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Kinetic model for phase transformation of noncrystalline solids:
Application to permanent densification of SiO2 glass
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The phase transformation of noncrystalline solids is quite different from that of crystalline solids. To gain
a better understanding, a kinetic model for pressure-induced phase transformation of noncrystalline solids
is constructed by formulating activation- and free-energy distributions. The model is applied to permanent
densification of SiO2 glass, which occurs as a result of a transformation in the network structure. The model
is found to be effective in reproducing interesting behavior, including the existence of an infinite number of
intermediate states, each of which has a distinct compression curve like a phase, and a halt in the transformation
before completion even at sufficiently high temperatures.
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I. INTRODUCTION

Silica glass is an archetypal oxide glass with a simple
chemical formula SiO2 and a network structure consisting
of SiO4 tetrahedra [1]. It exhibits many characteristic phe-
nomena under high pressure and has received considerable
attention in various fields of physical science [2–4]. Per-
manent densification is particularly interesting. Numerous
studies have been conducted since its discovery by Bridgman
and Šimon [5] in the 1950s, and the nature of this phenomenon
is still explored with state-of-the-art techniques [6]. Neverthe-
less, the consensus ascribes it to a phase transformation in the
network structure, not in the coordination structure [7–14].
The densification can reach up to approximately 20% depend-
ing on the applied pressure and temperature [15,16].

It is noteworthy that SiO2 glasses with densities of 0–20 %
higher than that of ordinary (i.e., not densified) glass can be
synthesized. These glasses exhibit elastic behavior; that is,
they have their own compression curves [12,17]. It appears
that an infinite number of phases exist. Moreover, it is known
that densification proceeds in the pressure range between 4
and 8 GPa even at high temperatures (∼900 K), as well as
between 9 and 13 GPa at room temperature [12,18]. The phase
transformation seems to stop halfway below 8 GPa even at
sufficiently high temperatures (i.e., low kinetic barriers).

In the case of crystals, a model based on the kinetics for
phase transformation by Cahn [19] and the thermodynamics
for grain generation and growth by Turnbull [20] has been
widely used [21]. In that model, however, once the phase
transformation starts, it does not stop before completion with-
out changes in pressure and/or temperature. Moreover, the
intermediate states do not exhibit elastic behavior. Therefore,
the model for crystals cannot explain the behavior of perma-
nent densification of SiO2 glass.

In the case of glasses, Karpov and Grimsditch [22] as-
sumed that the activation energy exhibits a distribution, and
they predicted that the phase transformation would evolve lin-
early with the logarithm of time. On the other hand, Brazhkin
and Lyapin [23] assumed that the free energy exhibits a distri-
bution, and they predicted that low- and high-pressure phases
coexist as a two-phase mixed intermediate state during the
transformation. These predictions were confirmed by exper-
imental studies [24,25]. Advances in experimental techniques
have increased the data available on the phase transformation
of glasses. However, unlike in the case of crystals, no univer-
sal model that can explain the phase transformation has been
proposed.

In this study, we propose a kinetic model for pressure-
induced structural phase transformation of noncrystalline
solids based on a model for crystals in which daughter-
phase nuclei are generated and grown within the mother-phase
matrix, by formulating activation- and free-energy distribu-
tions characteristic of glasses. This is triggered by the recent
finding of the coexistence of low- and high-pressure phases
during the transformation in glasses [25], in addition to the
structural similarity between crystalline and noncrystalline
polymorphs [7,12,18,26]. Our model effectively reproduces
the interesting behavior of permanent densification of SiO2

glass, and it provides further insight into the nature of phase
transformation of noncrystalline solids.

II. MODEL

A. Energy distribution

The concept of our model is illustrated in Fig. 1. When a
phase transformation of glass occurs under applied pressure,
two-phase mixed intermediate states are stable in the pressure
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FIG. 1. Schematic illustration of the pressure-induced phase
transformation for crystal and glass. (The variables are defined in
the main text.)

range from Ps to Pe because of the free-energy distribution.
Here, Ps and Pe are the pressures at which the overlap of the
energy levels of the two phases starts and ends, respectively.
During the transformation, the activation energy �g and the
free-energy difference between the two phases �G change
with the volume fraction of the daughter phase φ, and the
balance between them drives or stops the transformation.

