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Nanoscale functionalized superconducting transport channels as photon detectors
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Single-photon detectors have typically consisted of macroscopic materials where both the photon absorption
and transduction to an electrical signal happen. Newly proposed designs suggest that large arrays of nanoscale de-
tectors could provide improved performance in addition to decoupling the absorption and transduction processes.
Here we study the properties of such a detector consisting of a nanoscale superconducting (SC) transport channel
functionalized by a photon absorber. We explore two detection mechanisms based on photoinduced electrostatic
gating and magnetic effects. To this end we model the narrow channel as a one-dimensional atomic chain and
use a self-consistent Keldysh-Nambu Green’s function formalism to describe nonequilibrium effects and SC
phenomena. We consider cases where the photon creates electrostatic and magnetic changes in the absorber, as
well as devices with strong and weak coupling to the metal leads. Our results indicate that the most promising
case is when the SC channel is weakly coupled to the leads and in the presence of a background magnetic field,
where photoexcitation of a magnetic molecule can trigger a SC-to-normal transition in the channel that leads to
a change in the device current several times larger than in the case of a normal-phase channel device.

DOI: 10.1103/PhysRevB.103.134512

I. INTRODUCTION

The most efficient single-photon detectors are currently
based on superconducting (SC) nanowires [1–3]. A single-
photon absorption event in the superconductor is followed by
a sequence of relaxation processes involving electron-electron
and electron-phonon interactions, which culminate in the cre-
ation of a hot spot that triggers a phase transition to the normal
state [4]. Bypassing the energy cascade associated with such
photoinduced temperature effects is desirable because it re-
duces the timescale for detection and the associated jitter.
Besides temperature, there are other effects that directly im-
pact the SC state such as electrostrictive, electrostatic gating
and magnetic interactions. The question we seek to answer
is whether such effects can be exploited for single-photon
detection.

In parallel, there has been interest in developing new detec-
tor architectures that can overcome the limitations of existing
systems. Along those lines, it was recently proposed that
dense arrays of nanoscale detector elements could provide sig-
nificant performance improvements [5]. One embodiment of
such detector elements consists of functionalization nanoscale
electronic transport channels functionalized with molecules,
quantum dots, or other photon absorbers [6,7]. We recently
studied the detailed quantum dynamics of single-photon de-
tection in a functionalized semiconducting electronic transport
channel [8] and found that a large signal-to-noise-ratio can be
achieved for ultrashort single-photon pulses. An open ques-
tions is whether a SC electronic transport channel could be
more efficient at detecting single photons, allowing us to also
bypass the thermal energy cascade.
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Here we combine the Keldysh nonequilibrium Green’s
function formalism [9] with the Nambu description [10] of
the superconductor to study the change in electronic transport
through a SC channel upon absorption of a photon by a nearby
absorber. We consider the cases where the absorber under-
goes changes in its permanent electric dipole or magnetic
moment. In both cases the direct electromagnetic interac-
tion between the absorber and the SC channel bypasses the
usual thermal energy cascade. We show that under certain
conditions photoinduced magnetic perturbations can trigger a
SC-to-normal transition in the channel which in turn leads to a
detectable event.

II. DEVICE SYSTEM

We consider a normal-superconductor-normal (NSN) de-
vice configuration with the device geometry sketched in
Fig. 1. It consists of a SC one-dimensional channel contacted
by two normal metal electrodes. In practice the channel could
be a nanowire or a nanotube [11,12] which have been shown
to have SC transition temperatures in the 5–15 K range, but to
reduce computational cost while capturing essential physics,
here we model it as an atomic chain within the tight-binding
approximation. We focus on a single band since the second
subband is typically much higher in energy than the SC gaps
considered here. As opposed to typical SC nanowire single-
photon detectors, photon absorption does not take place in the
channel but by an absorber placed in close proximity to the
SC channel.

We assume that the photon energy is resonant with the ab-
sorber while the channel is not sensitive to the incoming light
pulse (e.g., a small-diameter CNT has well-separated optical
absorption peaks due to excitonic effects); we assume that the
absorber optical gap is not matched to these peaks. We also
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FIG. 1. Sketch of a device consisting of a superconducting quan-
tum transport channel functionalized with a photon absorber. The
superconductor is connected to normal-metal leads, between which
a current is measured. The relevant tight-binding parameters are
indicated with Greek letters.

assume that the system operates in the strong focusing regime
where the light is concentrated on the absorbing element.
This increases the light-absorber interaction and also helps to
reduce the effects from absorption by the contacts. The ab-
sorber (represented in Fig. 1 by the hexagon) could be a single
molecule or a larger quantum dot that upon photoexcitation
acquires a permanent electric or magnetic dipole, possibly
via a photoinduced phase transition [13]. In the present work
we do not calculate the absorber photoexcitation probability;
rather we assume that the absorber has been photoexcited and
we calculate the impact of the excited dipole on the electronic
transport properties of the channel.

As possible detection mechanisms we consider either (i)
photoinduced electrostatic gating effects, e.g., due to a change
of the absorber permanent electric dipole upon photoexci-
tation, or (ii) photoinduced magnetic effects, e.g., due to a
change in the absorber magnetic moment upon photoexci-
tation. Both types of perturbation can change the electronic
density of states (DOS) at the Fermi level when the channel is
in the normal phase and thus are expected to affect the SC state
as well. In particular, it has been discovered that monolayers
of paramagnetic molecules can influence the temperature at
which an adjacent thin layer of material becomes SC [14–16].
In addition, photoninduced changes in molecular magnetic
moments have been observed [17]. Changes in molecular
electric dipole moments are well known to occur upon photon
absorption, and have been shown to modulate semiconducting
electronic transport channels [7]. Their impact on SC channels
may be expected based on the report of SC transistors where
the gate is essentially equivalent to an electrostatic dipole [18].

