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Evading Anderson localization in a one-dimensional conductor with correlated disorder
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We show that a one-dimensional disordered conductor with correlated disorder has an extended state and a
Landauer resistance that is nonzero in the limit of infinite system size in contrast to the predictions of the scaling
theory of Anderson localization. The delocalization transition is not related to any underlying symmetry of the
model such as particle-hole symmetry. Moreover, the form of correlated disorder considered here is distinct
from other models with delocalization transitions that have been considered in the literature. For a wire of finite
length the effect manifests as a sharp transmission resonance that narrows as the length of the wire is increased.
Experimental realizations and applications are discussed including the possibility of constructing a narrow-band
light filter.
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I. INTRODUCTION

In a seminal paper in 1958, Anderson demonstrated that
in disordered solids electronic states may be localized over
a range of energies [1]. Over the next two decades, it was
established that in one and two dimensions electronic states
are always localized, no matter how weak the disorder, while
in three dimensions localized and extended states can exist
over different ranges of energy, separated by a mobility edge
[2]. These findings completely subverted the simple dogma of
band theory by showing that, for weakly interacting electrons,
disorder—rather than the band structure in the clean limit—
determined whether a material is a conductor or insulator at
low temperature [3]. Moreover, Anderson localization proved
relevant to optics, acoustics, cold atoms, neural networks,
medical imaging, and in general to any problem of coherent
propagation of waves in a random medium [4]. Here, we
show that, contrary to this well-established paradigm, a one-
dimensional disordered conductor with correlated disorder
may have an extended state and a Landauer resistance that is
nonzero in the infinite size limit. The delocalization transition
is unrelated to any underlying symmetry of the model such as
particle-hole symmetry. For a wire of finite length the effect
manifests as a sharp transmission resonance that narrows as
the length of the wire is increased. Experimental realizations
may be possible using metamaterials and might find applica-
tion as fault-tolerant narrow-band light filters.

Anderson localization is particularly well established in
one dimension where it is possible to derive exact results
and even rigorous proofs of localization for appropriate
models [5,6]. Two distinct approaches have been developed
to describe the universal features of localization. The first

approach, grounded in random matrix theory, posits that the
distribution of transfer matrices in one dimension undergoes
diffusion in the space of possible transfer matrices as a func-
tion of the length of the conductor [7]. This approach, which
is restricted to one dimension, reveals that the conductance
has a broad log normal distribution, with very different typical
and mean values, both of which decay exponentially with the
length of the system (a highly non-Ohmic size dependence).
Field theory methods, based on replicas [8] or supersymmetry
[9] for disorder averaging, likewise describe the universal fea-
tures of localization on length scales that are large compared
to the microscopic elastic scattering length, and confirm the
picture described above.

One known exception to complete localization in one
dimension is systems with particle-hole symmetry [10]. In
this case at the symmetric point of zero energy there is
an extended state and hence a delocalization transition that
separates Anderson insulators above and below zero energy.
More generally, the discovery that quantum systems can be
classified into ten symmetry classes [11] based on the absence
or presence of particle-hole and time-reversal symmetries has
furnished additional examples of delocalization at zero energy
[12]. Another example of an extended state at an isolated en-
ergy is provided by the quantum dimer model [13]. In this case
the delocalization happens because the individual scatterers
become transparent at a common resonant energy, making the
system effectively clean at that energy. A third exceptional cir-
cumstance that has been identified in the literature is the case
of disorder with long-range spatial correlations. In this case it
is found that there can be a band of extended states separated
from the localized states by a mobility edge [14–17].
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In the same vein as the papers noted above here we report
a model that undergoes a delocalization transition. Our model
does not possess any underlying symmetries or depend on the
transparency of individual impurities. It has correlated disor-
der but of a form distinct from previous models considered
in the literature [14–17]. Our model consists of symmetric
scatterers that are separated by variable distances. Both the
strength of the individual scatterers and the spacing between
them are random variables. However, there are correlations
among these random variables: The strengths of the scatterers
are independent random variables but the spacing between
the successive scatterers is constrained by the strengths of
the scatterers. Respecting these constraints leads inexorably
to an extended state. As discussed below it may be possible to
fabricate single-mode waveguides with this type of disorder.

The remainder of the paper is organized as follows. In
Sec. II we introduce the model and show that it can be ob-
tained from an underlying tight-binding model with on-site
disorder. In Sec. III we demonstrate using a combination
of analytic arguments and numerical simulations that the
probability of nonzero conductance remains finite no matter
how long the conductor grows, contrary to the localization
paradigm. In Sec. IV we offer some concluding remarks on
possible experimental tests, applications, and open questions.