For simplicity, the free-energy distribution is assumed to
be uniform (rectangular) or Gaussian. In the case of a uniform
distribution, �g is expressed as

�g = 〈�g〉 + δg(2φ − 1). (1)

The angular brackets denote the average over φ (i.e., the value
at φ = 0.5). The width of the activation-energy distribution δg
is calculated from the width of the free-energy distribution of
the transient state δg′ and the width of the molar free-energy
distribution of the mother phase δGi via

δg = δg′ + NδGi, (2)

where N is the number of constituent molecules of the unit as-
sociated with the phase transformation. The activation energy
and the molar free energy are expressed in units of kJ/unit and
kJ/mol in this study, respectively (1 unit is equal to 1 mol for
N = 1). The subscripts i and f denote the mother and daughter
phases, respectively. If it is not necessary to refer to the mother
phase, as in the case of φ, the subscript f for the daughter
phase is omitted for simplicity. �G can be expressed in terms
of �Vtr ≡ Vi − Vf (V is the molar volume) as

�G =
∫ P

Ptr

�VtrdP′, (3)

where P is the pressure of the system. Ptr is the pressure at
which the volume fraction of the daughter phase becomes φ

with the passage of thermodynamically sufficient time, that is,
the pressure at which �G = 0 with V = (1−φ)Vi + φVf . As-
suming a uniform energy distribution, Ptr satisfies the equation

∫ Ptr

Ps

�VtrdP′ = φ

∫ Pe

Ps

�VtrdP′. (4)

Using the defined parameters,

δG = δGi + δGf ≡ 1

2

∫ Pe

Ps

�VtrdP′, (5)

〈�G〉 ≡
∫ P

Ps

�VtrdP′ − δG, (6)

Eq. (3) can be simplified as

�G = 〈�G〉 − δG(2φ − 1). (7)

In the case of a Gaussian distribution, Eqs. (1) and (7) can be
rewritten as

�g = 〈�g〉 + δgerf−1(2φ − 1), (8)

�G = 〈�G〉 − δG erf−1(2φ − 1). (9)

The number of states satisfying �G = 0 at P = Ps (or Pe) is
1/e of that at P = 〈Ptr〉.

B. Transformation rate

The Avrami equation is widely used in kinetic models for
the phase transformation of crystalline materials [19,27]. The
Kohlrausch-Williams-Watts function, which is often used in
relaxation models for noncrystalline materials [28], has the
same form as the Avrami equation. In our model, the volume
fraction of the daughter phase φ is assumed to follow the
Avrami equation,

φ = 1 − exp (−φex). (10)

Here, φex denotes the extended volume fraction, which is
the volume fraction assuming that the daughter-phase grains
never stop growing and that new grains keep nucleating at the
same rate in transformed domains as well as in untransformed
domains [19,27]. When daughter-phase nuclei are generated
at a rate ṅ and grow spherically at a rate ẋ, the volume of the
daughter phase v at time τ is expressed as

v = 4π

3

(∫ t

τ

ẋ dt ′
)3

. (11)

Integrating v with respect to τ , φex can be expressed as

φex =
∫ t

0
ṅv dτ . (12)

ṅ and ẋ can be expressed as [20]

ṅ = aT exp{−16π�γ 3/(3�Gv
2kT )} exp(−�g/RT ), (13)

ẋ = bT exp(−�g/RT ){1 − exp(−N�G/RT )}, (14)

144104-2



KINETIC MODEL FOR PHASE TRANSFORMATION OF … PHYSICAL REVIEW B 103, 144104 (2021)

(a) Ordinary state
Densified state

(b)

FIG. 2. Pressure-dependent parameters for the densification of SiO2 glass.

where T, γ , k, and R are the temperature of the system, the
interfacial energy, the Boltzmann constant, and the gas con-
stant, respectively (a, b, and � are constants). In this study, �

is included in γ , assuming that � = 1. �Gv is the free-energy
difference between the two phases per unit volume, defined
as �Gv ≡ �G/Vf , which is independent of N. This kinetic
model, the evolution of φ with t , is applicable to glass, using
the �g and �G formulated in the preceding section.