III. THEORETICAL FRAMEWORK

A. Tight-binding Hamiltonian

The device is described within the grand-canonical picture
using a Hamiltonian partitioned into left (HL) and right (HR)
leads and channel (HC) regions:

H = HL − μLNL + HR − μRNR + HC, (1)

where NL,R are the electron number operators in the left
(L) and right (R) regions while the difference between
left and right lead chemical potentials μL − μR defines the
applied bias.

The channel Hamiltonian is described using a tight-binding
basis set with indices {m, n}:

HC = −β
∑

m,n,σ

c†
mσ cnσ − U

∑
m

nm↑nm↓ + VG

∑
m,σ

nmσ

+ μB

2

∑
m

(
B0 + Babs

m

)
(nm↑ − nm↓). (2)

The first term describes the bare channel with no electron
interaction effects, with the nearest neighbor hopping integral
set to β = 0.5 eV and an intersite distance set to a = 5 bohr
(the summation over n is restricted to n = m ± 1). The num-
ber of sites in the transport channel is denoted by N .

The second, Hubbard-like local term includes electron cor-
relation effects via an attractive contact interaction −U < 0
corresponding to an s-wave type SC pairing potential. Here
nmσ = c†

mσ cmσ is the local number operator for an electron
with spin σ that can be either up (↑) or down (↓). We
do not consider Coulomb interaction/electron correlation ef-
fects in the channel when the channel is in the normal state.
The impact of repulsive Coulomb interaction effects could
be important in certain device parameter regimes where ex-
otic effects such as the Kondo effect may become important
[19–21]. Including these effects is however beyond the scope
of the present work.

The third term describes an applied gate voltage VG acting
uniformly along the channel. Magnetic effects are included
via the last term which removes local spin degeneracy via
the Zeeman effect and accounts for: (i) a uniform background
magnetic field B0 perpendicular to the chain, and (ii) a nonuni-
form magnetic field Babs generated by an excited absorber
with a permanent magnetic dipole μabs perpendicular to the
chain.

Finally, the coupling between leads and channel is assumed
L-R symmetric and characterized by the induced broadenings
�L = �R ≡ �. The SC pairing potential is zero inside the
leads.

B. NEGF approach

To describe nonequilibrium effects in conjunction with SC
phenomena we employ the Keldysh-Nambu nonequilibrium
Green’s function (NEGF) formalism (see the Appendix for
details including the definition of the four-component Nambu
spinors). NEGF-based studies of nonequilibrium phenom-
ena in NSN junctions have employed both self-consistent
[22–24] and non-self-consistent [25–27] approaches. Here
“self-consistent” refers to the determination of the order pa-
rameter Fm. In this work Fm is calculated rigorously via
a self-consistent approach, directly from the off-diagonal
Nambu component of the lesser Green’s function: Fm =
i〈cm↑cm↓〉. The self-consistent process starts with a symmetry-
broken initial guess, e.g., by setting the order parameter Fm

to a constant. Convergence is facilitated by the use of the
Pulay scheme [28] to mix the order parameter using previous
iteration solutions [29]. Convergence is typically achieved in
a hundred iterations when |F out

m − F in
m | < 10−13.

We present briefly the NEGF expression for the expec-
tation value of the current I through the device (see the
Appendix for the derivation). The current can be decomposed

134512-2



NANOSCALE FUNCTIONALIZED SUPERCONDUCTING … PHYSICAL REVIEW B 103, 134512 (2021)

into the normal transmission/single-electron tunneling (INT),
Andreev reflection (IAR), and cross-Andreev (ICA) compo-
nents [30–34] of the current: I = INT + IAR + ICA. For the
device parameters considered in this work, the cross-Andreev
component is negligible and it is sufficient to focus on the first
two components, namely normal transmission [35]

INT = 2
e

h

∫
dE [ f (E − μL ) − f (E − μR)]

× Tr
{
�LGr

11(E )�RGa
11(E )

}
(3)

and Andreev reflection [30]

IAR = 2
e

h

∫
dE [ f (E − μL ) − f (E + μL )]

× Tr
{
�LGr

12(E )�LGa
21(E )

}
, (4)

where f is the Fermi-Dirac distribution function f (E ) =
[exp(E/kBT ) + 1]−1 and Gr/a

i j refers to the i j component
(in Nambu space) of the retarded/advanced channel Green’s
functions. The diagonal Nambu component is also used to ob-
tain the electronic density of states projected on the channel:

DOS(E ) = − 1

π
Im

Tr
{
Gr

11(E )
}

N
. (5)

We note that the chemical potentials μL,R are referenced
with respect to (w.r.t.) the chemical potential of the SC
condensate μC . While, in general, in the presence of supercon-
ductivity (U �= 0) μC needs to be determined self-consistently
by imposing current conservation [24] along the channel, for
the particular case where the total system has electron-hole
symmetry, μC is simply equal to the middle of the electronic
band of either lead, i.e., it can be set to 0.

In our simulations we consider devices where the channel
is SC (U �= 0) and undergoes a transition to a normal state
as well as channels that are always in the normal state (U =
0). We label the currents with the superscripts SC and N to
denote these two cases. As above, subscripts are reserved for
the components of the current when the channel is subject to
superconductivity.

