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Transition to quantum turbulence in oscillatory thermal counterflow of 4He
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We report an experimental study of oscillatory thermal counterflow of superfluid 4He and its transition to
quantum turbulence inspired by the work of Kotsubo and Swift [ Phys. Rev. Lett. 62, 2604 (1989)]. We use a pair
of transversally oriented second-sound sensors to provide direct proof that upon exceeding a critical heat flux,
quantized vorticity is generated in the antinodes of the longitudinal resonances of the oscillating counterflow.
Building on modern understanding of oscillatory flows of superfluid 4He [D. Schmoranzer et al., Phys. Rev. B
99, 054511 (2019)], we re-evaluate the original data together with ours and provide grounds for the previously
unexplained temperature dependence of critical velocities. Our analysis incorporates a classical flow instability
in the normal component described by the dimensionless Donnelly number, which is shown to trigger quantum
turbulence at temperatures below ≈ 1.7 K. This contrasts with the original interpretation based on the dynamics
of quantized vortices, and we show that for oscillatory counterflow, such an approach is valid only at temperatures
above ≈ 1.8 K. Finally, we demonstrate that the instabilities occurring in oscillatory counterflow are governed
by the same underlying physics as those in flow due to submerged oscillators and propose a unified description
of high Stokes number coflow and counterflow experiments.

DOI: 10.1103/PhysRevB.103.134516

I. INTRODUCTION

Quantum turbulence [1,2] in superfluid 4He (He II) in the
temperature range from ≈1 K to Tλ, where He II displays
the two-fluid behavior, is easy to generate experimentally but
challenging to understand in its entirety. In the frame of the
two-fluid model, He II consists of two components: the vis-
cous normal component of density ρn carrying all the entropy
content of He II and the inviscid superfluid component of
density ρs, with the total density ρ = ρn + ρs. This makes
superfluid 4He a complex system: One can expect an interplay
of turbulent normal component of very low kinematic viscos-
ity νn, obeying in some cases classical laws, and of inviscid
superfluid component, behaving under quantum restrictions,
with all rotational flow in the form of quantized vortices
possessing angstrom-sized cores [3]. These line singularities,
usually arranged in a complicated tangle, carry a single quan-
tum of circulation κ ∼= 10−7 m2s−1 each. Vortex lines mediate
the interaction between the two components via a mutual
friction force acting at all relevant length scales; moreover,
any thermal gradient in He II generates thermal counterflow.

Various forms of quantum turbulence in He II can be gen-
erated using mechanical and thermal drives [4]. Classical-like
mechanical forcing (e.g., by towing or oscillating a grid or
any bluff body such as a wire or a quartz tuning fork) usually
[4] results in a coflow, the closest analog to classical viscous
flows, in which the normal fluid and superfluid components
move, on average, with the same mean velocity in the same
direction. By combining mechanical and thermal driving, the
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two components of He II can also be made to flow, on aver-
age, relative to each other [5], a situation called counterflow.
The special case of counterflow with no net mass flow in
the laboratory frame of reference called thermal counterflow
is probably the most frequently investigated quantum flow
since the pioneering experiments of Vinen [6]. In another
special case called pure superflow, only a net flow of the
superfluid component occurs in the experimental frame of
reference, while the normal component remains statistically
steady [7–9].

Additionally, as first shown by Kotsubo and Swift [10,11]
and later by Chagovets [12], quantum turbulence can be gen-
erated in He II by applying a high-amplitude second sound
in the longitudinal direction of a closed channel acting as
a second-sound resonator. Here we present a similar exper-
iment, however, with the addition of direct measurement of
vortex line density, L, in the center of the resonator. Based
on our results and subsequent analysis, taking into account
experiments described in Refs. [10–12], we point out the
close similarity of the underlying physics between quantum
turbulence generated in an oscillating flow due to a bluff
body [13,14] or U-tube oscillations [15] and by second sound,
which involves a high Stokes number oscillatory flow of the
normal component of He II in the resonator [16].

