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Transient heat transfer of superfluid 4He in nonhomogeneous geometries:
Second sound, rarefaction, and thermal layer
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Transient heat transfer in superfluid 4He (He II) is a complex process that involves the interplay of the
unique counterflow heat-transfer mode, the emission of second-sound waves, and the creation of quantized
vortices. Many past researches focused on homogeneous heat transfer of He II in a uniform channel driven by a
planar heater. In this paper, we report our systematic study of He II transient heat transfer in nonhomogeneous
geometries that are pertinent to emergent applications. By solving the He II two-fluid equations of motion
coupled with Vinen’s equation for vortex-line density, we examine and compare the characteristics of transient
heat transfer from planar, cylindrical, and spherical heaters in He II. Our results show that as the heater turns
on, an outgoing second-sound pulse emerges, within which the vortex-line density grows rapidly. These vortices
attenuate the second sound and result in a heated He II layer in front of the heater, i.e., the thermal layer. In
the planar case where the vortices are created throughout the space, the second-sound pulse is continuously
attenuated, leading to a thick thermal layer that diffusely spreads following the heat pulse. On the contrary,
in the cylindrical and the spherical heater cases, vortices are created mainly in a thin thermal layer near the
heater surface. As the heat pulse ends, a rarefaction tail develops following the second-sound pulse, in which
the temperature drops. This rarefaction tail can promptly suppress the thermal layer and take away the deposited
thermal energy. The effects of the heater size, heat flux, pulse duration, and temperature on the thermal-layer
dynamics are discussed. We also show how the peak heat flux for the onset of boiling in He II can be studied in
our model.

DOI: 10.1103/PhysRevB.103.134510

I. INTRODUCTION

Saturated liquid 4He transits to the superfluid phase
(known as He II) below about 2.17 K [1]. In He II, two mis-
cible fluid components coexist: an inviscid and zero-entropy
superfluid component (i.e., the condensate) and a viscous
normal-fluid component (i.e., the collection of thermal ex-
citations). This two-fluid system possesses many fascinating
thermal and mechanical properties [2]. For instance, He II
supports two distinct sound modes: an ordinary pressure-
density wave (i.e., the first sound) where the two fluids move
in phase, and a temperature-entropy wave (i.e., the second
sound) where the two fluids move oppositely. Besides, heat
transfer in He II is via an extremely effective counterflow
mode instead of the classical, convective-diffusive mechanism
of heat transport [3]: the normal fluid carries the heat away
from a source at a velocity vn = q/ρsT , where q is the heat
flux, T is the temperature, and ρ and s are the He II density and
specific entropy, respectively; while the superfluid moves in
the opposite direction at a velocity vs = −vnρn/ρs to balance
the mass flow (here ρn and ρs are the densities of the respective
fluid components). When the relative velocity of the two fluids
exceeds a small critical value, a chaotic tangle of quantized
vortex lines can be spontaneously created in the superfluid,
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each line carrying a quantized circulation κ � 10−3 cm2/s
around its angstrom-sized core [4]. A mutual friction force
between the two fluids appears due to the scattering of the
thermal excitations off the quantized vortices [5]. This mutual
friction can profoundly affect the heat transfer and turbulence
characteristics in both fluids [6–12].

Due to its low temperature and extraordinary heat-transfer
capability, He II has been widely utilized in scientific and
engineering applications such as for cooling superconducting
particle accelerator cavities, superconducting magnets, and
satellites [3]. Many of these applications involve high-flux
transient heat transfer in He II, a process that is known to
be complicated due to the interplay of counterflow, second-
sound emission, and vortex nucleation. In the early study
by Cummings et al. [13], it was found that the variation
of the measured second-sound velocity with increasing the
heat-pulse intensity deviated from the calculation result when
the vortices were neglected [14]. This discrepancy suggested
the important role of vortices in high-flux transient heat trans-
fer. Later, there were extensive experimental and numerical
studies of one-dimensional (1D) transient heat transfer of He
II in a uniform channel driven by a planar heater, due to
the simplicity of this geometry [15–19]. These studies have
revealed that the transient heating from the heater generates a
second-sound pulse that propagates in He II. A counterflow
establishes within the pulse, which produces tangled quan-
tized vortices. These vortices then attenuate the second-sound
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pulse, converting the energy carried by the pulse to the internal
energy of He II. A heated region forms in front of the heater,
which is termed the thermal layer. When the heat flux is rela-
tively high, the continuous attenuation eventually curtails the
second-sound pulse to a limiting profile [17,20], and the heat
produced by the heater largely gets deposited in the thermal
layer, which gradually diffuses along the channel following
the second-sound pulse.

