivial
even in the limit of large separation of all level crossings
because it is then influenced by quantum interference of dif-
ferent evolution trajectories, as we show in Fig. 5(b). The
dependence of the probabilities of such transitions on the
relative parameter values is understood poorly. Although nu-
merical simulations of few-state systems are easy, they show
complex oscillatory dependence on the parameters even in the
simplest and perturbative regimes [37], so it is hard to see a
general pattern for the role of different parameters. Thus, by
developing nonperturbative analytical description of P3→4 in
models (17) and (18) we will obtain a useful insight into the
interference effects in the nonadiabatic regime.

IV. SEMICLASSICAL SOLUTION FOR P2→1 = P3→4 IN
QUANTUM DOT MODELS

To find the transition probability P3→4 for models (17)
and (18) in the adiabatic limit, we take advantage of the
τ -independence of the transition probability and make the

144301-5
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slopes of the tilted levels, 3 and 4, infinite by setting τ → ∞,
as it was done to study the three-state MLZ model in [21]. The
tilted levels cross both the levels 1 and 2 then at time moments

t± = ±e2/b,

where “−” is for the crossing of level 3 and “+” is for the
crossing of level 4.

Let us assume that level 3 is initially populated and we
want to find the probability to end up on level 4. Following
[21], we can employ the fact that for high-slope crossing the
characteristic time of the nonadiabatic interactions is van-
ishing as δt ∼ 1/

√
τ , whereas the nonadiabatic transitions

between the diabatic states 3 and 4 take time that is indepen-
dent of τ . Hence, we can separately treat the interactions of
levels 3 and 4 with level 1, then with each other, and then
with level 2. Specific details, however, depend on the models,
which we will consider separately.

A. Symmetric model

First, we consider the Hamiltonian H1(t, τ ) in the limit
τ → ∞, and where τ -dependence is according to (9). We
introduce the symmetric, |+〉, and the antisymmetric, |−〉,
combinations of the diabatic states 1 and 2:

|±〉 = 1√
2

(|1〉 ± |2〉). (26)

As τ → ∞, both levels 3 and 4 couple only to the |+〉 state
and the nonadiabatic transitions to and from |+〉 happen in the
direct vicinity of time moments t− and t+. The corresponding
coupling is g

√
2τ , and the slope difference between the dia-

batic levels of |+〉 and either |3〉 or |4〉 is bτ . The probabilities
of fast transitions from |3〉 to |+〉 near t− and from |+〉 to |4〉
near t+ are given by the LZ formula for two state transitions:

P3→+ = P+→4 = 1 − e−4πg2/b.

In addition, during the time interval t ∈ (t−, t+) the states
|+〉 and |−〉 interact with each other, in particular, via the
virtual transitions trough |1〉 and |2〉, as explained in [21].
Hence, the total transition probability from level 3 to level 4
can be expressed via the product of the probabilities

P3→4 = P3→+P++P+→4 = (
1 − e−4πg2/b

)2
P++, (27)

where P++ is the probability to remain in |+〉 after the dynam-
ics with a 2 × 2 effective Hamiltonian that acts in the subspace
of |±〉 during the time interval t ∈ (t−, t+).

Away from the points t = t±, as τ → ∞, the effect of
virtual transitions to and from levels 1 and 2 can be calculated
perturbatively. Up to the zeroth order in τ , such transitions
lead to an effective Hamiltonian in the subspace of states |±〉:

hv = −2g2

b

(
1

t − t−
+ 1

t − t+

)
|+〉〈+|, (28)

where the index v refers to the interactions appearing due
to the virtual transitions in the second order of perturbation
series over 1/τ 1/2. The higher-order corrections due to such
transitions in the limit τ → ∞ vanish.