II. EXPERIMENTAL SETUP AND METHODS

The experimental volume of He II is contained in the 1-
cm-wide brass channel of square cross section 3.2-cm long,
a second-sound resonator, closed from both ends with brass
plugs. We generate two different second-sound signals which
we refer to as (i) longitudinal second sound, driven thermally
at high amplitude along the longer dimension of the resonator,
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FIG. 1. Top: Photograph of the experimental brass cell with the
transversal second-sound sensor holder on its front side and the
heater and thermometer on the brass holders inserted from the left
and right sides. Bottom: Schematic of the experimental cell arrange-
ment. Longitudinal second-sound signal is generated by the resistive
heater, forming a standing wave along the resonator, and probed
by the sensitive resistance thermometer placed at the opposite end.
Transversal second-sound signal is driven in the middle of the res-
onator perpendicularly to its length by one of two capacitive sensors
acting as a generator with the opposing one used as a detector.

which is used for generation of quantized vorticity; and (ii)
transversal (or detection) second sound, driven at low am-
plitude mechanically across the center of the resonator. A
schematic view of the experiment is shown together with a
photograph of the setup in Fig. 1.

The longitudinal second sound is driven by a flat heater
of resistance R ≈ 50 �. It is made of a manganine wire and
glued to one of the brass plugs at one end of the resonator.
The applied ac voltage U = U0 cos(ωt ) of angular frequency
ω and amplitude U0 results in radiation of a heat flux q̇ at 2ω.
In a channel of constant cross section, As, the time-dependent
heat flux is formally given as

q̇ = q̇dc + q̇ac cos(2ωt ) = U 2
0

2RAs
[1 + cos(2ωt )], (1)

resulting in radiation of (i) the ac temperature wave and (ii)
the dc heat flux. The net dc heat flux is carried away from

the heater by the normal component of He II and causes
steady thermal counterflow of some form, which we discuss
in Sec. IV.

In a conventional counterflow channel of constant cross
section, with one end open to the helium bath, from the con-
servation of energy, the counterflow velocity is found as

vCF = q̇dc

ST ρs
, (2)

where q̇dc is the applied heat flux (power per unit area) and
S and T denote, respectively, the specific entropy and the
temperature of He II. The dc heat flux might generate quan-
tized vorticity. This happens above the critical counterflow
velocity v0; the intensity of generated quantized vorticity is
characterized by vortex line density, L, which follows the
experimentally established [6] power law scaling,

L − L0 = γ 2(T )(vCF − v0)2, (3)

where L0 corresponds to the remnant vortex line density [17].
The dimensional coefficient γ (T ) (for the so-called T II state
of thermal counterflow in relatively wide channels) has been
experimentally established with about 20% accuracy [7].

The generated longitudinal second sound is detected by a
semiconductor-based Ge/GaAs Microsensor TTR − G ther-
mometer [18–20] biased with a constant current of 1 μA,
placed on the brass plug closing the opposite side of the
resonator. The thermometer signal is measured using a Stan-
ford SR830 lock-in amplifier at the expected frequency ω/π ,
i.e., at double frequency of the driving voltage. Under the
assumption of linear damping of the second-sound wave,
the maximum counterflow velocity reached in the antinodes
of the second-sound wave is given by a similar equation as for
steady counterflow, Eq. (2), enhanced by the quality factor Q
of the second-sound resonator.

For the detection of quantum turbulence, we have built and
further improved the traditional capacitive sensors; for details
of their construction and readout method see Refs. [8,21] and
references therein. In short, two identical sensors, serving as a
transducer and receiver, are constructed from a 10-μm-thick
nuclepore membrane, coated on one side with a 30- to 60-
nm-thick layer of gold. It is stretched across a circular Delrin
holder 1 cm in diameter and lightly pressed against a brass
electrode. Its gold-plated side and the electrode constitute a
parallel-plate capacitor of typically 30 to 100 pF. The two
sensors face each other across the resonator in the middle
of its length (see Fig. 1), one being driven by an ac voltage
superimposed on a high dc bias of 100 V, while the voltage
signal from the other sensor is read using a lock-in amplifier.
Assuming a random vortex tangle, homogeneous across the
width of the channel, the vortex line density in the probed
volume is then obtained from the level of attenuation of the
standing transversal second-sound wave as