It has been recognized that the heat transfer of He II in
nonhomogeneous geometries can exhibit new features. For
instance, Fiszdon et al. conducted transient heat transfer ex-
periments in He II using cylindrical heaters [16]. They found
that a rarefaction tail of the second-sound pulse can develop,
which exhibits a drop in temperature. The thermal layer in this
geometry can be significantly suppressed as compared to that
in the planar geometry. These observations were examined
and reproduced in numerical simulations by Kondaurova et al.
[21–23]. Nevertheless, there lacks a systematic characteriza-
tion of the thermal-layer dynamics and how the heat energy
is divided between the thermal layer and the propagating
second sound. Producing this knowledge could benefit appli-
cations pertinent to cylinder-shaped systems cooled by He II,
such as superconducting transmission lines and magnet coils
[24,25]. An emergent effort in developing hot-wire anemom-
etry for studying quantum turbulence in He II [26] has further
strengthened this need.

Besides the cylindrical geometry, transient heat transfer
of He II in spherical geometry is also relevant to practical
applications. In particular, it has been known that supercon-
ducting accelerator cavities cooled by He II can quench due
to transient heating from tiny surface defects [27]. Locat-
ing these surface hot spots for subsequent defect removal
is the key for improving the cavity performance. Our team
has recently developed an innovative molecular tagging tech-
nique for locating surface hot spots via tracking thin lines of
He∗

2 molecular tracers [28,29]. These tracers move with the
normal fluid [30–33], and therefore the transient radial heat
transfer from a hot spot can lead to tracer-line deformations
that contain accurate information about the spot location. In
order to extract this information, it is critical to understand
how the heat energy is partitioned between the thermal layer
and the second-sound pulse [28]. However, despite some
limited studies on the evolution of the vortex distribution in
steady counterflow near a spherical heater [34,35] and near a
cylindrical heater [36], the transient behaviors of the thermal
layer and its interaction with the second sound have remained
largely unexplored [21].

In this paper, we present a numerical study of transient heat
transfer in all three (i.e., planar, cylindrical, and spherical)
geometries in He II. Our goal is to examine and compare
the heat-transfer characteristics in these geometries so that
a comprehensive understanding of the energy partition and
thermal-layer dynamics can be achieved. The paper is orga-
nized as follows. In Sec. II, we introduce our model, which
is based on the governing equations of the two-fluid system
and Vinen’s equation for vortex-line density. In Sec. III, we
validate our model by comparing the simulation result of
transient heat transfer in planar and cylindrical geometries
with the experimental measurements by Fiszdon et al. [16].
The systematic study of the heat transfer in all geometries is

discussed in Sec. IV. We first present in Sec. IV A the calcu-
lated spatial profiles of the second-sound wave, the vortex-line
density, and the thermal energy in the three geometries under
the same heating conditions. This comparison clearly shows
the unique features of He II heat transfer in nonhomogeneous
geometries. We then discuss the thermal-layer dynamics in
cylindrical and spherical geometries and the effects of various
heat-pulse parameters in Sec. IV B. In Sec. IV C, we illustrate
how our model can also be used to determine the peak heat
flux for the onset of boiling in He II. A summary is included
in Sec. V.