II. THE MODEL

A. Individual scatterers

To be concrete, we consider Anderson’s model of a one-
dimensional lattice with noninteracting electrons and nearest-
neighbor hopping. The corresponding Schrödinger equation is
the difference equation

ψn−1 + Vnψn + ψn+1 = Eψn. (1)

Here, ψn is the wave function at site n and Vn is the site
potential which is either zero or a random number between
−W and W . Note that in the absence of disorder (Vn = 0
for all n) the solutions are plane waves ψn = exp(ikn) with
energy E = 2 cos k. Sites where Vn �= 0 are called scatterers,
and we constrain the system so that two scatterers cannot be
adjacent to each other. Thus the system can be understood as a
sequence of scatterers separated by free propagation segments
of variable length. Our strategy will be to find the S matrix for
each scatterer and combine them iteratively to obtain the S
matrix for the entire system.

First, let us consider the S matrix for a single impurity in
the tight-binding model located at the position n = 0 (Fig. 1).
We make the ansatz

ψn = aL exp(ikn) + a′
L exp(−ikn) for n � 0

= aR exp(ikn) + a′
R exp(−ikn) for n � 0. (2)

Making use of the Schrödinger Eq. (1) for n = 0 we obtain

aL + a′
L = ψ,

aR + a′
R = ψ,

(2 cos k − V )ψ = aLe−ik + a′
Leik + aReik + a′

Re−ik . (3)

FIG. 1. A scattering site, with incoming and outgoing waves on
both sides. The wave function at the scattering site is ψ . The phases
of the waves on both sides are chosen so that the amplitude would
have been aL,R + a′

L,R at the scattering site if the waves from the
left/right were to continue uninterrupted through the scattering site.

Solving Eq. (3) yields
(

a′
L

aR

)
= S

(
aL

a′
R

)
. (4)

Here, the 2 × 2 S matrix that connects the outgoing ampli-
tudes to the incoming amplitudes is given by

S(V, k) = − 1

2i sin k + V

(
V −2i sin k

−2i sin k V

)
. (5)

The form of the S matrix for a single scatterer is powerfully
constrained by general principles. Probability conservation
imposes unitarity, S†S = 1. Parity imposes the additional
requirements that S11 = S22 and S12 = S21. The most gen-
eral 2 × 2 matrix consistent with these requirements may be
parametrized as

S = eiγ

(
cos θ i sin θ

i sin θ cos θ

)
, (6)

where 0 � θ � π/2 and 0 � γ < 2π . It follows from Eqs. (4)
and (6) that the transmission coefficient is sin2 θ and the
reflection coefficient is cos2 θ . Here, we refer to the parameter
θ as the opacity of the S matrix.

A comparison of Eqs. (5) and (6) shows that for the tight-
binding model analyzed above, the opacity θ and the overall
phase γ for a single scatterer are given by

exp(iθ ) = ± V − 2i sin k√
V 2 + 4 sin2 k

,

exp(iγ ) = ∓
√

V 2 + 4 sin2 k

V + 2i sin k
= − exp(iθ ), (7)

where the sign on the right-hand side is positive (negative)
when V is positive (negative), i.e., cos θ > 0. The fact that θ

and γ are related for this model is not true in general. This
coincidence will play no role in our subsequent analysis.

B. Combining scatterers

The complete lattice can be treated as a sequence of scat-
terers, separated by free propagation segments of variable
length. Since the lattice is not left-right symmetric, the S
matrix of the entire system is not as constrained as Eq. (6).
Nevertheless, time-reversal invariance requires that S∗ = S−1

which, together with the unitarity of S, implies that S = ST .
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FIG. 2. Two scatterers, with waves propagating to the left and to
the right in each region. In the middle region, the left-moving wave is
incoming for the first scatterer and outgoing for the second scatterer,
and vice versa for the right-moving wave. The phases of both of these
are defined to be zero at the scatterer they start from, and exp[ik(L +
1)] = exp[iβ] at the scatterer they end up at, where k is the wave
vector and L is the length of the region between the scatterers; in the
figure, L = 5.

Therefore we obtain the parametrization

SN = eiγN

(
cos θN eiδN i sin θN

i sin θN cos θN e−iδN

)
, (8)

where SN is the S matrix of a lattice with N scatterers and the
parameters lie in the domain 0 � θN � π/2, 0 � δN < 2π ,
and 0 � γN < 2π .