The other contribution to the effective two-state Hamil-
tonian arrives from the splitting e1 of levels 1 and 2, which

mixes states |±〉:
he = e1(|−〉〈+| + |+〉〈−|). (29)

P++ can be determined by solving the effective Schrödinger
equation with the Hamiltonian Heff = hv + he. After rescaling
time t → te2/b, this equation in the basis of states |±〉 is
given by

i
d

dt
|ψ〉 = 1

b
Hs

eff (t )|ψ〉, t ∈ (−1, 1), (30)

where

Hs
eff (t ) =

(
4g2t
t2−1 e1e2

e1e2 0

)
. (31)

To find P++, we should find the amplitude of evolution from
|+〉 as t → −1 into |+〉 as t → +1, and take its absolute value
squared. Note that the parameter b plays the role in (30) of an
effective Planck constant.

Thus, the integrability reduces the problem to a two-state
system with time-dependent 2 × 2 Hamiltonian Hs

eff . How-
ever, due to nonlinear time dependence of Hs

eff (t ), the standard
LZ formula for two states gives very crude approximation to
the nonadiabatic transition probability, apart from the pertur-
bative limit e1e2/g2 � 1.

Instead, it is possible to reformulate equation (30) by
changing to the variable x ∈ (−∞,+∞), where t = tanh(x),
and dt/(t2 − 1) = dx. This makes it standard for application
of the, so-called Dykhne formula for the overgap transition
probability between two states [38–40] in the adiabatic limit,
in which overgap transitions are suppressed exponentially.
This formula provides the corresponding slowest decaying
exponent and its leading-order prefactor. We will use this
formula without switching from t to x because the direct
application of the Dykhne formula to the evolution during
t ∈ (−1, 1) produces the same final result, and can be equally
justified for the evolution (30).

The difference of the eigenvalues of Hs
eff is found

analytically

�E (t ) = 2

√
(e1e2)2(t2 − 1)2 + 4g4t2

(1 − t2)
. (32)

By equating this difference to zero we find the branching
points

t1,2 =
(−2 + r2 ± 2

√
1 − r2

2

)1/2

, r ≡ (e1e2)

g2
, (33)

where the square root convention in (. . .)1/2 is chosen so
that Im(t1,2) > 0, and t1 corresponds to the “+” sign in (33).
Depending on whether the ratio r is bigger or smaller than 1,
we found two different types of the behavior.

Phase I: r < 1, i.e., e1e2 < g2. In this case,
√

1 − r2 is
real, so the branching points t1,2 are purely imaginary. The
transition probability P++ can be estimated with the standard
Dykhne formula [38] as

P++ = e−(2/b)Im[
∫ t1

0 �E (t ) dt], r < 1, (34)

where the final integration point t1 is the imaginary root in
(33) that is closer to the real time axis. The contribution from
the imaginary root further from the real time axis produces
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exponentially small contribution that cannot be trusted within
the semiclassical approach.

Phase II: r > 1, i.e., e1e2 > g2. Here, the branching points
have both real and imaginary parts. Moreover, the imaginary
parts are equal to each other, so both the branch cuts are
relevant because they correspond to semiclassical evolution
trajectories with comparable amplitudes.

The transition probability is given by a generalized Dykhne
formula that sums the amplitudes of both trajectories and only
then takes its absolute value squared

P++ =
∣∣∣e− i

b

∫ t1
0 �E (t ) dt+iφg + e− i

b

∫ t2
0 �E (t ) dt

∣∣∣2
, (35)

where φg is a geometric phase difference between the two
trajectories. It is of subdominant order O(1) in comparison to
the integrals in (35), and for real Hamiltonians can take only
discrete values 0 or π . In Appendix A, we calculate this phase
for both H1 and H2 and show that for the symmetric model
φg = 0.

The integrals in (34) and (35) cannot be simplified any-
more. In this form, the probability P++ is already much easier
to calculate numerically than by solving the Schrödinger
equation numerically directly. In Appendix B, we show that
the integrals can be additionally simplified for some choices
of the parameters. Such cases are useful for developing the
intuition about the magnitude of P++ and its dependence on
the parameters.