In our model, when the phase transformation proceeds, the
total interfacial area between the two phases can be assumed
to be unchanged, and thus φ satisfies the equation

dφ

dt
= Aẋ. (15)

Here, A is the total interfacial area per unit volume. The
value of {1− exp(−N�G/RT )} in Eq. (14) does not change
significantly with time. Thus, by neglecting its time evolution,
the solution to Eq. (15) can be obtained from Eqs. (1) and (14):

φ ∝ RT

2δg
ln t . (16)

This is consistent with the model proposed by Karpov and
Grimsditch [22], who predicted a linear relationship between
the evolution of transformation and the logarithm of time.

III. CALCULATION

A. Discretized expression

In the case of the phase transformation of noncrystalline
solids, ṅ and ẋ are functions of φ, and therefore the time evo-
lution is numerically calculated with the following equation
obtained by differentiating Eq. (10):

�φ = (1 − φ)�φex. (17)

� represents a small increase only in this section (as dif-
ferent from the usage of �g and �G in other sections).
Assuming that daughter-phase nuclei grow spherically, �φex

is expressed as the sum of nucleation and grain growth:

�φex = 4π

3
ṅ�t (ẋ�t )3 + Aexẋ�t . (18)

Here, Aex is the extended interfacial area per unit volume,
defined in the same way as the extended volume fraction. As
in the case of φex, Aex can be calculated via

Aex = A∗
ex + 4π

∫ t

0
ṅ

(∫ t

τ

ẋ dt ′
)2

dτ , (19)

where A∗
ex represents the contribution from the growth of the

preexisting daughter phase. A∗
ex = 0 if the starting material is

a homogeneous mother phase (φ = 0).

B. Contribution of preexisting daughter phase

In the case of intermediately transformed states, the daugh-
ter phase already exists at t = 0, and A∗

ex is not negligible.
First, we consider the forward transformation process of inter-
mediately transformed states. When the daughter-phase grains
are formed by pretransformation between t = 0 and t = T at
a nucleation rate Ṅ and a growth rate Ẋ , A∗

ex is given by

A∗
ex = 4π

∫ T

0
ṄR2dτ , (20)

where R is the radius of daughter-phase nuclei generated at
time τ . R at time t (in the main transformation process) can
be obtained by adding the grain growth during the pretrans-
formation and main transformation processes:

R =
∫ T

τ

Ẋ dt ′ +
∫ t

0
ẋ dt ′. (21)

Next, we consider the reverse transformation process
of intermediately transformed states. Assuming that all the
daughter-phase grains are spherical with the same radius and
distributed without overlapping at t = 0 of the reverse trans-
formation process, A∗

ex can be calculated via

A∗
ex = A∗

ex0

(
1 + A∗

ex0

3φ0

∫ t

0
ẋ dt ′

)2

. (22)

Here, A∗
ex0 and φ0 are the values of A∗

ex and φ at t = 0,
respectively.

IV. RESULTS AND DISCUSSION

A. Parameter set

We apply the proposed model to permanent densification
of SiO2 glass. The parameter set proposed in this study is
summarized in Fig. 2 and Table I . For Vi and Vf , the pressure
dependence shown in Fig. 2(a) was used on the basis of
experimental data [12,29]. The 〈�g〉 at ambient pressure was
estimated to be 250 kJ/unit from experimental data for the
relaxation process [30]. The 〈�g〉 at high pressures was as-
sumed to be one order of magnitude smaller than at ambient
pressure, on the basis of experimental data for the densifica-
tion process [15]. It seems reasonable for 〈�g〉 to decrease
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TABLE I. Pressure-independent parameters for the densification
of SiO2 glassa.