Now suppose that a lattice with N scatterers has an addi-
tional impurity attached to its end with L sites between the
N th and (N + 1)th scatterer. The amplitudes of the waves in
the different regions are as shown in Fig. 2. In the intermediate
region the forward and backward waves have amplitudes aM

and a′
M , respectively. The phases are chosen so that at the

site immediately to the right of the N th scatterer the wave
function is aM exp(ik) + a′

N exp(ikL). Hence at the site imme-
diately to the left of the (N + 1)th scatterer the wave function
is aM exp(ikL) + a′

M exp(ik). Defining exp(iβ ) = exp[ik(L +
1)] we have (

a′
M

aR

)
= S

(
aMeiβ

a′
R

)
, (9)

where S is the S matrix of the (N + 1)th impurity. On the
other hand, the effect of the N previous scatterers can be
represented as (

a′
L

aM

)
= SN

(
aL

a′
Meiβ

)
. (10)

Our objective is to calculate SN+1, the S matrix for the com-
bined system, which is defined by(

a′
L

aR

)
= SN+1

(
aL

a′
R

)
. (11)

By eliminating the intermediate amplitudes from Eqs. (9) and
(10), after a lengthy but straightforward calculation, we obtain

cos θN+1ei(γN+1+δN+1 ) = ei(γN +δN ) cos θN − cos θeiφ

1 − cos θ cos θN eiφ
,

cos θN+1ei(γN+1−δN+1 ) = eiγ cos θ − cos θN eiφ

1 − cos θ cos θN eiφ
,

i sin θN+1eiγN+1 = −ei(γ+γN +δN )/2 sin θ sin θN eiφ/2

1 − cos θ cos θN eiφ
.

(12)

Here, we have defined φ = 2β + γ + γN − δN . Note that φ

depends on the phases of the two S matrices being combined
and through β also on the distance between the new (N + 1)th
scatterer and its predecessor.

Equation (12) is the main result of this section. It
relates the parameters of the N + 1 scatterer S matrix,
(θN+1, γN+1, δN+1), to (θN , γN , δN ) and (θ, γ ), the parameters
of the S matrices for the first N scatterers and for the (N + 1)th
scatterer, respectively.

Although we have couched our discussion in terms of a
tight-binding Anderson model it should be obvious that our
analysis is much more general. For example, it also applies
to a continuum model in which the scatterers are rectangular
top-hat potentials of variable heights and widths separated by
variable distances. The only difference is that now the opacity
and phase of the S matrix would be determined by the barrier
height and width of the scatterer.

III. DELOCALIZATION

A. Analytical results

Now suppose that a lattice with N scatterers has an ad-
ditional scatterer attached to its end. The S matrix of the
composite system, SN+1, can be obtained by composing SN

and S, the S matrices of the component parts as shown above.
Here, we focus on the transmission coefficient which, accord-
ing to Landauer’s formula [18], is the conductance of the
system in units of e2/h. It follows from Eq. (12) that the
transmission coefficient evolves according to

sin2 θN+1 = sin2 θ sin2 θN

1 + cos2 θ cos2 θN − 2 cos θ cos θN cos φ
. (13)

Here, recall that we have defined φ = 2β + γ + γN − δN .
Note that φ depends on the phases of the two S matrices
being combined and, through β, also on the distance between
the new (N + 1)th scatterer and its predecessor. Specifically,
β = k(L + 1) for the lattice model where L is the number of
lattice sites between the N th scatterer and the (N + 1)th. In
the continuum limit β = kL, where L is the distance between
successive scatterers. Similar relations can be written down
that give the phases γN+1 and δN+1 in terms of the parameters
of the matrices SN and S, but for the sake of brevity they
are omitted. We now describe how Eq. (13) conventionally
leads to Anderson localization and how correlated disorder
may evade it.