The result (35) is valid for g2/b � 1. Naturally, at g = 0 it
makes an unphysical prediction: P++ = 2. To adjust Eq. (35),
we note that in our case

t1 = −t∗
2 ,

so, we have

Re

[
1

b

∫ t1

0
�E (t ) dt

]
= −Re

[
1

b

∫ t2

0
�E (t ) dt

]
,

Im

[
1

b

∫ t1

0
�E (t ) dt

]
= Im

[
1

b

∫ t2

0
�E (t ) dt

]
,

and the desired approximation that makes P++ = 1 at g = 0
is

P++ ≈ cos2
[
Re

(
1
b

∫ t1
0 �E (t ) dt

)]
cosh2

[
Im

(
1
b

∫ t1
0 �E (t ) dt

)] . (36)

Finally, using (27), we obtain the desired approximation for
the four-state model H1:

P3→4 ≈ (
1 − e−4πg2/b

)2 cos2
[
Re

(
1
b

∫ t1
0 �E (t ) dt

)]
cosh2

[
Im

(
1
b

∫ t1
0 �E (t ) dt

)] . (37)

In Fig. 7, the analytical predictions (34) and (36) are
compared to the results obtained by solving the Schrödinger
equation (30) numerically for several values of the parame-
ter combination e1e2/g2. The analytical result for the critical
case, e1e2 = g2 (the red curve), was taken from the Appendix
Eq. (B2). Phases I and II are clearly distinguishable in nu-
merical simulations: in phase I, P++ decays monotonously

FIG. 7. Probability P++ calculated for the symmetric model
numerically (plot markers), and the corresponding semiclassical pre-
diction by Eqs. (34) and (35) for r = 4 (black), r = √

2 (blue), r = 1
(red), r = 4/9 (green), and r = 1/4 (magenta).

with increasing 1/b, whereas in phase II, P++ oscillates as
a function of 1/b.

Note also that P++ increases with increasing coupling
strength g in phase I. For large g, the leading contribution to
the sum, P3→3 + P3→4, is dominated by the transition proba-
bility P3→4, and consequently P++. Hence, our result agrees
with the asymptotic behavior that was found for the symmetric
model H1 in [33] in the limit e1e2 � g2.

B. Antisymmetric model with the Hamiltonian H2

For the Hamiltonian (18), there are two couplings, g and γ .
The asymmetry between g and γ requires from us to introduce
new linear combinations of the states |1〉 and |2〉:

|A+〉 = g|1〉 + γ |2〉√
g2 + γ 2

, |A−〉 = −γ |1〉 + g|2〉√
g2 + γ 2

,

such that |3〉 couples directly to |A+〉 and |4〉 couples to |A−〉.
In the limit τ → ∞, both level 3 and level 4 cross the diabatic
energies of |1〉 and |2〉 at time moments, respectively, t− and
t+. Hence, the transition probability P3→4 is

P3→4 = P3→A+P+−PA−→4, (38)

where P+− is the probability of the transition from |A+〉 as
t → t− to |A−〉 as t → t+, and the fast nonadiabatic transitions
are given by the standard LZ formula

P3→A+ = PA−→4 = 1 − e−2π (g2+γ 2 )/b.

To find P+−, we follow the previous approach: we rescale
time and obtain the analogous to (30) effective Schrödinger
equation for evolution in the subspace |A±〉 during time inter-
val t ∈ (−1, 1) and the effective 2 × 2 Hamiltonian

HA
eff (t ) = e1e2

⎛
⎝ r−

r+
− r+

t+1 −
√

1 − r2−/r2+

−
√

1 − r2−/r2+ − r−
r+

− r+
t−1

⎞
⎠, (39)

where

r± ≡ (g2 ± γ 2)/(e1e2).
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FIG. 8. Probability P+− for the antisymmetric model, calculated
numerically (plot marker) for the evolution with the Hamiltonian
(39). Solid curves are the corresponding semiclassical predictions by
Eq. (42) at e1 = e2 = 2, g = 2, and γ = 0.8 (black), γ = 1 (blue),
γ = 1.5 (red).