II. NUMERICAL MODEL

Several approaches have been developed for studying the
flow field and the heat transfer in He II in the presence of
quantized vortices. A detailed review can be found in [37,38].
Here we adopt the two-fluid hydrodynamic model [39–41],
which is based on the conservation equations for the fluid
mass, momentum, and entropy and treats the vortex-line den-
sity L as an independent variable:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂vs

∂t
+ vs · ∇vs + ∇μ = Fns

ρs
, (2)

∂ (ρv)

∂t
+ ∇(

ρsv
2
s + ρnv

2
n

) + ∇P = 0, (3)

∂ (ρs)

∂t
+ ∇ · (ρsvn) = Fns · vns

T
, (4)

where P is the pressure and ρv = ρsvs + ρnvn represents the
total momentum density. The Gorter-Mellink mutual friction
Fns per unit fluid volume depends on the vortex-line density L
and the relative velocity vns = vn − vs between the two fluids
as [5,42]

Fns = κ

3

ρsρn

ρ
BLLvns, (5)

where BL is a known temperature-dependent mutual friction
coefficient [43]. The chemical potential μ(P, T, vns) of He II
includes a correction due to the counterflow velocity vns, as
proposed by Landau [2]:

μ(P, T, vns) = μ(P, T ) − 1

2

ρn

ρ
v2

ns. (6)

Note that the viscous terms [44] in Eqs. (2)–(4) are neglected,
since they have small effects on the heat transfer as compared
with the mutual friction. This model represents a coarse-
grained description of the two-fluid hydrodynamics, since the
action of individual vortices on the normal fluid [45,46] is
smoothed out. When the vortex-line density is relatively high,
this model has been shown to describe nonisothermal flows in
He II very well even in nonhomogeneous geometries [47,48].

To provide a closure to the above equations, we adopt
Vinen’s phenomenological equation to determine the temporal
and spatial variations of the vortex-line density L(r, t ) [5,42]:

∂L

∂t
+ ∇ · (vLL) = αV |vns|L3/2 − βV L2 + γV |vns|5/2, (7)
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FIG. 1. Schematic diagrams showing the transient heat transfer in He II from (a) a planar heater, (b) a cylindrical heater, and (c) a spherical
heater.

where αV , βV , and γV are temperature-dependent phenomeno-
logical coefficients introduced by Vinen [5]. The term ∇ ·
(vLL) accounts for the drifting of the vortices [49,50], where
the vortex mean velocity vL is taken to be the local superfluid
velocity vs, as originally proposed by Vinen [5,42] and later
utilized by many others [51,52]. We note that there also exist
different treatments of vL [37]. Nonetheless, in short transient
heat-transfer processes, this drifting effect is negligible and
the selection of vL does not affect our analysis result. The
first two terms on the right-hand side of Eq. (7) respectively
account for the generation and the decay of the vortices, and
the third source term serves to trigger the initial growth of the
line density [5].

If one ignores the vortices and linearizes Eqs. (1)–(4) as-
suming small-amplitude wave-form variations of the entropy
and the counterflow velocity, it is straightforward to derive a
temperature-entropy wave mode (i.e., the second sound) [2].
A transient heating from a heater surface then generates a
second-sound pulse in He II whose amplitude �T is deter-
mined by the heat flux. When this amplitude is relatively high,
the second-sound speed c2 can be written as c2 = c20[1 +
ε(T )�T ], where c20 is the speed in the zero-amplitude limit
and the nonlinear coefficient ε(T ) takes the form [2]

ε(T ) = ∂

∂T
ln

(
c3

20Cp

T

)
, (8)

where Cp is the heat capacity at constant pressure. At T <

1.88 K where ε(T ) is positive, the second-sound wave with
a higher amplitude travels faster. Therefore, a front shock
can appear at the leading edge of the second-sound pulse at
sufficiently large �T . At T > 1.88 K, where ε(T ) is negative,
a rear shock can form at the tail of a second-sound pulse. This
physical picture gets complicated when vortices are present,
which can attenuate and distort the second-sound pulse pro-
file.