L = 6π
 f

κB

( A

A0
− 1

)
, (4)

where 
 f and A0 are the full width (FWHM) and the am-
plitude of the second-sound signal measured without the
application of the longitudinal drive, A is the amplitude of the
attenuated signal, κ is the circulation quantum, and B is the
tabulated [22] mutual friction coefficient. We note that Eq. (4)
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FIG. 2. The amplitudes of first two resonant modes of lon-
gitudinal second sound measured at 1.65 K and plotted against
the frequency of the ac driving voltage supplied to the heater.
The crossover between two different peak shapes is displayed: (i)
Lorentzian shape in the linear damping regime and (ii) flattened-top
shape caused by the generation of additional quantized vorticity by
the high-amplitude second-sound wave.

was derived for moderate values of L not requiring screening
corrections (for details, see Refs. [8,21]); the calculated L
values may therefore differ from reality by up to ≈30%.

III. EXPERIMENTAL RESULTS

Figure 2 shows the voltage amplitude across the calibrated
temperature sensor [18–20] during frequency sweeps across
the resonances for the first two longitudinal resonances mea-
sured at 1.65 K for various heater powers. In agreement with
previous results of Kotsubo and Swift [10,11] and Chagovets
[12], we observe a crossover between two distinctly different
shapes of the longitudinal second-sound resonances. At low
drives, the Lorentzian shape of the resonances with the am-
plitude directly proportional to the driving power indicates a
linear damping regime. Upon increasing the drive, the shape
changes, resulting in flat-top peaks above some critical am-
plitude, as a new, nonlinear dissipation mechanism sets in. In
accord with Refs. [10,11], as the power is increased further,
the flattened peaks become broader and overall dissipation
increases as well, while the level of the flattened top remains
approximately constant. This is a signature of turbulent flow
in the resonator, as quantized vortices are generated above
the critical amplitude, over an increasingly wider frequency
range around the resonance. This behavior appears qualita-
tively similar when measured at 1.45 K and 1.83 K.

Our experimental setup allows us to present direct proof
of quantum vortex generation in oscillatory counterflow by
simultaneously tracking the in-phase amplitude of a weakly
driven transversal resonant second-sound wave. This is shown
in Fig. 3 for a few selected heater powers driving the
first longitudinal harmonic mode, in both linear and non-
linear damping regimes at 1.45 K. The true tracking of the
transversal second-sound resonance is secured via a proce-
dure described in detail in Refs. [21,23]. The attenuation of
the transversal wave due to additional quantized vorticity in

FIG. 3. Top: Selected frequency sweeps of the first harmonic
mode at 1.45 K. Bottom: The simultaneously measured resonant
amplitude of transversal second-sound wave propagating perpen-
dicularly across the center of the resonator. The attenuation of the
transversal signal clearly corresponds to the saturation part of the
longitudinal amplitude, proving the generation of quantized vorticity
in the superfluid component. In both panels, the horizontal axis
represents the frequency of the voltage supplied to the heater.

the resonator clearly corresponds to the amplitude saturation
of the longitudinal signal.

Figure 4 compares the evolution of the peak amplitude of
the longitudinal signal with the vortex line density L in the
center of the resonator calculated using Eq. (4) at 1.45 K as
a function of the applied heater power. The top panel shows

FIG. 4. Top: Power evolution of the peak amplitude of longi-
tudinal second sound for first three modes at 1.45 K. Amplitude
saturation implies the generation of quantized vorticity by the ac
counterflow. Bottom: The corresponding vortex line density, L, mea-
sured in the center of the channel. The black dashed line represents
the power law L ∝ P2, for vorticity originating from the dc counter-
flow alone. The green vertical dotted line indicates the critical power
for the first mode, where both signals show generation of quantized
vortices in the antinode of the longitudinal resonance. The lack of
observation of any additional vortex line density for the second mode
confirms the antinodal localization of vortex generation.
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TABLE I. Critical values of heat flux for turbulent transition in
oscillatory counterflow for different harmonic modes, estimated at
three temperatures.

Harmonic mode T q̇crit

K mW/cm2

1.45 55
First 1.65 85

1.83 115
1.45 120

Second 1.65 195
1.83 −
1.45 175

Third 1.65 −
1.83 −

similar behavior for all three harmonic modes: the peak am-
plitude rises approximately linearly with the heating power
and then saturates. The critical power values, for which the
amplitude saturation occurs, have been found for all presented
harmonic modes at 1.45 K. For experimental reasons, it was
not possible to reach saturation with all modes at higher
temperatures 1.65 K and 1.83 K. The observation is also
partially masked by a rather strong background vortex line
density due to the dc counterflow carrying the applied power
in the resonator to the surrounding helium bath. The frequency
dependence of the critical power is clearly seen; we shall
discuss it in the next section.