The corresponding distance between the adiabatic levels of
HA

eff is

�EA = 2e1e2

(1 − t2)

√
(t2 − 1)2 + 2(t2 − 1)r− + r2+. (40)

This expression has almost the same structure as Eq. (32)
for the symmetric model. Similarly, the transition from |A+〉 to
|A−〉 requires a passage through the avoided crossing at t = 0,
and there are two branching points t1 and t2 that are obtained
by setting �EA = 0.

However, we found two qualitative differences of the
antisymmetric model from the symmetric one. First, the an-
tisymmetric model does not have phase I, i.e., it always leads
to the phase with two equally important branch cuts at time
points

t1,2 = (1 − r− ± i
√

r2+ − r2−)1/2, (41)

where the convention for “(. . .)1/2” is to keep only the square
roots in the upper complex plane. Such roots in (41) satisfy
the relation t1 = −t∗

2 as in phase II of the symmetric model.
Hence, the antisymmetric model is always in the phase with
the oscillatory behavior. Second, we show in Appendix A that
the geometric phase for the antisymmetric model is φg = π .
Hence,

P+− ≈ |e− i
b

∫ t1
0 �EA(t ) dt − e− i

b

∫ t2
0 �EA(t ) dt |2. (42)

In Fig. 8, we provide the numerical check of (42), which
confirms the analytical prediction, including the effect of the
topological phase φg = π .

At g = 0, this formula predicts correctly that P+− = 0,
and thus does not need further adjustments. However, we
found that a slightly better fit to numerical simulations in
the strongly nonadiabatic regime for the Hamiltonian H2 is
given by

P3→4 ≈ 2
(
1− e−2π (g2+γ 2 )/b

)2 sin2
[

1
b Re

∫ t1
0 �EA(t ) dt

]
cosh

[
2
b Im

∫ t1
0 �EA(t ) dt

] . (43)

FIG. 9. Transition probabilities P3→4 are shown for the numeri-
cally exact simulations (plot markers) and compared to the analytical
approximations (solid lines) from Eqs. (37) and (43) for both the
symmetric H1 and antisymmetric H2 models. In all cases e1 = e2 =
2. The coupling in the symmetric model is g = 1 (black) and g = 3
(blue) and in the antisymmetric model is g = 2, and γ = 0.8 (red)
and γ = 1 (green).

Formulas (37) and (43) become asymptotically exact in
the adiabatic limit 1/b → ∞. It is instructive to look also
at how they perform in the strongly nonadiabatic regime,
for which they cannot be justified rigorously. In Fig. 9, we
show that, although small deviations from the numerically
exact predictions are generally visible, in a broad range of
the parameters both formulas perform quite well. They still
correctly predict multiple oscillations, including phases and
amplitudes, even in the nonadiabatic regime. Thus our semi-
classical theory is sufficiently rigorous for, e.g., planning the
future experiments without resorting to exhaustive numerical
simulations.

V. DISCUSSION

Explicitly time-dependent quantum problems are at the
higher mathematical complexity level than the systems with
time-independent Hamiltonians. Only recently it became
clear that very complex models with time-dependent param-
eters can be understood in great detail using the quantum
integrability. At this stage, it is important to learn how the in-
tegrability can be combined with other theoretical approaches
and what are its physical consequences and experimental
applications.

Using a specific example of LZ grids, here we explored
these questions. The integrability concept in MLZ theory
originally was used to unify various fully solvable models.
We illustrated that there are also large classes of systems
that are formally integrable but cannot be fully solved. Thus,
we showed that all LZ-grid models satisfy the integrability
conditions for time-dependent Hamiltonians [20]. As a result,
the state-to-state transition probabilities in all such models are
invariant of parameter rescaling (16) but this is not sufficient
to determine these probabilities analytically.

Nevertheless, this symmetry is nontrivial and different
from the set of the previously known exact results that were
derived for LZ-grids earlier [5]. In this sense, the integrability

144301-8



NONADIABATIC TRANSITIONS IN LANDAU-ZENER … PHYSICAL REVIEW B 103, 144301 (2021)

[20] is akin in effect to a conservation law for a time-
independent Hamiltonian.

