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Multibaric sampling for machine learning potential construction
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The on-the-fly machine learning potential (MLP) generation scheme is combined with the multibaric-
isothermal (MUBA) ensemble simulation to construct the MLP applicable for the prediction of the phase
stability under various pressures. The MUBA simulation performs a random walk in the volume space and
provides an efficient way to sample physically relevant configurations over a wide range of volume. In the
present MUBA formulation, the explicit construction of a bias potential to realize a random walk is not required.
The sample structures for training are dynamically collected by the simulation using the MLP itself, in which
the simultaneous error estimation is utilized to judge whether an updated structure should be added to the
sample data set or not. The utility of the method is demonstrated for aluminum nitride. The MUBA ensemble
is sampled using the hybrid Monte Carlo (HMC) method at 300 K. Starting from the metastable zinc-blende
structure, the simulation correctly reproduces experimentally observed two phases, the wurtzite and rocksalt
structures. During 600 000 configuration updates in the HMC sweeps, the total number of density-functional
theory (DFT) calculations required is only 107. The constructed MLP shows high accuracy comparable to the
DFT calculations.
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I. INTRODUCTION

Atomistic simulations such as molecular dynamics (MD)
and Monte Carlo (MC) methods have successfully been ap-
plied in a wide variety of research fields [1,2]. In order to take
desired statistics with isothermal and/or isobaric conditions as
in experiments, various ensemble techniques were developed
[3–10]. In these physical ensemble simulations, if the system
falls into a local minimum on the potential energy surfaces
surrounded by barriers much higher than its thermal energy, it
is difficult to escape from this potential basin. To overcome
this difficulty, the multithermal and multibaric algorithms
were proposed [11–17], which are often referred to as the gen-
eralized ensembles. The multithermal ensemble is designed
to realize a random walk in the potential energy space. This
enables the simulation to sample the configurations efficiently
in a wide range of temperatures without trapping in local
minima. The isothermal ensemble averages at different tem-
peratures can be obtained from a single simulation run by the
reweighting technique [11]. Similarly, the multibaric simula-
tion performs a random walk in the volume space and provides
an efficient way to explore the configurations under vari-
ous pressures. Pressure-induced structural phase transitions
are commonly observed for solids. Nowadays, high-pressure
techniques are a powerful tool to search for new materials
with advanced functionalities [18–21]. Thus, the theoretical
prediction of the phase stability as a function of pressure as
well as temperature is an important issue in condensed matter
physics.

The accuracy of the interatomic potentials is crucial
in performing the atomistic simulations. First-principles
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calculations based on density-functional theory (DFT) [22,23]
allow us to describe the atomic interactions with an accurate
quantum-mechanical treatment. Owing to high computa-
tional demands of DFT calculations, empirical interatomic
potentials have also been used, particularly, in large-scale sim-
ulations. The reliability of these potentials, however, strongly
depends on the potential functions and their parameters, which
must be determined carefully. Since the structural phase tran-
sitions usually are accompanied by changes in coordination
numbers and reconstruction of chemical bonds, it is often
difficult to simulate them with the empirical potentials. An
alternative approach to perform large-scale atomistic simu-
lations is the machine learning potential (MLP) [24–27]. In
the MLP, the atomic interactions are represented by a simple
and flexible function. The function is chosen from a math-
ematical point of view rather than physical motivation and
can treat different chemical environment and bonding on the
same footing. Recently, the MLP approach was applied for the
pressure-induced phase transition in gallium nitride [28].

We developed the automatic MLP generation scheme, self-
learning and adaptive database (SLAD) [29]. In the SLAD,
the sample structures for training are dynamically collected
by MD simulations using the MLP itself, in which the si-
multaneous error estimation with the spilling factor [26] is
utilized to judge whether an updated structure should be added
to the sample data set or not. The expensive DFT calcu-
lations need to be performed only for the selected sample
structures. This enables to improve the quality of the sample
data set efficiently and systematically. Our MLP was success-
fully applied to various materials [26,29–32] and showed high
computational efficiency with accuracy comparable to DFT
calculations.