IV. RESULTS

A. Good metal contacts/strong channel-electrodes coupling

First we consider the case of good metal contacts between
source/drain electrodes and the transport channel. This is
established by setting the coupling between leads and channel
� of the same order of magnitude as the hopping parameter
inside the channel β, and as a representative value we choose
� = β/2. We consider a channel with N = 1001 and tune
the gate voltage VG = 0 such that at zero source-drain bias
voltage Vsd = 0 the Fermi level pins the middle of the channel
electronic band (which has a bandwidth of ±1 eV). In the
normal (N) phase, the DOS is flat near the Fermi level, with
small oscillations due to the fact that the energy spectrum
is discrete. Upon turning on the attractive contact interaction
term U = −0.5 eV, the channel becomes SC and a quasipar-
ticle gap opens up in the DOS near the Fermi level, as seen in
Fig. 2(a). The finite value of DOS near the Fermi level is due
to the contribution from sites near the normal metal contacts.
The channel is long enough that towards the middle of the
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FIG. 2. Calculated DOS: (a) at T = 0, averaged over all channel
sites, for normal and SC case. (b) Several temperatures, projected on
the mid-channel site, for the SC case. Device parameters: N = 1001,
� = 0.25 eV, Vsd = 0, U = −0.5 eV.

channel the gap opening is nearly perfect. We note that at zero
temperature T = 0 and zero bias voltage Vsd = 0 the SC gap
is about 15 meV; while this leads to a relatively large critical
temperature—as discussed later—it also helps in reducing
the number of iterations needed to reach convergence—each
iteration during the self-consistent loop is computationally
demanding given the large N .

Figure 3 shows the channel SC order parameter Fm ≡
|Fm|eiφm at T = 0 and small bias voltage Vsd = 0.1 meV. |Fm|
is not impacted significantly by the small bias voltage, but is
sensitive to the proximity of the normal-phase contacts and
thus decreases in value near the ends of the channel. One
notes in Fig. 3(a) that |Fm| is asymmetric between even and
odd sites. This can be traced back to the normal phase where
electron wave functions associated with eigenchannels with
energies near the middle of the channel electron band show
strong asymmetry; in particular the eigenchannel with zero
energy carries its entire weight on the odd sites. Figure 3(b)
shows the phase φm which displays a gradient that increases
with the bias voltage/current. Within more approximate the-
ories where |Fm| is assumed to be a constant independent of
m, the phase gradient is directly related to the momentum q of
the Cooper pairs: q = 1

a
∂φm

∂m . A nonzero q simply corresponds
to the flow of the SC condensate which carries a finite current
when a bias voltage is applied.

The SC gap parameter �g ≡ U
N

∑
m |Fm| is directly related

to the magnitude of the gap Eg seen in Fig. 2 in the electronic
DOS of the SC phase, i.e., �g ≈ Eg/2. The dependence of
�g on T shows the expected BCS [36] behavior as seen in
Fig. 4(a). In the limit of small bias voltage the channel is in the
normal phase for temperatures above the critical temperature
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FIG. 3. Channel SC order parameter Fm: (a) absolute value and
(b) phase. Device parameters: N = 1001, � = 0.25 eV, T = 0 K,
Vsd = 0.1 meV, U = −0.5 eV.

Tc = 48 K. At T = 0 the SC gap parameter has a value of
�g(T = 0) = 7 meV which yields a ratio �g(T = 0)/kBTc =
1.65. This is slightly smaller than the BCS ratio of 1.76 due
to |Fm| being smaller near the normal metal contacts than
in the middle of the channel [as seen in Fig. 3(a)]. One can
also estimate the SC coherence length according to BCS the-
ory as ξ0 ≡ h̄vF /π�g(T = 0) = 2βa/π�g(T = 0), implying
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FIG. 4. Temperature dependence of: (a) SC gap parameter �g

and (b) current. Device parameters: N = 1001, � = 0.25 eV, Vsd =
0.1 meV, U = −0.5 eV.

that the average ξ0 comprises about 45 sites, which correlates
well with the length scale over which the order parameter de-
creases exponentially towards the contacts as seen in Fig. 3(a).

Figure 4(b) shows the T dependence of the expectation
value of the current through the device I , calculated for a
fixed low bias voltage Vsd = 0.1 meV. In the normal phase, the
zero-temperature, zero-bias conductance equals the quantum
unit of conductance G0 = 2e2/h, with electrons tunneling res-
onantly through the channel mid-bandwidth level irrespective
of the contact transmissivity/coupling parameter �. As T
increases, the energy window through which electrons tunnel
increases; for T � 10 K, the effective DOS contributing to
the current gets averaged over several energy levels that are
broadened by the coupling to the leads. For � = β/2, the
resulting averaged DOS is ≈80% of the peak DOS (Fig. 2),
explaining the decrease in current seen in Fig. 4(b). Turning to
the SC case, one notes that the current/conductance is smaller
than in the normal case. This is due to the nonideality of the
metal contacts. Indeed, for a NSN device at zero tempera-
ture, the zero-bias SC conductance approaches G0 (i.e., the
conductance of each NS interface approaches 2 × G0) only if
the electron transmission probability between the contacts and
the normal-phase channel approaches unity in a finite window
around the Fermi level [37–40]. Within the wide-band limit
(WBL) approximation for the leads this happens when � = β.
For our less ideal choice � = β/2, one finds at T = 0 that the
conductance ISC/Vsd is about 0.6 × G0. As seen in Fig. 4(b),
at T = 0 the SC current takes place via Andreev reflection
(AR), as the normal current component is suppressed given
the near perfect DOS gap opening in the bulk of the channel
(the cross-Andreev component is negligible due to the large
channel length). As the temperature increases the DOS gap
gets smaller and the DOS at E = 0 becomes finite even when
projected towards the middle of the chain, as seen in Fig. 2(b).
Correspondingly the normal component ISC

N ≈ ISC − ISC
AR in-

creases until it completely dominates the current for T � Tc.
We note from Fig. 4(b) that the continuous decrease of

ISC
AR as T approaches Tc results in ISC smoothly approaching

IN with no apparent discontinuity in the current or in its
derivative ∂ISC/∂T . Ideally we would like a device based on
a SC channel to switch between the SC and normal state upon
photoexcitation, accompanied by a detectable change in the
measured current. For relatively small perturbations such us
those expected to be induced by a single-photon absorption
event, an appreciable change in the current could be obtained
if the transition is accompanied by a discontinuous change in
the current. Unfortunately for this device configuration the
current undergoes a smooth transition as T changes from
below to above TC as seen in Fig. 4(b), suggesting that the
device may not offer a significant advantage over its normal-
phase-only counterpart.