We are not aware of experimental studies of such sym-
metries in explicitly time-dependent Hamiltonians, although
these symmetries should be realizable in a broad class of
physical systems [35]. Given that the Landau-Stückelberg
interferometry for a four-state antisymmetric model (18) has
been already demonstrated in quantum dots [29,30], the in-
tegrability of LZ grids can also be tested. Specifically, for the
Hamiltonian (18), we predict nontrivial but simple-looking re-
lations between the state-to-state transition probabilities (20)
to (23) in the dynamics induced by a linear potential chirp.

The experiment to observe such a nontrivial symmetry
requires a modification of the control and measurement proto-
col in [29]. The standard Landau-Stückelberg interferometry
protocol, previously applied to superconducing qubits and
semiconducting dots [41–48], induces periodic transitions
through the region with nonadiabatic transitions. It leads to
spectacular multidimensional plots for the state probability
dependence on the potential sweeping rate and the duration
of the periodic control. However, such measurements are in-
fluenced by all parameters of the scattering matrix for a single
passage through the nonadiabatic region. Hence, an analytical
interpretation of such patterns for multistate quantum systems
is usually problematic due to the large number of relevant
parameters.

Here, we propose to explore the multistate Landau-Zener
transition probabilities directly, for example, resetting the
state and then measuring it after each linear potential chirp
in a coupled quantum dot system [29]. The advantage of such
an experiment would be the direct measurement of the char-
acteristics, for which either exact or semiclassical analytical
predictions can be established. By comparing the experimen-
tal data to the theory, one can then explore such phenomena
as the probability oscillations due to completely nonadiabatic
interference effects that we exposed, as well as to confirm the
exact constraints that follow from the model’s integrablity.

On the side of mathematical physics, we found further
confirmations to the conjecture in [21] that the time-dependent
Hamiltonian integrability often leads to a semiclassical ap-
proach to calculate the leading contributions to the overgap
transition amplitudes in multistate systems. This approach
is an opportunity to explore the driven quantum models
with considerable complexity. Although generally approx-
imate, it produces reasonable approximations even in the
strongly nonadiabatic regime, in which it cannot be rigorously
justified.

Our semiclassical analysis reveals that even the simplest
driven models can show complex behavior, such as phase
transitions, in which the adiabatic limit plays a similar role to
the thermodynamic limit in many-body systems. Thus, in the
symmetric model, the interfering semiclassical trajectories do
not necessarily lead to oscillations of measurable characteris-
tics. Rather there are two phases: one with oscillatory behavior
and another one with a monotonous decay of the transition
probability. We also found that models with similar struc-
ture and similar oscillatory behavior, can belong to different
topological classes that are characterized by the topological
phase φg between the interfering semiclassical trajectories.
The integrability allows us to observe and quantify such phe-

FIG. 10. (a) The two trajectories, C− and C+, around the
corresponding branch points t1 and t2, that make comparable contri-
butions to the semiclassical probability amplitude. (b) The path C =
(C−)−1C+ is topologically equivalent to a knot that winds around the
branching points t1,2. (c) The integral over the knot path in Eq. (A5)
is the sum of contributions from the infinitely small circular contours
that wind in opposite directions around the poles at t1,2.

nomena in relatively complex and strongly driven quantum
systems.
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APPENDIX A: TOPOLOGICAL π-PHASE

The π -phase between the amplitudes of different semi-
classical trajectories in complex time has been known in
literature, see, e.g., in [49]. In practice, however, this phase
has been usually inferred numerically, and we do not know
of a published rigorous analytical theory for its calculation.
Therefore, here we provide such a theory, which exposes the
topological nature of the π -phase and provides a simple path
for its calculation. Our models with the Hamiltonians Hs

eff
and HA

eff are particularly suitable for illustration because all
calculations for them can be performed analytically, and the
results differ for the different models.