All estimated values of critical heater power determined
from the onset of saturation of amplitude of the longitudinal
signal are shown in Table I. Note that critical conditions for
turbulent transition were not reached for all cases, as the
same heating power generates lower counterflow velocity at
temperatures of 1.65 K and 1.83 K than at 1.45 K, in accord
with Eq. (2).

IV. DISCUSSION

First, let us discuss possible caveats and experimental dif-
ficulties. The analysis of our data described above must be
treated as semiquantitative for the following reason. While
generating the steady-state quantum turbulence, we continu-
ously apply heat typically of order 0.1 W to the He II sample
inside the resonator, which must be carried to the surrounding
helium bath. Our resonator is made of brass with walls about
1 cm thick. Assuming that the applied heat is conducted via
brass walls, a simple estimate would lead to a temperature
difference of order 1 K between the He II sample in the res-
onator and the helium bath, about three orders of magnitude
higher than what is experimentally observed. For evidence,
see, e.g., Fig. 2 which shows only a slight shift of the res-
onance frequency of the measured second-sound harmonics
with the applied heat flux—the position of resonance would
have followed the changes of the second-sound velocity with
the increasing temperature of He II inside the resonator. We
are therefore led to conclude that the applied heat is carried
away from the He II sample in the resonator by a much more
efficient mechanism—thermal counterflow, specifically by the
normal component carrying the entropy through gaps between

the brass plugs, second-sound sensors, and the brass body of
the resonator.

It is difficult to characterize the geometry of such coun-
terflow in our experiment as well as in the experiments cited
above and to judge how much these thermally driven flows
affect our considerations below. We attempted to compensate
the steady heat flux supplied by the heater, Eq. (1), by the same
steady heat flux from an additional heater placed at the oppo-
site end of the resonator. This, however, resulted in an increase
of attenuation of the transverse second sound, indicating an
increase of effective vortex line density in the center of the
resonator. This suggests that a significant part of the heat exits
the resonator via gaps adjacent to the second-sound sensors
rather than via gaps between the brass plugs and the body of
the resonator at its ends. We therefore treat the vortex line
density in the center of the resonator generated at frequencies
of longitudinal second-sound resonances simply as a heat
flux-dependent background. Bearing in mind this caveat, we
now attempt to determine the peak counterflow velocity of the
studied oscillatory counterflow that corresponds to the applied
ac heat flux.

A. Determination of critical velocity

Two different approaches may be employed. The first one
is based on the idea that the peak counterflow velocity vI

ns,ac
(i.e., its antinodal amplitude) is the same as that in the dc
case [given by Eq. (2)] but resonantly enhanced by the quality
factor Q, found to be of order 10:

vI
ns,ac = Q

q̇ac

ST ρs
. (5)

We stress that this approach is valid only in the linear damp-
ing regime, when the observed resonances are of Lorentzian
shape. In the turbulent regime, further increase of the peak
counterflow velocity is suppressed by the action of the mutual
friction force.

The second and perhaps more straightforward way to de-
termine the peak velocity is based on the direct measurement
of the magnitude of the temperature variations δT in the
resonator. The same approach was used by Kotsubo and Swift
[10,11], who assumed a harmonic time dependence and spa-
tial profile of the resonant standing wave. Following the same
reasoning that leads to Eq. (13) in Ref. [11], we find the peak
oscillatory counterflow velocity as

vII
ns,ac = ρS

u2ρn
δT, (6)

where u2 stands for the second-sound velocity. The amplitude
of the temperature oscillations δT can be determined from the
ac voltage measured across the calibrated resistive thermome-
ter biased by a constant current. The velocity determined
in this manner should hold over the entire range of applied
heat fluxes, as it is calculated from experimentally observed
quantities.