Because in this work we do not consider phonon-based
temperature effects that may assist single-photon detection,
we focus our attention on the behavior of the device as func-
tion of bias voltage. Figure 5 shows the I-V characteristic
of a device with a smaller channel (we consider N = 201 to
reduce the computational effort), driven beyond the critical
voltage/current while the leads are maintained at T = 0. In
the absence of SC the current IN shows almost linear depen-
dence on the bias voltage Vsd, i.e., a behavior close to Ohmic,
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FIG. 5. Bias voltage dependence of the current in a device driven
beyond the critical voltage. Device parameters: N = 201, � = 0.25
eV, T = 0, U = −0.5 eV.

as expected given the good metal contacts. For low Vsd the SC
current ISC is about 70% lower than in the normal phase, and it
approaches IN at the critical voltage Vc = 8.5 mV. Translated
into temperature, e/kBVc yields a value 90% larger than the
critical temperature Tc = 55 K. We note that the Andreev
reflection of the current ISC

AR drops rather smoothly to zero at
Vsd = Vc; as a consequence the I-V characteristics does not
show any discontinuity near the critical voltage. We conclude
that for the configurations considered in this section, where
the channel is coupled strongly to the electrodes, it is unlikely
for the device to undergo a significant change in current due to
a small photoinduced perturbation and that a different design
strategy is needed.

B. Poor metal contacts/weak channel-electrodes coupling

A previous study [41] used quasiclassical Greens functions
to show that the I-V characteristics of NSN structures display,
in certain regions of the device parameter space, a discon-
tinuity as the voltage is swept. The behavior of our device
as a function of bias voltage suggests this not to be the case
when the channel is strongly coupled to the electrodes. Thus,
in this section we consider the opposite case of weak coupling
between channel and electrodes obtainable by setting � 	 β.
In practice, weak channel-electrodes coupling can be real-
ized using few-nanometer thin insulating materials inserted
between the electrode and the channel.

We are interested in a situation [41] where in the absence of
SC only one channel level contributes to electronic transport
for small bias voltage. This can be obtained, e.g., by setting
N = 51, � = β/288 ≈ 1.7 meV, which yields a separation
between channel levels near the Fermi level �E ≈ 60 meV
significantly larger than the level broadening ∼�. Figure 6
shows the DOS of such a device in a small energy window
near the Fermi level. In the absence of SC, the wave function
associated with the zero-energy channel level carries its entire
weight on the odd sites. We also set U = −50 meV such
that the resulting SC gap opening in the DOS Eg = 1.8 meV
is larger than the level broadening but significantly smaller
than �E .

Figure 7 shows the channel SC order parameter Fm at
T = Vsd = 0. We note that the weight of Fm on odd sites
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FIG. 6. Calculated DOS at T = 0 and Vsd = 0, averaged over
all channel sites. Device parameters: N = 51, � = 1.7 meV,
U = −50 meV.

is more than an order of magnitude larger than the one on
even sites. It is important to note that capturing this feature
is not possible without obtaining the SC order parameter self-
consistently. Averaging Fm over all the sites and multiplying
by U leads to a SC gap parameter �g = 0.47 meV, while
averaging only over the odd sites (those that carry the weight
of the zero-energy eigenchannel in the absence of SC) one
obtains �̃g = 0.90 meV. The latter parameter can be related
to the gap opening in the DOS via the usual relationship:
Eg ≈ 2�odd

g .
Figure 8 shows the T dependence of the current through

the device I , calculated for a fixed low bias voltage Vsd =
0.1 meV. As discussed previously, in the normal phase, the
zero-temperature, zero-bias conductance equals G0. A bias
voltage Vsd = 0.1 meV is significant enough (w.r.t. the broad-
ening of the central energy level) to decrease the normal-phase
zero-temperature conductance value to 0.96 × G0. Increasing
temperature also reduces the normal-phase conductance, this
time much more significantly than seen in Fig. 4(b). Turning
to the SC case, we note two differences w.r.t. to the case
depicted in Fig. 4(b). First, at T = 0, the poor electron trans-
mission between leads and channel results in a conductance
more than 40× smaller than G0. This can be explained by
the fact that the effective broadening of the relevant channel
electronic level �̃ = 0.134 meV (estimated from the HWHM
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FIG. 7. Channel SC order parameter Fm at T = Vsd = 0. Device
parameters: N = 5, � = 1.7 meV, U = −50 meV.
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FIG. 8. Temperature dependence of the current at fixed bias
voltage Vsd = 0.1 meV. Device parameters: N = 51, � = 1.7 meV,
U = −50 meV.

of the central peak in Fig. 7) is significantly smaller than
the effective gap parameter �̃g = 0.9 meV. Indeed, projecting
Eq. (4) in the subspace of the only relevant electronic eigen-
channel, the zero-bias Andreev reflection conductance reads
[see also Eqs. (A24), (A27), and (A28)]

lim
Vsd →0

GAR

G0
≈ �̃2|Gr

12(E = 0)|2 ≈ �̃2�̃2
g(

�̃2 + �̃2
g

)2 , (6)

which yields GAR ≈ G0/46. Second, as the temperature
approaches Tc = 4.9 K, while the SC current ISC approaches
continuously its normal counterpart IN, its derivative ∂ISC/∂T
displays a discontinuity at T = Tc due to the sudden drop of
the Andreev reflection component of the current ISC

AR. This dis-
continuity suggests that the I-V characteristics of the device
with poor metal contacts may be fundamentally different than
in the good metal contacts case and perhaps it may show more
sensitivity to photoinduced perturbations.