The geometric phase appears generally in quantum me-
chanics when evolution is considered along a closed path in
the parameter space. In the context of the Dykhne formula,
such a path can be found if we note that the phase difference
between the amplitudes of the trajectories, C− and C+ in
Fig. 10(a), that go through two different branching points, is
the same as the phase acquired during the evolution along
a path C = (C−)−1C+, that is, the cyclic trajectory on the
Riemann surface that starts and ends at t = 0 on the original
real time axis. C follows C+ along its direction marked in
Fig. 10(a), and then switches to C− but follows it in the op-
posite direction to what is marked in Fig. 10(a). In Fig. 10(b)
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we show that this path is a knot that winds around the origin
points of the branch cuts.

Any real two-state time-dependent Hamiltonian can be
written in the form

H (t ) = f (t )12 + Z (t )σz + X (t )σx, (A1)

where f (t ), Z (t ), and X (t ) are functions of time. Let us then
define

sin θ = X (t )√
X (t )2 + Z (t )2

, cos θ = Z (t )√
X (t )2 + Z (t )2

.

(A2)
Along the cyclic path in complex plane C an eigenstate of

H (t ) can still be parametrized by a generally complex-valued
angle θ :

|u(θ )〉 =
(− sin θ/2

cos θ/2

)
. (A3)

The topological phase originates from the fact that the Hamil-
tonian is periodic function of θ , whereas the eigenstate vector
(A3) depends on cos(θ/2) and sin(θ/2). Hence, if θ changes
from 0 to 2π during an adiabatic evolution, the Hamiltonian
returns to its initial form at the end but the state vector can
change sign:

|u(2π )〉θ (C)=2π = −|u(0)〉. (A4)

In other words, the state vector acquires a phase π . Generally,
a periodic adiabatic evolution of parameters changes the angle
θ by 2πn, where n is an arbitrary integer. The topological
phase is then either 0, if n is even, or π , if n is odd. There
cannot be another type of a geometric phase [50] in this case
because 〈u(θ )| ∂u(θ )

∂θ
〉 = 0.

For a closed trajectory C, which can be parametrized by
time t , the topological phase is given by

φg = 1

2

∫
C

dθ

dt
dt . (A5)

Note that

dθ

dt
= 1

cos θ

d sin θ

dt
.

For the symmetric model (30), we have

Z = 2g2t

(t2 − 1)
, X = e1e2,

so,

1

2

dθ

dt
= r(t2 + 1)

4t2 + r2(1 − t2)2
= (t2 + 1)

r
(
t2 − t2

1

)(
t2 − t2

2

) , (A6)

where r = e1e2/g2, and t1,2 are the two roots in the upper
complex half-plane, which are written in (33).

Note that the integrand in (A6) has simple poles at t1,2

rather than the branching points. Hence, the integral over C
is given by the difference of the residues at these poles, as
illustrated in Fig. 10(c):

φg = π i

[
Res

(
dθ

dt

)
t1

− Res

(
dθ

dt

)
t2

]
, (A7)

where Res(. . .)a is the residue of the expression at a simple
pole a, and where the minus sign is because C winds around

t1 and t2 in opposite directions. Substituting the roots from
(33) to (A7), and making sure that t1 = −t∗

2 , we find for the
effective two-state system with the Hamiltonian Hs

eff that

φg = 0. (A8)

Analogously, for the effective Hamiltonian (39) that corre-
sponds to the antisymmetric model (18), we have

dθ

dt
=

−2
√

r2+ − r2−t(
t2 − t2

1

)(
t2 − t2

2

) , (A9)

where t1,2 are given by (41), and t1 = −t∗
2 . Substituting (A9)

and (41) into (A7), we find that for the effective Hamiltonian
(39) the topological phase is

φg = π. (A10)

Thus, despite similar oscillatory behavior, the symmetric and
antisymmetric models are characterized by the different val-
ues of topological phase φg. In this sense the models belong
to different topological classes.