On the other hand, discrepancies between the determined
values of vI

ns,ac and vII
ns,ac in the subcritical region and ob-

servation of an additional phase shift, which both occurred
for higher harmonics, suggest that either the thermal iner-
tia together with the Kapitza resistance at the heater or the

134516-4



TRANSITION TO QUANTUM TURBULENCE IN … PHYSICAL REVIEW B 103, 134516 (2021)

FIG. 5. Left: Contribution to vortex line density due to oscillatory counterflow (difference of values observed for first and second modes),
plotted as a function of the velocity vI

ns,ac. The rapid increase of vortex line density above the noise level (highlighted by the green dashed
line) indicates the position of the critical velocity. Right: Oscillatory counterflow velocity vII

ns,ac obtained from the amplitudes of longitudinal
resonances via Eq. (6) plotted as a function of heating power. The onset of saturation of vII

ns,ac determines the critical velocity. The error bars
represent the fluctuations of the bias current supplied to the thermometer.

thermalization time constant of the used thermometer may
affect the measurements at frequencies higher than the first
fundamental mode, and thus may influence the tempera-
ture wave amplitude reading as well as the actual, slightly
smoothed, heat flux amplitude delivered to the liquid which
may be lower than Eq. (1) suggests. Indeed, the values of the
critical heat flux amplitude measured at T = 1.45 K for first
three harmonics, given in Table I, grow somewhat faster than
with the square root of frequency, predicted for both classical
[24] and quantum [25–27] oscillatory flows. For these reasons,
we have limited deduction of critical oscillatory counterflow
velocities for further quantitative analysis to the data mea-
sured using the first harmonic mode, where good agreement
is obtained in the linear damping regime for both methods of
determination of the peak counterflow velocity.

Let us now discuss the critical velocities determined by
these two different approaches. In the left panel of Fig. 5, we
plot the difference of vortex line density measured for the first
harmonic mode (containing both ac and dc contributions) and
second harmonic mode (giving the dc contribution only) as
a function of vI

ns,ac. The critical velocity can be determined
from the onset of vortex line density (above the noise level,
taken as 10% of the background due to dc counterflow near
the critical power) and must be directly connected to a tran-
sition in the oscillatory counterflow accompanied by a rapid
increase of quantized vortex generation. The second approach,
via directly measured temperature oscillations in the channel,
leads to the values of vII

ns,ac, see the right panel of Fig. 5
showing the counterflow velocity obtained from the ampli-
tudes of longitudinal resonances as a function of heater power.
The saturation of this velocity marks the same transition as
above and, moreover, indicates the longitudinal resonance as
the energy supply for the additional vorticity, see also Refs.
[10–12]. The critical velocities are listed below in Table II,
showing quantitative agreement of the two approaches. In
both cases, we estimate the uncertainty to be of order 1 cm/s,
caused by the subjectivity of noise level determination and/or
thermometer bias current fluctuations.

B. Comparison with other experiments

With these data at hand, we may turn to the broader
discussion of the transition to quantum turbulence in var-
ious oscillatory He II flows generated mechanically, ther-
mally, and by second sound in the frame of the two-fluid
model.

Historically, the two-fluid model description of inde-
pendent and coupled oscillatory flows of the normal and
superfluid components was already considered by Donnelly
and Penrose [15] in 1956 in an attempt to explain the experi-
mentally observed crossover between two regimes of U-tube
oscillations. Although the notion of quantized vortices and
their role for the mutual friction force was not yet widely ap-
preciated, their approach was capable of formally explaining
the existence of the two observed decay regimes, assuming
that at low velocity the two fluids move independently and
their motion becomes gradually coupled upon reaching some
critical velocity and eventually they move as a single fluid, i.e.,
in coflow. The length scale relevant to the (uncoupled) normal
flow is the viscous penetration depth δn = √

2η/ρnω ≈ 70 −
200 μm, where η is the dynamic viscosity. This scale is sig-
nificantly smaller than the diameter of the U tubes (≈1 cm);
we therefore deal with flows of high Stokes number, defined
as St = D2/(πδ2

n ), similarly to the counterflow experiments
presented here.

TABLE II. Critical oscillatory counterflow velocities and cor-
responding critical Donnelly numbers obtained by two different
approaches for all studied temperatures. See the text for details.