C. Impact of small electrostatic gating and magnetic
perturbations

Focusing on the device with poor metal contacts we con-
sider two mechanisms that can lead to photodetection: (i)
A change in the absorber permanent electric dipole moment
[7,8], e.g., as in functionalization with chromophores. This
electric dipole change generates an electrostatic potential that
acts as a gating potential for the channel. For simplicity we
mimic this situation with a uniform gating electrostatic poten-
tial VG as the prototype electrostatic perturbation, but we have
checked that nonuniform potentials [42] lead to similar con-
clusions. (ii) A change in the absorber’s permanent magnetic
dipole moment μabs, e.g., as in functionalization with small
magnetic molecules. We also use a uniform magnetic field
B0 to perform an initial assessment of the impact of magnetic
perturbations.

We start our analysis by studying the behavior of the SC
gap parameter �g as function of temperature, as shown in
Fig. 9. In the absence of an electrostatic gating or magnetic
perturbation, �g(T ) shows a similar behavior as in the case of
good metal contacts (compare to Fig. 4). Adding a relatively
small electrostatic gating potential VG = 0.5 mV yields a re-
duction in both �g(T = 0) and TC , while a uniform magnetic
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FIG. 9. Temperature dependence of the SC gap parameter �g

in the absence/presence of several external perturbations such as a
uniform gating potential VG = 0.5 mV or a uniform magnetic field
B0 = 6 T. Device parameters: N = 51, � = 1.7 meV, U = −50 meV.

field B0 = 6 T reduces TC by a fraction of a Kelvin but has
negligible impact on �g(T = 0). The reduction of Tc may be
explained by the fact that in the normal phase both types of
perturbation result in a decrease of the DOS at the Fermi level.

Based on the above results, one could expect that an elec-
trostatic gating potential has a greater impact on the I-V
device characteristics than a magnetic field. As discussed next,
the results shown in Fig. 10 indicate that this is not the case.
First, in the absence of any external perturbation, as seen
in Figs. 10(a) and 10(b), the normal-phase current IN shows
nonlinear behavior due to the non-Ohmic character of the
metal contacts. In fact IN develops a plateau when Vsd in-
creases beyond the resonant-level broadening. Turning to the
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FIG. 10. Bias voltage dependence of the current at T = 0 for two
different types of perturbations: (a) Uniform gating potential VG =
0.5 mV and (b) uniform magnetic field B0 = 6 T. Device parameters:
N = 51, � = 1.7 meV, U = −50 meV.
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SC case, an important feature is that the current ISC undergoes
a sharp jump near the critical voltage Vc = 1.17 mV. The jump
IN − ISC is significant, amounting to (IN − ISC)/ISC = 4.5.

Figure 10(a) shows the impact of the electrostatic gating
potential VG = 0.5 mV on the I-V characteristics. Because the
channel level through which electrons tunnel is off-resonance,
the normal-phase current is much reduced w.r.t. the VG = 0
case at Vsd � 0. As Vsd increases beyond both the level broad-
ening and VG, IN starts approaching the unperturbed values.
We find that as long as the channel is in the SC phase, for
Vsd < Vc, the electrostatic gating potential VG has no impact
on the current ISC or the critical voltage Vc. This is a somewhat
unexpected finding given that VG = 0.5 mV does have an
appreciable impact on Tc as seen in Fig. 9. While all the results
in Fig. 10 are obtained with metal contacts maintained at
T = 0, we have tried other temperatures but always reached
the same result, namely that the electrostatic gating mech-
anism is not effective at improving the light-detection
efficiency of a functionalized SC channel w.r.t. its normal-
phase counterpart.

The impact of a uniform magnetic field [45] B0 = 6 T is
seen in Fig. 10(b). In the normal phase its effect is to reduce
the current IN by a factor of 2.7 at Vsd � 0 and by about 3%
at Vsd ≈ 1 mV. In the SC case, the reduction of ISC is <15%
for Vsd < 0.6 mV. Interestingly, the impact of B0 increases at
higher Vsd and most importantly it results in an 18% decrease
of the critical voltage Vc from 1.17 to 0.99 mV. This suggests
that functionalizing a SC with a magnetic molecule might
result in an efficient detector if one operates the device near
Vc and if the photoexcitation of the molecule induces a local
magnetic dipole whose associated magnetic field is strong
enough to yield a measurable change in Vc.

To estimate the impact of a photoexcited magnetic absorber
on the critical voltage Vc, we consider a magnetic dipole
characterized by a magnetic moment μabs and positioned at a
distance d = 1 nm away from the central atom of the SC chan-
nel. The magnetic dipole is oriented perpendicular to the plane
defined by the channel and the line joining the magnetic dipole
and the mid-channel site. The magnetic potential field at the
channel site m situated at a distance rm =

√
a2(m − m0)2 + d2

from the mid-channel site m0 = (N + 1)/2 is Babs
m = μ0

4π

μabs

r3
m

with μ0 the vacuum permeability, and the corresponding Zee-
man splitting potential VZ acting on spin up/down electrons
in the chain is [46] VZ (m) = ±μBBabs

m /2.
We calculate the I-V characteristics in the vicinity of Vc

for various μabs and extract the change δVc ≡ Vc(μabs) −
Vc(μabs = 0), as plotted in Fig. 11 with red circles. As ex-
pected from the symmetry of the problem w.r.t. a change in
sign of the magnetic field, we find that δVc depends quadrat-
ically on μabs: δVc ∼ μ2

abs, as indicated by the quadratic fit
plotted with the red, dashed line. Quantitatively, the change
δVc is on the order of 0.1 μV for μabs of about 1000 μB.
This large change in μabs may be difficult to achieve for single
photon absorption.