APPENDIX B: ANALYTICALLY SIMPLE SPECIAL CASES

1. Symmetric model: Critical point at e1e2 = g2

The condition e1e2 = g2 marks the phase transition point
between phase I and phase II. In this special case the two
branching points are degenerate and purely imaginary, i.e.,
t1 = t2 = i. The adiabatic energy difference simplifies to

�E = 2g2 t2 + 1

1 − t2
.

Substituting t = ix into the integral in the Dykhne formula
(34) we find

2Im

[∫ t1

0
�E dt

]
= 2g2

∫ 1

0

1 − x2

1 + x2
dx = 2(π − 2).

Following [49], we should set the exponential prefactor in this
special case to be 2 rather than 1 because the behavior near
the zero is �E ∼ (t − t1) rather than the typical �E ∼ (t −
t1)1/2. This leads to the transition probability

P++
e1e2=g2 = 2e−2(π−2)g2/b. (B1)

This formula is valid only asymptotically in the limit g2/b �
1. Without affecting the behavior in this domain, we can
also write

P++
e1e2=g2 ≈ 1

cosh[2(π − 2)g2/b]
, (B2)

which is still generally approximate but has right value, 1,
at g = 0. Finally, the semiclassical formula for the transition
probability in the original four-state model for this special
case is

Pe1e2=g2

3→4 ≈
(
1 − e−4πg2/b

)2

cosh[2(π − 2)g2/b]
. (B3)
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2. Symmetric model: Case with oscillations at e1e2 = g2
√

2

Substituting e1e2 = g2
√

2, to Eq. (32), we find

�E = 2
√

2g2

√
t4 + 1

1 − t2
.

The two branch points in the upper plane are then given by

t1 = ei3π/4, t2 = eiπ/4.

To calculate the integral, we set

t = eiπ/4s,

which leads to

1

b

∫ t2

0
dt�E = 2

√
2eiπ/4g2

b

∫ 1

0
ds

√
1 − s4

1 − is2
= g2(ξ + iζ )

b
,

where the analytic expressions for ξ and ζ can be written in
terms of the known special functions but the expressions are a
bit lengthy. We just give their numerical values, which can be
found to very high precision

ξ = 1.19814 . . . , ζ = 1.9434 . . . .

The analogous calculation leads to

1

b

∫ t1

0
dt�E = g2(−ξ + iζ )

b
,

and then to

P++ ≈ cos[ξg2/b]2

cosh[ζg2/b]2
,

which provides the leading exponent for small b and is
1 at g = 0.

3. Antisymmetric model: Case with e1e2 = g2 − γ2

In the antisymmetric model there is also a special case

e1e2 = g2 − γ 2, r− = 1,

such that the integrals can be computed explicitly. Substituting
r− = 1 in (40), we find the eigenvalue difference

�EA = 2e1e2

(1 − t2)

√
t4 − 1 + r2+,

and the branch points in the upper half plane are given by

t1 = |r2
+ − 1|1/4ei3π/4, t2 = |r2

+ − 1|1/4eiπ/4.

To calculate the integral we set

t = |r2
+ − 1|1/4eiπ/4s,

and find

1

b

∫ t2

0
dt�EA

= 2e1e2|r2
+ − 1|3/4eiπ/4

b

∫ 1

0
ds

√
1 − s4

1 − i|r2+ − 1|1/2s2

= e1e2

b
{F [|1 − r2

+|] + iG[|1 − r2
+|]},

where analytical expressions for F [x] and G[x] can be written
in terms of the known special functions, which can be calcu-
lated with high precision. Similarly, we evaluate the integral
for the branching point t1:

1

b

∫ t1

0
dt�EA = e1e2

b
{−F [|1 − r2

+|] + iG[|1 − r2
+|]}.

Combining the two contributions, and taking into account the
topological phase φg = π , we finally find

P+− ≈ sin[e1e2F [|1 − r2
+|]/b]2

cosh[e1e2G[|1 − r2+|]/b]2
.
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