(i) (ii)

N 1 5
δg′ 11 kJ/unit 0 kJ/unit
δg 14 kJ/unit
δGi 2.8 kJ/mol
Ps 3.5 GPa
Pe 10 GPa
γ 0.1 J/m2

a 5 × 1033 m−2 s−1 K−1

b 1 × 10−5 m s−1 K−1

aPs = 10 GPa and Pe = 3.5 GPa in the case of reverse transformation.

with pressure because the difference in volume between low-
and high-pressure phases decreases with pressure. Therefore,
the pressure dependence of 〈�g〉 was assumed to be as shown
in Fig. 2(b). Assuming that the width of the free-energy
distribution is the same for the mother and daughter phases
for simplicity, δGi(= δGf ) can be calculated using Ps, Pe,
and Fig. 2(a) [see Eq. (5)], and δg can be calculated with
δg′, N, and δGi [see Eq. (2)]. Under these conditions, seven
parameters, viz., N, δg′, Ps, Pe, γ , a, and b, were determined
to reproduce the behavior of SiO2 glass [31].

N should be the number of molecules associated with the
phase transformation [20]. In our model, δg controls the time
span of the phase transformation, and there is a tradeoff be-
tween N and δg′ as shown in Eq. (2). Therefore, calculations
were performed for two extreme cases shown in Fig. 3(a): (i)
N = 1 and (ii) δg′ = 0. A comparison between the calcula-
tion results for cases (i) and (ii) is shown in Fig. 3(b). The
results obtained were almost identical; therefore, only case (i)
is shown in other figures. For δg′ = 0, N = 5 was obtained
(Table I). This means that permanent densification can be suc-
cessfully reproduced only with the free-energy distributions
of the mother and daughter phases, by assuming five SiO2

molecules as the unit of transformation. This seems to corrob-
orate the consensus that permanent densification of SiO2 glass
is ascribable to changes in the network structure consisting of
SiO4 tetrahedra [12,13]. In the case of crystals, N is usually
just assumed to be 1 when estimating the activation energy
of the phase transformation [21], but N has little effect on the

estimates because the time evolution of the transformation is
practically independent of N.

B. Room-temperature behavior

The calculation results for the densification of ordinary
glass (φ = 0) at room temperature are shown in Fig. 4(a).
As expected on the basis of Eq. (16), φ increases almost
linearly with the logarithm of time in the middle of the phase
transformation (φ = 0.2–0.8). The dashed lines represent the
calculation results for intermediately densified glass with a
densification of 10% (φ = 0.5). The curves are similar to
those for ordinary glass at φ � 0.5, although further trans-
formation starts earlier, due to the growth of the preexisting
daughter phase. In addition, this further transformation is
time-shifted (at pressures other than the pressure where the
initial state of φ = 0.5 was prepared) because the time evolu-
tion of the interface between the mother and daughter phases
is pressure-dependent [see Eq. (19)].

The effects of δg are shown in Fig. 4(b). With a larger δg,
the phase transformation starts earlier and ends later, indicat-
ing that δg has a significant effect on the time span of the
transformation. δg = 0 gives δG = 0, which corresponds to
the phase transformation of crystals [32]. The transformation
of crystals proceeds rapidly up to φ = 1 once it starts. In the
experiments by Tsiok et al. [24], transformation started at a
time scale of several tens of seconds, suggesting that the real
energy distribution may be close to Gaussian distribution.

The compression behavior of intermediately densified
glasses, together with that of ordinary and fully densified
glasses, is shown in Fig. 4(c). The transformation of ordi-
nary glass occurs in the pressure range of approximately
9.5–12.5 GPa, which is also seen in Fig. 4(a), and which
is consistent with previous experimental data on the perma-
nent densification of SiO2 glass at room temperature [12].
The transformation of densified glass with φ = 0.25 starts
at a slightly lower pressure than ordinary glass, due to the
preexisting daughter phase. In the red area, neither forward
nor reverse transformation proceeds. This means that inter-
mediately densified glasses exhibit elastic behavior, that is,
each of them has a distinct compression curve like a phase at
approximately 0–9 GPa. Thus, our model can reproduce the
unique feature of permanent densification reported in previous
studies [12,17].
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FIG. 3. Comparison between the results for cases (i) N = 1 and (ii) δg′ = 0. (a) Schematic illustration of the energy distribution. (b) Time
evolution of phase transformation of ordinary glass (φ = 0) at 8–13 GPa. The numbers in the figure represent the pressure in units of GPa.
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FIG. 4. Phase-transformation kinetics of SiO2 glass at room tem-
perature. (a) Time evolution of phase transformation of glasses with
φ = 0 and 0.5 at 8–13 GPa. The colored numbers represent the pres-
sure in units of GPa. (b) δg dependence of time evolution of phase
transformation at 9 GPa. (c) Pressure dependence of molar volume
converted from φ at t = 105 s of glasses whose initial densification is
φ = 0, 0.25, 0.5, 0.75, and 1. Solid double-headed and dashed right
arrows represent the pressure range within which each glass shows
reversible and irreversible behaviors, respectively. Calculations for
the glasses except for φ = 0 were made assuming that the starting
state was densified at 11 GPa and room temperature.