If the scatterers are dilute and randomly distributed then
φ can be treated as a uniform random variable. Making this
assumption and averaging the reciprocal of Eq. (13) over the
parameters of all the scatterers we obtain

〈csc2 θN+1〉 = [1 + 2〈cot2 θ〉]〈csc2 θN 〉 − 〈cot2 θ〉. (14)

To obtain this result we take into account that the opacity
and phase of the (N + 1)th scatterer are independent of those
that preceded it. The only assumption we have to make about
the distribution of (θ, γ ) is that the probability of opaque
scatterers is small (more precisely, we assume that the prob-
ability of small opacity θ goes to zero sufficiently fast that
〈cot2 θ〉 is finite). This is certainly the case for the Anderson
tight-binding model and for any other reasonable model we
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might consider. By iterating Eq. (14) it is easy to see that
〈csc2 θN 〉, which has the interpretation of the mean resistance
of the sample, grows exponentially with the system size N .
This is the essence of Anderson localization. Note our analysis
only shows that the mean resistance grows exponentially but
for the Anderson model it is in fact possible to derive the full
distribution of resistance [19].

Now let us look for a qualitatively different fixed point for
the evolution Eq. (13). To this end at first we assume that all
the scatterers are identical and have the same opacity θ . We
also assume that the phase φ can be held constant for each
successive scatterer that is added to the system. With these
assumptions Eq. (13) is a simple deterministic map for θN with
a fixed point θ∗ given by

1 = sin2 θ

1 + cos2 θ cos2 θ∗ − 2 cos θ cos θ∗ cos φ
. (15)

As long as cos φ/ cos θ > 1, or equivalently −θ < φ < θ , this
equation has a solution. The condition for θ∗ to be a stable
fixed point is −1 < d sin2 θN+1/d sin2 θN < 1 at θN = θN+1 =
θ∗ and can be verified to be always satisfied.

Now let us return to the disordered problem. In this case
the opacity θ is drawn from a distribution each time Eq. (13)
is evolved. To try to retain the nontrivial solution for the
deterministic case found above we constrain φ to be a random
variable drawn from a distribution that satisfies the solvability
condition −θ < φ < θ noted above. Note that if we imagine
building the system one scatterer at a time what we are effec-
tively saying is that the position of the (N + 1)th scatterer is
constrained to lie within a certain interval that is determined
by the S matrix of the preceding N scatterers. However, within
that range we can place the (N + 1)th scatterer at random.
Hence the system we are considering is random but with
correlated disorder. We now show that this random system
evades Anderson localization.

To this end we again take the reciprocal of both sides of
Eq. (13) and average over disorder to obtain

〈csc2 θN+1〉 = 〈csc2 θN 〉〈csc2 θ〉 + 〈cot2 θN 〉〈cot2 θ〉
− 2〈cot θN csc θN 〉〈cot θ csc θ cos φ〉. (16)

We have used the fact that θ is independent of θN and φ is
correlated with θ , not with θN . For simplicity let us assume
that φ is uniformly distributed over the interval −θ to θ .
Performing the average of φ we then obtain

〈csc2 θN+1〉 = 〈csc2 θN 〉〈csc2 θ〉 + 〈cot2 θN 〉〈cot2 θ〉
− 2〈cot θN csc θN 〉〈cot θ/θ〉. (17)

With some rearrangement Eq. (17) can be brought to the form

〈csc2 θN+1〉 − 〈csc2 θN 〉 = −2B〈csc2 θN 〉 + CN . (18)

Here, B is given by

B =
〈

cot θ

θ
− cot2 θ

〉
=

〈
cot2 θ

(
tan θ

θ
− 1

)〉
(19)

and is evidently a finite positive constant since tan θ � θ

over the interval from zero to π/2. The specific value of B
will depend on the distribution chosen for the opacity θ . The

quantity denoted CN in Eq. (18) is given by

CN =
[〈

cot θ

θ

〉
〈R(θN )〉 − 〈cot2 θ〉

]
. (20)

Here, R(θN ) = 2(1 − cos θN )/ sin2 θN is a monotonic decreas-
ing function that goes from 1 to zero as θN goes from zero
to π/2. Hence CN is finite and lies in the range between
−〈cot2 θ〉 and B.

Equation (18) precludes Anderson localization. For a
localized conductor the average resistance should grow mono-
tonically and without bound. However, if 〈csc2 θN 〉 gets
sufficiently large, then the right-hand side of Eq. (18) be-
comes negative, contradicting the assumption that 〈csc2 θN 〉
was growing monotonically without bound. Rather, if the
mean resistance is growing monotonically, Eq. (18) shows
that it must saturate to a value less than unity (in units of
h/e2). Even if we relax the assumption of monotonic behavior,
Eq. (18) shows that the resistance is bounded, which is incom-
patible with Anderson localization. Moreover, the finiteness
of 〈csc2 θN 〉 shows that the distribution P(θN ) must vanish as
θN → 0.