T Critical vI
ns,ac DnI

cr Critical vII
ns,ac DnII

cr

K cm/s cm/s

1.45 17 15.6 16 14.7
1.65 12.5 15.3 13 15.9
1.83 10 13.2 11 14.5
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1. Normal fluid critical velocity

Dynamical similarity and instabilities in high-Stokes-
number oscillatory flows of He II have recently been studied
by Schmoranzer et al. [16]. It was shown, based on systematic
measurements of oscillatory He II flows due to various os-
cillators, that an instability leading to the turbulent transition
can occur either in the normal or in the superfluid component
of He II. For low velocities, only viscous drag is offered by
the normal fluid, obeying a universal scaling law in terms of
the suitably defined drag coefficient and the Donnelly number
(boundary-layer-based Reynolds number), defined as

Dn = δnvn/νn, (7)

where vn is the amplitude of normal fluid velocity. Upon ex-
ceeding a certain critical value of the Donnelly number, Dncr,
the normal component undergoes a classical-like transition,
also subsequently triggering the generation of quantized vor-
tices in the superfluid component. The corresponding critical
velocity of the normal component is denoted as vn,cr.

2. Superfluid critical velocity

Even without the classical-like instability occurring as dis-
cussed above, quantized vorticity in the superfluid component
may become generated via the Donnelly-Glaberson instability
[28–30] at a dimensionless critical velocity v̂s,cr = vs,cr/

√
κω,

where vs,cr is the dimensional superfluid critical velocity. In-
deed, Hänninen and Schoepe [26,27] have argued that the
onset of quantum turbulence in oscillatory flows of superfluid
helium is universal, and can be derived from a general argu-
ment based on the “superfluid Reynolds number”. The critical
velocity scales as vs,cr ∝ √

κω with only the numerical pref-
actor depending somewhat on the geometry of the oscillating
object because the flow velocity near the surface of the object
may differ from the velocity amplitude of the body. A more
detailed analysis derived from the dynamics of the turbulent
state gives the criterion [27]

vs,cr ≈
√

8κω/β, (8)

where the numerical factor β is about unity and depends on
the mutual friction parameters.

Hänninen and Schoepe [26] evaluated β for several tem-
peratures: β = 1 below 1 K, β = 0.95 (at 1.3 K), 0.89 (at
1.6 K), and 0.79 (at 1.9 K); which implies a slow increase of
vc by about 10% and gives fair agreement with experimental
results obtained over a wide temperature range from below
0.4 K up to 1.9 K with a sphere 100 μm in diameter oscillating
at 236 Hz, as displayed in Fig. 3 of Ref. [26].

It must be noted that virtually the same approach was
used to analyze the turbulent instability in oscillatory coun-
terflow in Refs. [10–12] without any consideration of a
possible classical-like instability in the normal component.
This resulted in the observation of a strong and systematic
temperature dependence of superfluid critical velocities that
the employed dynamical scaling theory could not explain
[10,11], as the temperature dependence of β in Eq. (8) is too
weak to account for critical velocities differing by a factor of
4 (see, e.g., Fig. 4 in Ref. [10]).

3. Interplay of the two instabilities

Which instability, i.e., either classical hydrodynamic insta-
bility of laminar flow of the normal component upon reaching
a critical velocity vn,cr or Donnelly-Glaberson instability in
the superfluid component upon reaching vs,cr occurs first de-
pends both on the geometry of the oscillator and on the
temperature, which determines the dynamic viscosity of He II
and the densities of the two components. A crossover between
the two outlined mechanisms of turbulence generation is pos-
sible and has indeed been observed in flows due to mechanical
oscillators [16].

A similar approach may be applied to oscillatory coun-
terflow, with one distinction. In experiments on flow due to
mechanical resonators, the comparison of the two criteria
for the transition is straightforward, as in coflow, the veloc-
ities of the normal and superfluid components are practically
identical. However, in counterflow vn �= vs, hence a common
dimensionless parameter must be found for both types of
instability to facilitate such a comparison. For this purpose,
the superfluid critical velocity vs,cr may be converted to an
effective critical Donnelly number Dncr,eff using

Dncr,eff = δnvs,crρs

ρnνn
. (9)

This is the same formal definition of Dncr as given below
Eq. (7), with the critical normal fluid velocity formally ex-
pressed as vn,cr = ρs/ρnvs,cr, i.e., as the peak normal fluid
velocity in the oscillating thermal counterflow at the very first
occurrence of the Donnelly-Glaberson instability in the super-
fluid component oscillating with the critical velocity vs,cr.