However, the quadratic behavior also implies that the pres-
ence of a background magnetic field B0 significantly larger
than the one produced by μabs can amplify the impact of an
added magnetic moment: Vc(μabs; B0) − Vc(μabs = 0; B0) ∼
μabsB0. Indeed, Fig. 11 shows that in the presence of a back-
ground uniform magnetic field B0 = 6 T, the change δVc

0 1000 2000 3000 4000 5000
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 [

B
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1

2

3

4
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V
c [

V
]

B
0
=0

quadratic fit
B

0
=6 T

linear fit

FIG. 11. The impact of a magnetic dipole moment μabs on the
critical voltage δVc at T = 0 in the presence/absence of a back-
ground uniform magnetic field B0 = 6 T. Device parameters: N =
51, � = 1.7 meV, U = −50 meV.

shows a linear dependence on μabs with a slope of 0.0063
μV/μB. Translated into temperature, one obtains that a change
e/kBδVc = 10 mK can be obtained by an excited absorber
magnetic moment μabs = 150 μB.

Figure 12 shows the I-V characteristics of the device in the
presence of a background uniform magnetic field B0 = 6 T.
We consider a magnetic molecule that has no magnetic dipole
in the ground state but carries a magnetic moment μabs =
150 μB in the excited state. As noted previously, the change
in the critical voltage is about 10 mK upon photoexcitation of
the magnetic molecule. Controlling the voltage within 10 mK
is experimentally feasible, which means that if one operates
the device while maintaining the bias voltage within 10 mK
below the critical voltage, photoexcitation of the magnetic
molecule would trigger the SC-to-normal phase transition of
the channel. As seen in Fig. 12, this transition is accompanied
by an increase of the current by a factor of 5, i.e., orders of
magnitude higher than one would obtain with a normal-phase
channel and otherwise similar device parameters. For compar-
ison, we found that the current through a semiconducting but
otherwise similar electronic transport channel may increase,
due to a photoinduced 10 Debye electrical dipole situated
about 1 nm away from the channel, by 100% at most upon
device optimization [8].
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FIG. 12. The I-V characteristics of the device at T = 0 in the
presence of a background uniform magnetic field B0 = 6 T and
without/with a magnetic dipole moment μabs = 150 μB. Device
parameters: N = 51, � = 1.7 meV, U = −50 meV.
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V. CONCLUSION

We have studied a photon detector device that consists of a
functionalized SC transport channel contacted by two normal-
phase metal electrodes. We have considered two possible
detection mechanisms based on (i) electrostatic gating effects
(e.g., functionalization with chromophores) and (ii) magnetic
effects (e.g., functionalization with magnetic molecules). We
found that optimal device designs require weak coupling be-
tween the leads and the channel � (e.g., using insulating layers
to separate the metal contacts from the channel) such that
only one channel electronic level participates in transport and
the I-V device characteristics shows a discontinuity near the
critical voltage. Our results indicate that the electrostatic gat-
ing mechanism is not effective for triggering a SC-to-normal
transition. However, we find that magnetic effects offer an
efficient photodetection mechanism, whereas in the presence

of a background magnetic field, photoexcitation of a magnetic
molecule may trigger a SC-to-normal transition accompanied
by a measurable change in the device current.
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APPENDIX: SELF-CONSISTENT KELDYSH-NAMBU NEGF FORMALISM

To account for superconductivity and nonequilibrium phenomena the relevant Keldysh Green’s function is defined using
four-component Nambu spinors:

Ǧm,n(t, t ′) = −i

&

TC

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

c↑m(t )

c†
↓m(t )

c↓m(t )

c†
↑m(t )

⎞
⎟⎟⎟⎟⎟⎠⊗ (

c†
↑n(t ′), c↓n(t ′), c†

↓n(t ′), c↑n(t ′)
)
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

'

, (A1)

where TC denotes time ordering along the double-time Keldysh contour.
For BCS-type superconductivity with coupling between opposite spins and in the presence of either spin or electron-hole

symmetry (which are the situations considered in this work), we may use only two-component Nambu spinors. Neglecting for
the sake of simplicity spin indices (the spin structure is ↑↑,↑↓,↑↓,↓↓ for the 11,12 ,21 ,22 Nambu components, respectively),
the Keldysh Green’s function is written in the reduced 2 × 2 Nambu space:

Ǧm,n(t, t ′) = −i

〈
TC

{(
cm(t )

c†
m(t )

)
⊗ (

c†
n(t ′), cn(t ′)

)}〉 = −i

〈
TC

{(
cm(t )c†

n(t ′), cm(t )cn(t ′)

c†
m(t )c†

n(t ′), c†
m(t )cn(t ′)

)}〉
. (A2)

The corresponding Keldysh components lesser (<), greater (>), advanced (a), and retarded (r) of the Green’s function are
then

Ĝ<
m,n(t, t ′) = +i

(〈c†
n(t ′)cm(t )〉, 〈cn(t ′)cm(t )〉

〈c†
n(t ′)c†

m(t )〉, 〈cn(t ′)c†
m(t )〉

)
≡
(

G<
m,n(t, t ′), Fm,n(t, t ′)