In this paper, the SLAD approach is combined with the
multibaric ensemble simulation to generate MLP applicable
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for the prediction of the phase stability under various pres-
sures. To this end, the multibaric simulation is formulated so
as to be free from the explicit construction of a bias potential
that is usually required to realize a random walk in the volume
space [15,17]. This feature is essential to apply the simulation
to the on-the-fly MLP generation. The utility of the method
is demonstrated for aluminum nitride (AlN), which has inter-
esting and useful physical properties such as the wide band
gap, high resistivity, high thermal conductivity, low thermal
expansion coefficient, and large hardness. It is known that
AlN crystallizes in the hexagonal wurtzite structure at ambient
conditions and undergoes a structural phase transition to the
cubic rocksalt structure at high pressure, 14 – 22 GPa [33–35].

The rest of this paper is organized as follows: Section II
gives the formulation of the multibaric ensemble simulation
and the MLP construction method. In Sec. III, the results
of the multibaric simulations for AlN are presented, and the
accuracy of the constructed MLP is examined. Section IV
summarizes the main results of this study.

II. METHODOLOGY

A. Hybrid Monte Carlo method

The multibaric simulations are carried out using the hybrid
Monte Carlo method (HMC) [36], which combines the ad-
vantages of the MD and MC simulations. It allows the global
configuration updates and does not suffer from the discretiza-
tion error due to a finite time-step size as MD algorithms do.

In this section, the isobaric-isothermal (NPT ) ensemble
sampling with the HMC method is considered. In the global
configuration updates, the MD run with the barostat proposed
by Wentzcovitch [9] is used to treat the variation of a cell
shape. Introducing the scaling strain tensor ε, three lattice vec-
tors {a, b, c} are represented by the reference ones {a0, b0, c0}
with the relation {a, b, c} = (1 + ε) {a0, b0, c0}. The atom po-
sitions ri (i = 1, · · · , N ) also are represented by the reduced
coordinates r′

i in the reference simulation box with the same
scaling relation ri = (1 + ε) r′

i. The Wentzcovitch’s isobaric-
isoenthalpic (NPH ) Hamiltonian is given by

HNPH =
∑

i

p′
i · d−1p′

i

2mi
+ U ({(1 + ε)r′

i}) + PV + p2
ε

2W
. (1)

Here, p′
i are the momenta conjugate to r′

i, mi are the atom
masses, d = (1 + ε)T (1 + ε), U represents the interatomic
potential, V is the cell volume, and P is an external pressure.
The fourth term is the fictitious kinetic energy for the barostat,
which contains the fictitious mass W and momenta pε.

The flow of the NPT -HMC simulation is as follows: (i)
For a given configuration, the scaling strain ε is set to zero
({a0, b0, c0} = {a, b, c}, r′

i = ri), and all the momenta includ-
ing the fictitious ones of the barostat are reflushed by the
Maxwell distribution. (ii) The NPH -MD run is executed with
a few time steps. (iii) Using the change in the Hamiltonian
�HNPH due to the configuration update, the Metropolis crite-
rion is applied to accept or reject the trial configuration. The
acceptance probability is given by

p = min[1, exp(−β�HNPH )], (2)

where β(= 1
kBT ) is the inverse temperature. The second-order

symplectic time integrator [37] is used in the MD run, which
is the time reversible and the area preserving. These features
guarantee to satisfy the detailed balance condition for the
Marcov process [36]. As seen in Eq. (2), it is not necessary
to conserve the Hamiltonian strictly in the HMC simulation.
This allows us to use a relatively large time-step size in the
global MD updates.

B. Multibaric simulation

The NPT -HMC method mentioned in the previous section
can be extended to the multibaric-isothermal (MUBA) sim-
ulation. In the MUBA simulation, the PV work term in the
Hamiltonian of Eq. (1) is replaced by a bias potential δU ,

HMUBA =
∑

i

p′
i · d−1p′

i

2mi
+ U ({(1 + ε)r′

i}) + δU (V ) + p2
ε

2W
.