Unlike the true critical Donnelly number describing the
classical instability Dncr, the critical value of Dncr,eff is no
longer expected to be constant. On the contrary, requiring
a constant value of the correct critical parameter, v̂s,cr, also
requires Dncr,eff to be a function of temperature. However,
Dncr,eff will be independent of the frequency of oscillations,
as both vn,cr and vs,cr have the same frequency dependence,
with either critical velocity ∝ √

f .
We stress that, assuming no or perhaps a very low num-

ber of remnant quantized vortices at low flow velocities, this
classical-like instability is not affected by the potential flow of
the superfluid component; as mutual friction is nearly absent.
This allows us to apply the described model to oscillatory
coflows as well as counterflows and in particular to the ex-
periments discussed here.

First, using our data, we have described two different ap-
proaches to determine critical counterflow velocities vI

ns,ac and
vII

ns,ac. Requiring zero net mass flow, we can calculate the
corresponding peak critical velocities of the oscillating normal
fluid. Application of a no-slip boundary condition then leads
to critical Donnelly numbers DnI

cr and DnII
cr, also given in

Table II. We note that for this calculation we naturally use
the frequency of the longitudinal second sound, i.e., twice the
frequency of the applied oscillatory heat flux. Over the tem-
perature range 1.45–1.83 K (where the normal fluid density
changes about five times) the critical Donnelly numbers are
approximately constant DnI

cr
∼= DnII

cr
∼= 15 ± 2, providing a

good quantitative characterization of the turbulent instability.
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FIG. 6. Temperature dependence of the critical Donnelly number
for oscillatory thermal counterflow as determined from this work and
the experiments of Kotsubo and Swift [10,11] and Chagovets [12].
The dashed line represents an effective Donnelly number calculated
for the instability based on the Hänninen-Schoepe criterion, Eqs. (8)
and (9).

Second, we calculate critical Donnelly numbers based on
the data measured for mechanically generated ac counterflow
of He II at 1.88 K by Kotsubo and Swift, DnKS

cr , based on
Fig. 5 of Ref. [11], showing critical counterflow velocities
from the first two modes in their long resonator and the first
five modes in their straight resonator, covering more than a
decade of second-sound frequencies. All values of critical
Donnelly numbers obtained at this temperature fall within a
narrow interval DnKS

cr = 13 ± 2, in fair agreement with our
measurements. Furthermore, we have used Fig. 6 of Ref. [11],
displaying the scaled temperature dependence of the critical
velocities from the first two modes measured in their short res-
onator. The calculated critical Donnelly numbers are shown
in Fig. 6, appearing approximately constant between 1.2 K
and 1.7 K, DnKS

cr
∼= 17 ± 2, with a pronounced decreasing

tendency at higher temperatures.
Finally, we may compare with the critical Donnelly num-

bers DnCh
cr for thermally generated ac counterflow of He II

estimated using the data measured by Chagovets in an epoxy
cylindrical resonator of diameter 7 mm, 3.5 cm long, at four
temperatures between 1.72 K and 2.0 K, specifically the data
series shown in Fig. 2 of Ref. [12]. For example, at T =
1.85 K we estimate the saturated amplitude of the temperature
oscillations δT ≈ 0.8 mK that starts to flatten upon reaching
about 32 mW/cm2 of applied heat flux, and the fundamental
resonant frequency of second sound f = 197 Hz. Similarly,
we read the available data for 1.72, 1.98, and 2.0 K and,
using the known temperature dependence of the second-sound
velocity, we calculate the relevant frequencies of the funda-
mental mode at these temperatures. These data, together with
tabulated values of He II properties [22] allow us to calculate,
using Eq. (6), the velocity vII

ns,ac and, subsequently, the critical
Donnelly number DnCh

cr , also shown in Fig. 6.
It is remarkable that, within the experimental accuracy, in

the temperature range from 1.2 K to 1.7 K, three different

experiments: (i) mechanically driven second sound [10,11],
(ii) thermally driven counterflow by Chagovets [12], as well
as (iii) our own display the onset of the transition to quantum
turbulence characterized by the same critical Donnelly num-
ber Dncr ≈ 16 ± 3. This strongly suggests that the transition
is triggered when the instability in oscillatory laminar flow of
the viscous normal component of He II is reached. In the given
temperature range, the transition thus cannot be described by
the dynamical scaling theory used in Refs. [10,11], which
deals solely with superfluid instabilities.