C. High-temperature behavior

The calculation results for the densification of ordinary
glass at 900 K are shown in Fig. 5(a). At all pressures, the
phase transformation proceeds rapidly once it starts, and the
calculation results approach the experimental results. How-
ever, in the case of a uniform energy distribution, the low
nucleation rate delays the onset of the transformation at low
pressures. The nucleation rate may be higher at the beginning,
as is the case of a Gaussian distribution. In the case of a

9

8

7

6

5

4

10(a)

Time [s]

(b) 0 GPa

Time [s]

FIG. 5. Phase-transformation kinetics of SiO2 glass at high tem-
peratures. (a) Time evolution of phase transformation of glass with
φ = 0 at 900 K. The colored numbers represent the pressure in units
of GPa. Data for densified glasses synthesized with a belt-type high-
pressure apparatus (×) are also plotted. (b) Time evolution of reverse
transformation of glass with φ = 0.82. Solid and dashed-dotted lines
show the calculation results for uniform and Gaussian free-energy
distributions, respectively.

Gaussian distribution, however, the overlap of the energy
levels of the two phases persists even at P = Pe = 10 GPa
because of the tail of the Gaussian distribution, thereby pre-
venting the transformation to φ = 1.

The calculation results for the reverse transformation of
intermediately densified glass at 0 GPa are shown in Fig. 5(b).
The initial densification is 16.5%, corresponding to φ = φi =
0.82 [33]. These calculations can reproduce the experimen-
tal data by Cornet et al. [30]. The pressure is sufficiently
lower than Ps = 10 GPa (for reverse transformation) and the
temperature is high. Thus, the results for the two types of
energy distribution are not different.

V. CONCLUDING REMARKS

The model proposed here successfully reproduces the in-
teresting behavior associated with permanent densification of
SiO2 glass. It should be noted that we have made no as-
sumptions specific to SiO2 glass in constructing our model.
Our model is applicable to other phase transformations in
noncrystalline solids. It gives a picture that a two-phase mixed
intermediate state emerges during the transformation, and that
the transformation proceeds as the domains of each phase
grow (or disappear). In addition, the two-phase mixed inter-
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mediate states can exhibit elastic behavior as if an infinite
number of intermediate phases exist.

For example, we consider the transformations in the
coordination structure of SiO2 and GeO2 glasses. The
transformation of SiO2 glass between fourfold-coordinated
and sixfold-coordinated structures occurs 20–30 GPa on
compression and 15–10 GPa on decompression at room tem-
perature [25]; that is, the intermediate states at 25 GPa
on compression and 12.5 GPa on decompression are ex-
pected to be a two-phase mixture with an average of fivefold
coordination [34]. Our model predicts that at 12.5–25 GPa,
the intermediate state would exhibit elastic behavior as if a
fivefold-coordinated phase existed. GeO2 glass is known to
have much in common with SiO2 glass, and Guthrie et al. [35]

reported a fivefold-coordinated phase. Our model suggests the
possibility that they may have observed elastic behavior of
a two-phase mixed intermediate state, rather than a fivefold-
coordinated phase. We expect that our model will be applied
to various noncrystalline solids and contribute to a better
understanding of their phase transformations.
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