(3)
The condition for a random walk in the volume space is
∂HMUBA

∂V = 0, from which the derivative of δU can be deter-
mined as

∂δU

∂V
= N

βV
− ∂U

∂V
. (4)

Thus, the following procedure realizes the MUBA simulation.
(i) The pressure is adjusted to P = ∂δU

∂V at the beginning of
each HMC step. (ii) The trial configuration is generated by
the NPH -MD update. (iii) The change in the Hamiltonian
�HMUBA is used to judge whether the trial configuration
is accepted or rejected with the Metropolis criterion. When
the volume of the trial configuration is smaller (larger)
than the predetermined value Vmin (Vmax), it is rejected to
restrict the simulated volume range.

The generalized ensembles including the multibaric en-
semble usually require the preliminary simulations to con-
struct a bias potential before performing the production run
[15,17]. When the on-the-fly MLP generation is combined
with the conventional generalized ensemble approach, the bias
potential has to be constructed with DFT calculations, which
is very time consuming. The advantage of the present method
is that the bias potential does not need to be constructed
explicitly. The random walk is realized by the derivative of
δU [Eq. (4)] that is able to be calculated analytically.

As shown in Sec. III, the MUBA simulation requires a rela-
tively large number of HMC steps to explore an entire volume
range of interest. To enforce the search away from visited
volumes, a history-dependent histogram potential [13,38] is
additionally introduced to the Hamiltonian of Eq. (3),

�δU (V ) = �δU0(V ) + kBT ln h(V ), (5)

where h(V ) is the histogram with a finite bin size. The initial
conditions are �δU0(V ) = 0 and h(V ) = 1. The histogram is
updated at each HMC step. The derivative of this histogram
potential ∂�δU

∂V to be added to Eq. (4) is evaluated numerically
using the cubic splines interpolation. When the highest value
of h(V ) exceeds the criterion hmax = 1000, the histogram po-
tential is reset to be �δU0(V ) = �δU (V ) and h(V ) = 1.

Although the bias potential is not explicitly constructed
in our algorithm, it can be done after the simulation so that
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one can calculate the the NPT ensemble averages from the
MUBA simulation by using the reweighting technique [11] as
in the conventional generalized ensemble methods. This point
is briefly described below, though this technique is unneces-
sary for the MLP training. After the well-converged MUBA
simulation is completed, the bias potential can be constructed
from the following relation with an irrelevant constant,

δU (V ) =
∫ V

V0

〈P(v)〉 dv = N

β
ln

(
V

V0

)
+ 〈U (V0)〉 − 〈U (V )〉,

(6)
where V0 is an arbitrary reference volume and 〈· · · 〉 means the
MUBA ensemble average.

C. Machine learning potential

The formulation of our MLP is briefly summarized. For
simplicity, a monoatomic system is explained here. The
details of our formulation including the extension to a mul-
tiatomic species system can be found in Ref. [26]. Our
descriptor g to characterize local atomic geometries is the
power spectrum of the Fourier coefficients in the spherical
coordinates. The geometry around the Ith atom located at rI

is represented by

gI = gI
nl =

l∑
m=−l

f I
nlm f I

nlm, (7)

with

f I
nlm =

∑
i �=I

fcut
(
rI

i

)
jl
(
qnrI

i

)
Ylm

(
r̂I

i

)
, (8)

where rI
i = ri − rI , rI

i = |rI
i |, jl are the spherical Bessel func-

tions, Ylm are the real spherical harmonics, and fcut is a smooth
radial cutoff function with compact support. The sampling
wave-vector lengths are set to be qn = 2πn/rcut, where rcut

is a cutoff radius of fcut. The similarity measure between two
local geometries is given by

d2(gI , gJ ) =
nmax∑
n=0

lmax∑
l=0

∣∣gI
nl − gJ

nl

∣∣2
, (9)

where nmax and lmax control the resolution of the descriptors.
Using the similarity measures, the energy U is represented by
a sum of weighted Gaussians:

U =
∑
J∈ref

αJ

∑
I

Q(gI , gJ ), (10)

where Q(gI , gJ ) = exp[−d2(gI , gJ )/(2θ2)], α are the regres-
sion coefficients, θ are the scale parameter, and J runs over the
reference descriptors. The reference descriptors are generated
from the local configurations in the sample data set by the
recursive bisection method with the k-means clustering, which
removes highly correlated configurations and thus enhances
the computational efficiency without significant loss of accu-
racy. The spilling factor for the simultaneous error estimation
is defined as

s(g) = 1 −
∑
I∈ref

∑
J∈ref

Q(g, gI )Q−1(gI , gJ )Q(gJ , g), (11)

TABLE I. Parameters for MLP construction. The scale parameter
θ , regularization parameter λ, descriptor expansion parameters, nmax

and lmax, cutoff radius rcut , normalization parameters D−1, spilling
factor tolerance slarge, and recursive bisection criterion δr2.

MLP parameters

θ 0.5
λ 1 × 10−3

nmax 12
lmax 6
rcut (bohr) 8
D−1

energy (hartree/atom) 1 × 10−4

D−1
force (hartree/bohr) 1 × 10−3

D−1
stress (GPa) 0.1

slarge 0.02
δr2 0.01

which is zero when the geometry g is fully projected by the
reference descriptors, whereas s = 1 when g has no overlaps
between them. The analytic evaluation of the atomic force F I

and stress σ is straightforward.
For a given sample data set, the regression coefficients are

determined by minimizing the squared sum of residuals with
the standard L2 regularization. To enhance the accuracy of the
MLP, in addition to the residuals of the energy, those of the
atomic force and stress also are utilized. The normalization
parameters D for the energy, force, and stress are introduced
to make them dimensionless and treat the quantities with dif-
ferent physical units on the same footing, namely, X → DX X
(X = E , F I , σ ).

The MLP construction is carried out with the following
SLAD procedure: (i) During the HMC simulations with the
MLP, a sample structure is collected when the maximum
value of the spilling factors exceeds the tolerance slarge = 0.02
or 2000 HMC steps proceed without any sample collection.
Once a sample structure is collected, the HMC simulation
is suspended. (ii) The DFT calculation is performed for a
new sample structure, and the result is added to the sample
data set. (iii) The MLP is reconstructed with the updated
sample data set. (iv) The HMC simulation is restarted from
the latest accepted configuration. The parameters for the MLP
construction are summarized in Table I.

The DFT calculations for the collected sample structures
are performed using the ultrasoft pseudopotential method
[39–42]. The cutoff energies are 15 and 96 hartrees for the
wave function and charge density, respectively, and a 2 ×
2 × 2 k-point mesh is used for the Brillouin zone integration.
The generalized gradient approximation proposed by Perdew,
Burke, and Ernzerhof (GGA-PBE) [43] is adopted for the
exchange-correlation energy.

III. RESULTS AND DISCUSSION

The MUBA simulation is applied for AlN. The calculations
are performed for the supercell containing 32 formula units
(64 atoms) at temperature T = 300 K. The volume range is
restricted to be V = 448– 768 Å3 and the simulation period
is taken to be 200 000 HMC steps. Since the thermodynamic
averages for classical systems do not depend on the atomic

144106-3



KAZUTOSHI MIWA PHYSICAL REVIEW B 103, 144106 (2021)

FIG. 1. Energy-volume relations for AlN obtained by the MUBA
simulations (a) without and (b) with the histogram potential. Colors
represent the number of HMC steps. In the inset of (b), the MUBA
sampling points after 40 000 HMC step are compared with the EOSs
calculated by DFT for four phases, (i) wurtzite, (ii) rocksalt, (iii)
hexagonal, and (iv) tetragonal phases. The energies of the EOSs are
shifted by NkBT = 1.7 eV.

masses, those of Al and N are set to be unity in the MUBA
simulation for simplicity. Three MD steps with the time-step
size of 0.97 fs are used for the configuration updates. The
simulation is started from the metastable zinc-blende struc-
ture. The lattice constant is set to the theoretical value and
the atom positions are randomly displaced. The initial MLP is
constructed for this randomized structure.