F̄m,n(t, t ′),−G>
n,m(t ′, t )

)
, (A3)

Ĝ>
m,n(t, t ′) = −i

(〈cm(t )c†
n(t ′)〉, 〈cm(t )cn(t ′)〉

〈c†
m(t )c†

n(t ′)〉, 〈c†
m(t )cn(t ′)〉

)
≡
(

G>
m,n(t, t ′), F̄ ∗

m,n(t, t ′)

F ∗
m,n(t, t ′),−G<

n,m(t ′, t )

)
, (A4)

Ĝr
m,n(t, t ′) = θ (t − t ′)[Ĝ>

m,n(t, t ′) − Ĝ<
m,n(t, t ′)] ≡

(
Gr

m,n(t, t ′), θ (t − t ′)[F̄ ∗
m,n(t, t ′) − Fm,n(t, t ′)]

θ (t − t ′)[F ∗
m,n(t, t ′) − F̄m,n(t, t ′)],−Ga

n,m(t ′, t )

)
, (A5)

Ĝa
m,n(t, t ′) = θ (t ′ − t )[Ĝ<

m,n(t, t ′) − Ĝ>
m,n(t, t ′)] ≡

(
Ga

m,n(t, t ′), −θ (t ′ − t )[F̄ ∗
m,n(t, t ′) − Fm,n(t, t ′)]

−θ (t ′ − t )[F ∗
m,n(t, t ′) − F̄m,n(t, t ′)],−Gr

n,m(t ′, t )

)
. (A6)

If we reference all single-particle energies as well as the lead chemical potentials w.r.t. the condensate chemical potential μC

when superconductivity is present, then at steady state one can replace the double-time dependencies with the time difference
(t, t ′) → (t − t ′). After Fourier transform we obtain

Ĝ<
m,n(ω) ≡

(
G<

m,n(ω) , Fm,n(ω)

F̄m,n(ω) ,−G>
n,m(−ω)

)
, (A7)

Ĝr
m,n(ω) ≡

(
Gr

m,n(ω) , Gr,12
m,n (ω)

Gr,21
m,n (ω) ,−Ga

n,m(−ω)

)
, (A8)
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and similar for the other Keldysh components. Note that
F̄m,n(t, t ′) = −F ∗

n,m(t ′, t ) [or F̄ (ω) = −F (ω)†] so one can
write (T stands for transpose)

Ĝ<(ω) =
(

G<(ω), F (ω)

−F †(ω) ,−G>,T (−ω)

)
, Ĝ<(ω) = −Ĝ<(ω)

†

(A9)

and

Ĝ>(ω) =
(

G>(ω), F †(ω)

−F (ω) ,−G<,T (−ω)

)
, Ĝ>(ω) = −Ĝ>(ω)

†
.

(A10)

To calculate the Green’s functions we approximate self-
energies at the Hartree-Fock level.

The noninteracting, isolated channel Green’s function is

ĝr
m,n(ω) =

(
gr

m,n(ω) , 0

0 ,−ga
n,m(−ω)

)
=
(

gr
m,n(ω) , 0

0 ,−ga
m,n(−ω)

)
. (A11)

Here we used that gr,a is symmetric because the channel
Hamiltonian HC is symmetric with real matrix elements and
real eigenvectors v j . Then ga

n,m = v(n, j) ∗ ga
j, j ∗ v′( j, m) =

v(n, j) ∗ ga
j, j ∗ v(m, j) = ga

m,n.
In the channel eigenstate basis (indexed by j), one has

gr
j, j (ω) = 1

ω − (ε j − VG) + iδ
(A12)

and

−ga
j, j (−ω) = − 1

−ω − (ε j − VG) − iδ

= 1

ω + (ε j − VG) + iδ
. (A13)

The noninteracting, isolated leads Green’s functions, are
written in the leads eigenstate basis (indexed by kL,R) as

ĝL,R,r
kL,R,kL,R

(ω) =
(

gL,R,r
kL,R,kL,R

(ω) , 0

0 ,−gL,R,a
kL,R,kL,R

(−ω)

)
. (A14)

where

gL,R,r
kL,R,kL,R

(ω) = 1

ω − εL,R
k + iδ

(A15)

and

−gL,R,a
kL,R,kL,R

(−ω) = − 1

−ω − εL,R
k − iδ

= 1

ω + εL,R
k + iδ

.

(A16)

Also,

ĝL,R,<
kL,R,kL,R

(ω) =
(

gL,R,<
kL,R,kL,R

(ω) , 0

0 ,−gL,R,>
kL,R,kL,R

(−ω)

)
, (A17)

with

gL,R,<
kL,R,kL,R

(ω) = 2π i f
(
εL,R

k − μL,R
)
δ
(
ω − εL,R

k

)
= 2π i f (ω − μL,R)δ

(
ω − εL,R

k

)
(A18)

and

−gL,R,>
kL,R,kL,R

(−ω) = 2π i
[
1 − f

(
εL,R

k − μL,R
)]

δ
(− ω − εL,R

k

)
= 2π i[1 − f (−ω − μL,R)]δ

(
ω + εL,R

k

)
= 2π i f (ω + μL,R)δ

(
ω + εL,R

k

)
, (A19)

where f is the Fermi-Dirac distribution function f (E ) =
1/[exp(E/kBT ) + 1] and we used that 1 − f (−E ) = f (E ).
We emphasize that all single-particle energies as well as the
chemical potentials of the leads must be referenced w.r.t.
the chemical potential of the SC condensate μC in order for
the above expressions to be valid when superconductivity is
present. μC can be determined self-consistently by imposing
current conservation [24] along the channel. For the case
where the total system has electron-hole symmetry one has
μC = 0.