B. Numerical results

To test these predictions we have numerically simulated an
Anderson model with correlated disorder of the type described
above. In our simulations each scatterer has an S matrix of
the form of Eq. (5) with V chosen uniformly over the inter-
val −W < V < W with W = 0.3 and the energy is given by
2 sin k = 1.6. For these values of k and W the distribution
of θ is narrow with support close to θ = π/2. N scatter-
ers are then combined one by one with the angle φ drawn
in each instance from a uniform distribution over the range

FIG. 3. Histogram of sin2 θN . Each scatterer has the potential V
chosen at random, uniformly over the interval [−0.3, 0.3]. The angle

θ associated with a scatterer is cos−1 (|V |/
√

V 2 + 4 sin2 k), where
we have chosen the energy 2 cos k to be 1.2. The phase φ between
each scatterer and its predecessor is chosen to be a uniform random
variable over the interval 0 < φ < θ . The histogram is plotted for
105 random lattices with N = 100 scatterers (blue) and N = 10 000
scatterers (red). No significant difference is seen between the two.
Note that the distribution drops to zero below a transmission coef-
ficient of approximately 0.4. The existence of a lower cutoff for the
distribution can be shown analytically.
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FIG. 4. Histogram of sin2 θN . The angle θ for each scatterer is
chosen to be a uniform random variable in the first quadrant, and
the angle φ is a uniform random variable between 0 and θ . The
histogram is constructed from 105 lattices with N = 1000; increasing
N does not change this significantly. Although there is a peak in the
histogram at sin2 θN = 0, possibly a divergence, there is a long tail to
the distribution, and 〈sin2 θ∞〉 is nonzero.

−θ < φ < θ . We calculate the transmission sin2 θN for M =
105 distinct realizations and histogram the M distinct values
of the dimensional conductance (Fig. 3). Histograms for N =
100 and N = 10 000 show no significant difference showing
that the N → ∞ limit has been reached.

Figure 3 shows the distribution of the conductance reaches
a steady state as the length of the conductor is increased
and, moreover, that the mean conductance remains finite in
the limit N → ∞, consistent with our analytic arguments.
By contrast, if we do not constrain the distribution of φ, we
obtain the very different behavior characteristic of a localized
system, namely that the distribution is peaked near zero trans-
mission and it does not saturate but rather the mean and typical
value continue to diminish rapidly with N . We have also
performed simulations taking θ to be uniformly distributed
over the interval from zero to π/2. In this case also we find
delocalization (see Fig. 4) even though a uniformly distributed
opacity violates the assumption made in our analytic argument

that 〈cot2 θ〉 is finite. This is logically possible because the
conditions of our argument are sufficiently not necessary and
it demonstrates the robustness of delocalization in the pres-
ence of correlated disorder.

We should draw attention to the fact that in order to obtain
delocalization we had to build up our disordered conductor by
choosing the phase φ for each successive scatterer to lie in an
appropriate range of positions. The appropriate range depends
on the energy parameter k, so the question arises whether the
conductor will remain delocalized if the energy is varied. Our
simulations show that the phase φ is extremely sensitive to
the energy parameter k and fails to satisfy the constraint that
−θ < φ < θ as the energy is varied. Hence the delocalized
state is an isolated state. For a finite system it manifests as a
transmission resonance that narrows as N → ∞.

IV. CONCLUSION

We have described a one-dimensional conductor that un-
dergoes a delocalization transition. The transition is not
related to any symmetry of the problem or traceable to the
effective transparency of the individual scatterers. The model
has correlated disorder but distinct from the forms previously
considered in the literature (see, e.g., Refs. [14–17]). Con-
ceptually the delocalized structure is constructed scatterer by
scatterer so it is natural to expect that it can be most readily
realized experimentally as a stacking of films much as a one-
dimensional photonic crystal [20]. A possible application of
such a structure is as an extremely narrow-band filter for light.
In contrast to a photonic crystal the structure does not have
to be engineered with precision; the randomness is in fact
essential to the operation of the filter. Cold atoms are another
experimental arena for localization studies wherein correlated
disorder may be realizable [21]. An interesting analog of
Anderson localization is provided by the phenomenon of dy-
namical localization in kicked quantum rotors [22]. Another
closely related problem is that of localization in quasiran-
dom systems where it has been demonstrated that long-range
correlations also lead to delocalization [23–26]. Whether the
ideas discussed in this paper can be exported to that context or
generalized to two and higher dimensions are interesting open
questions.
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