Figure 1(a) depicts the energy-volume relation obtained by
the MUBA simulation without the histogram potential. The
simulation samples a whole volume range and the transition to
the rocksalt structure can be observed. However, the sampling
is not sufficient, in particular for a large volume region. In fact,
the most stable wurtzite phase does not appear in this profile.

FIG. 2. Profile of the maximum spilling factor during the MUBA
simulation with the histogram potential. A dashed (gray) line repre-
sents the spilling factor tolerance slarge = 0.02.

More HMC sweeps are necessary to explore a entire volume
range sufficiently.

The MUBA simulation is repeated with the histogram po-
tential, where the volume range is discretized by 30 bins. The
result is given in Fig. 1(b). As can be seen, the histogram po-
tential enhances a random walk in the volume space. Figure 2
shows the profile of the maximum spilling factor. Though
several spikes exceed the tolerance slarge during the first 50 000
HMC steps, they are quickly attenuated due to the the dynam-
ical data collection with the SLAD. In the remaining steps,
the factors are always kept smaller than the tolerance. Thus,
high accuracy is expected for the present MUBA simulation
with the on-the-fly MLP generation. The accuracy of the con-
structed MLP will be discussed later.

First, the result of the MUBA simulation with the his-
togram potential is discussed. In this profile, four concave
curves are found as shown in the inset of Fig. 1(b). Here,
the solid lines show the Murnaghan’s equation of state (EOS)
[44] fitted to the DFT total energies and are rigidly shifted by
NkBT = 1.7 eV for better comparison. The lines labeled by (i)
and (ii) are the results for the wurtzite and rocksalt structures,
respectively. The agreement between the MUBA sampling
points and these EOSs is quite good. To check the crystal
structures in the MUBA simulation for both lines, the average
structures are calculated from the sampling points located
around the local minima [177 000 – 180 000 and 130 000 –
133 000 HMC steps for the lines (i) and (ii), respectively],
and their x-ray diffraction (XRD) patterns are simulated using
the superposition of atomic densities. In Fig. 3, the simulated
XRD patterns are compared with the references calculated
for the DFT-optimized structures (see Table II). It can be
confirmed that the MUBA simulation correctly reproduces
experimentally observed two structures, the wurtzite and rock-
salt structures. Additional two phases labeled by (iii) and (iv)
are the hexagonal structure with the symmetry of P63/mmc
and the tetragonal structure with P42/mnm, respectively (see
Table II and the insets of Fig. 5). To our knowledge, these two
structures have not yet been reported. For both structures, the
agreement between the MUBA sampling points and the EOSs
is reasonably good.

The number of the sample structures collected in the
MUBA simulation, for which the DFT calculations were per-
formed, is 107. This is only 0.02% of the total number of the
configuration updates. The simulation is considerably accel-
erated by the dynamical data collection with the SLAD.
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TABLE II. Results of structural optimization using MLP and DFT. Lattice constants a and c (Å), atom positions in Wyckoff notation, and
cohesive energy Ecoh (eV/atom).

Structure a c Atom positions Ecoh

Wurtzite MLP 3.133 5.027 Al(2b z = 0), N(2b z = 0.3812) 5.70
P63mc DFT 3.133 5.028 Al(2b z = 0), N(2b z = 0.3811) 5.70
Rocksalt MLP 4.073 Al(4a), N(4b) 5.54
Fm3̄m DFT 4.076 Al(4a), N(4b) 5.54
Zinc-blende MLP 4.409 Al(4a), N(4c) 5.68
F 4̄3m DFT 4.409 Al(4b), N(4c) 5.68
Hexagonal MLP 3.314 4.212 Al(2c), N(2d ) 5.59
P63/mmc DFT 3.318 4.194 Al(2c), N(2d ) 5.59
Tetragonal MLP 5.337 3.127 Al(4 f x = 0.8230), N(4g x = 0.8156) 5.67
P42/mnm DFT 5.339 3.124 Al(4 f x = 0.8231), N(4g x = 0.8156) 5.67