The leads are treated within WBL in which case the re-
tarded lead self-energies are purely imaginary:

�̂L,R,r
m,n (ω) =

∑
kL,R

Tm,kL,R

ĝL,R,a
kL,R,kL,R

(ω) − ĝL,R,r
kL,R,kL,R

(ω)

2i
TkL,R,n

=
(

�L,R
m,n(ω), 0

0, �L,R
m,n(−ω)

)
WBL����

(
�L,R

m,n, 0

0, �L,R
m,n

)
, (A20)

where (T is the leads-channel tunneling Hamiltonian)

�L,R
m,n(ω) ≡ π

∑
kL,R

Tm,kL,R TkL,R,nδ
(
ω − εL,R

k

)
, (A21)

while the lesser lead self-energies are

�̂L,R,<
m,n (ω) =

∑
kL,R

Tm,kL,R ĝL,R,<
kL,R,kL,R

(ω)TkL,R,n

WBL���� 2i

(
f (ω − μL,R)�L,R

m,n, 0

0, f (ω + μL,R)�L,R
m,n

)
. (A22)

The channel Green’s functions are obtained via the eqnar-
rays:

Ĝ<(ω) = Ĝr (ω)[�̂L,< + �̂R,<]Ĝa(ω), (A23)

Ĝr (ω) = 1

ĝr (ω)−1 − �̂r + i�̂L + i�̂R
, (A24)

and

Ĝa(ω) = Ĝr (ω)
†
. (A25)

The SC pairing potential inside the channel has the form
Û SC

m,n = U SC
m,nτ̂1 (τ̂i are the Pauli matrices). This interaction has

zero contribution to the Hartree self-energy diagram while the
channel Fock self-energy �̂r is obtained self-consistently via

�̂r
m,n = iÛ SC

m,n. ∗
∫

dω

2π
τ̂3 ∗ [Ĝ<

m,n(ω) + Ĝr
m,n(ω) ∗ eiτ̂3δω

] ∗ τ̂3

= −U SC
m,n

(
0, ∫ dω

2π i

[
Fm,n(ω) − Gr,12

m,n (ω)
]

∫ dω
2π i

[
F̄m,n(ω) − Gr,21

m,n (ω)
]
, 0

)
, (A26)

where .∗ stands for element-by-element multiplication in
Nambu space. We note that the integral

∫
dω
2π i G

r,12
m,n (ω) vanishes
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as it is equal to Gr,12
m,n (t, t ) = θ (0)[F̄ ∗

m,n(t, t ) − Fm,n(t, t )] =
i/2〈{cn(t ), cm(t )}〉 which is zero by virtue of equal-time
fermion anticommutation rules.

For the SC pairing potential one chooses an attractive,
contact interaction U SC

m,n = −δm,nU [see the Hubbard-like term
of HC in Eq. (2)] which leads to

�̂r
m = −U

(
0, ∫ dω

2π i Fm,m(ω)

∫ dω
2π i F̄m,m(ω), 0

)

= −U

(
0, 〈cm(t )cm(t )〉
〈c†

m(t )c†
m(t )〉, 0

)

≡ −U

(
0, Fm

F ∗
m , 0

)
. (A27)

The SC gap parameter is defined as U times the average of
the SC order parameter over the channel sites:

�g ≡ U

N

∑
m

|Fm|. (A28)

To obtain the expression for the current one starts from the
usual expression [25,29,35] for the current through the left
contact:

IL = i
e

h

∫
dωTr

{[
�̂L,rĜ<(ω) + �̂L,< Ĝr (ω) − Ĝa(ω)

2i

]
11

}

= i
e

h

∫
dωTr

{
�LG<(ω) − 2i f (ω − μL )�L

× [
Ĝr (ω)(�̂L + �̂R)Ĝa(ω)

]
11

}
, (A29)

where [· · · ]11 stands for the upper diagonal Nambu compo-
nent. In the last equality we made use of Eqs. (A22)–(A24).

Further use of Eq. (A23), as well as permutation properties
of symmetric matrices (inside the trace), yields

IL = INT + IAR + ICA, (A30)

where the normal transmission (NT) component is

INT = 2
e

h

∫
dω[ f (ω − μL ) − f (ω − μR)]

× Tr{�LGr,11(ω)�RGa,11(ω)} (A31)

and the Andreev reflection (AR)/cross-Andreev (CA) compo-
nents read

IAR = 2
e

h

∫
dω[ f (ω − μL ) − f (ω + μL )]

× Tr{�LGr,12(ω)�LGa,21(ω)}, (A32)

ICA = 2
e

h

∫
dω[ f (ω − μL ) − f (ω + μR)]

× Tr{�LGr,12(ω)�RGa,21(ω)}, (A33)

with Gr/a,i j ≡ [Ĝr/a]i j being the i j Nambu component of
the retarded/advanced Green’s functions. We note that the
cross-Andreev component of the current vanishes in the case
where the lead chemical potentials are symmetric w.r.t. SC
condensate chemical potential (i.e., μL = −μR = Vsd/2).

A similar expression holds for the current through the right
contact IR (for the steady-state situations considered in this
paper one has IL = IR).

The expressions for the current can be evaluated numer-
ically as simple matrix multiplications, taking advantage of
the fact that the integrals over ω can be reduced to the form [zi

being the complex eigenvalues of ω − Ĝr−1
(ω)]∫

dω
f (ω − μ)

(ω − zi )(ω − z∗
j )

, (A34)

which is evaluated analytically by performing the exact
summation—using the digamma function—over the residues
of the Fermi-Dirac distribution function f .
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