However, the data of Refs. [11,12] show a departure from
this value of Dncr as the temperature is increased above
≈ 1.8 K, which is fully explained by the instability in the
superfluid component–production of quantized vorticity by
means of the Donnelly-Glaberson mechanism. The data are
summarized in Fig. 6, where the effective Donnelly number,
Dneff, for this instability is shown, as calculated based on
Eqs. (9) and (8). Hence, we clearly observe a crossover of two
different mechanisms of turbulence generation in oscillatory
counterflow: one related to a classical instability of the nor-
mal fluid dominating at lower temperatures in the two-fluid
regime, while the other is purely a consequence of quantized
vortex dynamics in the superfluid component and dominates
at higher temperatures.

It is interesting to note that oscillating coflow, e.g., due to a
quartz tuning fork [16], is similar in that it displays the same
general crossover between these two mechanisms. However,
the respective temperature intervals are inverted—the classi-
cal instability dominates closer to the lambda point and the
superfluid one at lower temperatures. It is naturally under-
stood that the behavior of oscillating thermal counterflow is
different in this sense, as the equation of continuity requires
that vs/vn = ρn/ρs, making it likely that the superfluid critical
velocity is reached first when the ratio ρn/ρs is large.

C. Applicability of the obtained results

We have to emphasize that the above hydrodynamic ap-
proach is applicable only in the temperature range where
superfluid 4He displays the two-fluid behavior. On lowering
the temperature below 1 K, the mean-free path of phonons
grows and soon becomes greater than the size of the system
and, in the T → 0 limit, only the superfluid component ex-
ists, hence the very concept of thermal counterflow becomes
poorly defined. Still, transition to quantum turbulence occurs
in a variety of oscillatory flows, displaying interesting fea-
tures such as multiple critical velocities [31,32] and hysteretic
[33–35] or switching phenomena [36,37]; for reviews, see
Refs. [13,14] and references therein. These features fall out-
side the scope of this paper.

V. CONCLUSIONS

We have presented experimental work on thermally
generated oscillatory counterflow in a closed square-cylinder-
shaped second-sound resonator, and directly proven genera-
tion of quantized vortices in the antinode of the fundamental
longitudinal standing wave using the second-sound attenua-
tion technique.
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Comparison with studies of oscillatory flows due to me-
chanical resonators in 4He [16] and previous thermally and
mechanically driven second-sound experiments [10–12] re-
veal that the instabilities marking the turbulent transition in
all these flows are of the same type. Namely, (i) a classical-
like instability in the flow of the viscous normal component
occurring upon reaching the critical Donnelly number Dncr

and (ii) the Donnelly-Glaberson instability in the superfluid
component leading to vortex multiplication due to self-
reconnections.

A crossover between these two mechanisms is observed,
while the temperature is varied across the interval correspond-
ing to the two-fluid regime. This strongly suggests, perhaps
surprisingly, that transition to turbulence in oscillatory coflow
and counterflow is governed by the same underlying physics,
although the crossover occurs in the opposite direction for
counterflow than for coflow.

We have also shown that the Hänninen and Schoepe cri-
terion for critical superfluid velocity [26,27] (relationship 8)
and similar approaches based on quantized vortex dynamics

cannot be considered universal in the two-fluid regime, as
instabilities of the normal fluid flow are not taken into account.
On the other hand, these same criteria remain useful for the
description of the superfluid instability and recover univer-
sality at very low temperatures, where the two-fluid model is
no longer applicable. However, in the two-fluid regime above
≈1 K, they must be complemented by a suitable description
of the classical-like instabilities of the normal component.

It remains to be seen how the present analysis extends
into dc counterflow experiments and how the two described
instabilities relate to the T-I and T-II turbulent states observed
by Tough [7], and we hope that our work stimulates further
research into this area.
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