Next, the accuracy of the constructed MLP is considered.
The scatter plots for the total energy, force, and macro-
scopic stress are shown in Fig 4, where 40 test configurations
are selected from the MUBA simulation every 5000 HMC
steps. The MLP reproduces the DFT results very well.
The mean absolute errors for the test (training) data set

FIG. 3. Simulated XRD patterns for the average structures
around the local minima of the lines (i) and (ii) in the inset of
Fig 1(b). The references of the wurtzite, zinc-blende, and rocksalt
structures are calculated for the DFT-optimized structures given in
Table II.

are 4.6 × 10−5 (2.5 × 10−5) hartree/atom, 1.5 × 10−3 (1.5 ×
10−3) hartree/bohr, and 0.27 (0.05) GPa for the total energy,
force, and macroscopic stress, respectively. The difference
between the prediction errors for the training and test data
sets is small, suggesting that the physically relevant config-
uration space is suitably covered with the sample structures
in the training data set. In Table II, the structural parameters
optimized by the MLP for four phases found in the MUBA
simulation as well as the zinc-blende structure are compared
with the DFT ones. The agreement between them is very
good.

Figure 5 depicts the relative enthalpy changes as a function
of pressure. Very good agreement between the results of the
MLP and DFT calculations is found for this relation, too.
The coordination number is four in the wurtzite, zinc-blende,
and tetragonal structures, five in the hexagonal structure, and
six in the rocksalt structure. The MLP generated with the
MUBA sampling possesses high accuracy and flexibility to
describe the different chemical environment under various
pressures. In Fig. 5, it is found that the wurtzite structure is
the most stable phase at ambient pressure and the rocksalt
phase becomes more stable under high pressures, as widely
reported in literature. The transition pressure from the wurtzite
to rocksalt structure is evaluated to be 13 GPa which agrees
reasonably with the experimental data of 14 – 22 GPa [33–35].
The calculated volume reduction associated with the transition
is 20%, which also is in good agreement with the experimental
values of 18 –19% [33,34]. The enthalpy of the zinc-blende
phase is slightly higher than that of the wurtzite phase by
about 20 meV/atom regardless of pressures. Because there are
no positive pressure regions where the hexagonal or tetragonal
phase becomes thermodynamically most stable [45], it will be
difficult to observe both phases in the experiments.

The �-phonon frequencies are calculated for the wurtzite
and rocksalt structures using the constructed MLP with the
frozen phonon approach. The finite atomic displacements are
taken to be ±0.01 Å. The linear-response phonon calculations
based on DFT [40,46] are also carried out for comparison.
To check the applicability of the MLP to volume changes,
the calculations are performed under three different pressures,
P = 0, 15, and 30 GPa, where the structures are optimized
by each method. Since AlN is a polar crystal, the infrared
active modes are divided into the transverse optical (TO)
and longitudinal optical (LO) modes. The LO modes involve
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FIG. 4. Scatter plots for (a) total energy, (b) force, and (c) macroscopic stress.

contributions of the macroscopic electric field induced by lat-
tice dynamics and cannot be described by classical force-field
methods. Thus, the TO mode frequencies only are considered
for the infrared active modes here. The calculated �-phonon
frequencies are summarized in Table III. The frequencies
calculated by the MLP are in good agreement with the DFT
results, whose errors are within a few meV. Increasing the
pressure from 0 to 30 GPa, the most modes exhibit upward
frequency shifts by more than 10 meV. An exception is the
lowest-lying E2 mode in the wurtzite structure, which is kept
almost constant. The second lowest-lying B1 mode also shows
a small upward shift less than 10 meV. The MLP correctly
describes the pressure dependence of each phonon mode.

Table IV shows pressure dependence of the elastic con-
stants of the wurtzite and rocksalt structures. The values
calculated by the MLP agree reasonably with the DFT re-
sults. The mean absolute error is 9 GPa. Both phases become
harder as the pressure rises. The experimental value for the

FIG. 5. Relative enthalpy changes �H as a function of pressure
P. The enthalpy of the wurtzite phase calculated by the MLP is
chosen as the reference. The solid lines and filled circles represent
the MLP and DFT results, respectively.

zero-pressure bulk modulus of wurtzite AlN was reported
to be 208 GPa [33]. The calculations (both MLP and DFT)
underestimate the bulk modulus by 9% because of the under-
binding nature of GGA-PBE.

Finally, the coefficient of thermal expansion is predicted
for the wurtzite phase using the isobaric-isothermal MD sim-
ulation with the MLP. The supercell containing 1024 atoms is
used. The temperature range is taken to be T = 150– 300 K
with an interval of 50 K and the target pressure is fixed at
P = 0 GPa. After 10 000 MD steps for equilibration, 50 000
MD steps are carried out to take the statistics. A good linear
relationship is found between the volume and temperature,
from the slope of which the thermal expansion coefficient
is predicted to be 6.6 × 10−6 K−1. The agreement with the
experimental value (4.4 × 10−6 K−1 [47]) is relatively good.
The overestimation of the coefficient most likely is related
with the underestimation of the bulk modulus.

IV. SUMMARY

In this paper, the automatic MLP generation scheme,
SLAD, has been combined with the multibaric-isothermal
ensemble simulation. The MUBA simulation performs a ran-
dom walk in the volume space and provides an efficient way
to sample the physically relevant configurations over a wide
range of volume. During the simulation, the sample structures
for training are dynamically collected with the aid of the
spilling factor, which enable to improve the quality of the

TABLE III. Optical �-phonon frequencies (meV) under three
different pressures P (GPa). TO mode frequencies only are given for
the infrared active modes.

P = 0 P = 15 P = 30

Structure Mode MLP DFT MLP DFT MLP DFT

Wurtzite E2 29 29 29 29 28 29
B1 65 66 69 70 71 74
A1 74 74 81 81 87 87
E2 78 79 87 88 95 96
E1 81 80 89 89 94 96
B1 87 87 95 94 99 101

Rocksalt T1u 55 55 64 63 66 70
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TABLE IV. Bulk modulus B (GPa) and elastic stiffness constants
Cαβ (GPa) under three different pressures P (GPa). For hexagonal
wurtzite, C66 = (C11 − C12)/2.

P = 0 P = 15 P = 30

Structure MLP DFT MLP DFT MLP DFT

Wurtzite B 190 192 253 248 292 300
C11 388 397 467 462 498 515
C12 113 115 183 177 229 240
C13 83 84 140 138 197 198
C33 379 373 431 422 420 434
C44 118 118 131 125 129 129
C66 137 141 142 142 135 137

Rocksalt B 246 250 323 309 352 364
C11 381 421 539 544 631 662
C12 180 166 215 193 213 215
C44 299 303 319 327 329 347

sample data set efficiently and systematically. In our MUBA
formulation, the explicit construction of a bias potential to
realize a random walk is not required. This feature is essen-

tial to apply the MUBA simulation to the on-the-fly MLP
generation.

The utility of the method has been demonstrated for AlN.
The MUBA ensemble is sampled using the HMC method at
300 K. Starting from the metastable zinc-blende structure,
experimentally observed two phases, the wurtzite and rocksalt
structures, are correctly sampled in the MUBA simulation.
During 600 000 configuration updates in the HMC sweeps,
the total number of the DFT calculations required is only 107.
The constructed MLP possesses high accuracy comparable
to the DFT calculations and can be applied to a variety of
the crystal structures with the different chemical environ-
ment under various pressures. Note that the detection of the
wurtzite-to-rocksalt transition in this paper is purely theoreti-
cal prediction, since the structural information used to execute
the MUBA simulation is only that of metastable zinc-blende
AlN.
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