Here we consider the transient heat transfer from planar,
cylindrical, and spherical heaters in He II based on all the
coupled governing equations [i.e., Eqs. (1)–(7)], as shown
schematically in Fig. 1. For simplicity, we ignore small-scale
turbulent fluctuations and assume 1D flow in all three geome-
tries, i.e., 1D flow perpendicular to the heater in the planar
case and along the radial direction in the cylindrical and the
spherical cases. For a rectangular heat pulse with a surface

heat flux qh and a duration �t , we set the boundary conditions
at the heater surface to be vn = qh/ρsT for the normal fluid
and vs = −vnρn/ρs for the superfluid during 0 < t < �t and
vn = vs = 0 at t > �t . All the thermodynamic properties of
He II are calculated using the HEPAK dynamic library [53]. The
values of the coefficients αV and βV as recommended by Kon-
daurova et al. are used in Eq. (7), which appears to produce
simulation results in good agreement with experimental ob-
servations [22]. We then evolve the governing equations using
MacCormack’s predictor-corrector scheme, which is accurate
to the second order in time and space [54]. A flux-corrected
transport approach is also adopted to suppress the numerical
oscillations due to the discontinuity at the shock front [54].
We have tested various spatial steps �r and time steps �ts
and found that the calculated results converged well when
�r < 2 × 10−5 m and �ts < 2 × 10−8 s. In order to balance
the result fidelity and the computational cost, �r = 10−5 m
and �ts = 10−8 s are used in all the reported simulations.

III. MODEL VALIDATION

For model validation purposes, we first performed numer-
ical simulation on transient heat transfer of He II under the
same conditions as in the experiments conducted by Fiszdon
et al. [16]. These authors examined the transient heat transfer
from both a planar heater and a cylindrical heater (radius rh =
2.5 mm) immersed in He II at 1.4 K. For the planar heater
case, they used heat pulses with a duration �t = 1 ms at a
repetition rate of 0.2 Hz, and the heat flux on the heater surface
was qh = 5 W/cm2. They measured the time variations of the
He II temperature at distances r = 1, 2, and 5.4 mm from
the heater surface using a movable superconducting bolome-
ter. In their experiment, the vortices generated by one heat
pulse did not have enough time to decay when the next heat
pulse arrived. Therefore, the initial vortex-line density L0 seen
by a given heat pulse was relatively high, which has often
been treated as a tuning parameter in past numerical works
[15,16,21]. In our calculation, we set L0 = 8 × 105 cm−2 to
achieve the best match with the experimental observations.
Figure 2(a) shows the measured temperature profiles together
with our simulation results. Since ε(T ) > 0 at 1.4 K, the
temperature at each location first spikes up sharply upon the
arrival of the shock front of the second-sound pulse. A gradual
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FIG. 2. Experimental and simulated temporal profiles of the tem-
perature increment �T = T − T∞ at (a) 1, 2, and 5.4 mm from the
surface of a planar heater with qh = 5 W/cm2, �t = 1 ms, and a
repetition rate of 0.2 Hz; and (b) at 1, 2, and 3 mm from the surface
of a cylindrical heater with qh = 6 W/cm2, �t = 1 ms, rh = 2.5 mm,
and a repetition rate of 2 Hz. The bath temperature is T∞ = 1.4 K.

temperature overshot is then observed, which is due to the
spreading of the thermal layer, as we discuss in detail in
Sec. IV. All these observations are well reproduced in our
simulations.

In the cylindrical heater case, the measured and the sim-
ulated temperature variations at distances r − rh = 1, 2, and
3 mm from the heater surface are shown in Fig. 2(b). In this
case, heat pulses with a duration �t = 1 ms and a surface
heat flux qh = 6 W/cm2 were applied at 2-Hz repetition rate.
Due to the nonhomogeneous geometry, a radial dependence
of the initial line density L0(r) = Lh(rh/r)2 as recommended
by Kondaurova et al. [21] was adopted in our calculation,
where the line density at the heater surface, Lh, was set to
8 × 106 cm−2 due to the increased repetition rate. Again,
all the key features of the observed temperature curves are
reproduced. The agreement between the experimental mea-
surements and our simulation results has thereby validated the
fidelity of our model calculation.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we first present the simulation results to
compare the key features of the transient heat transfer in
different heater geometries. We then examine the time evo-
lution of the thermal layer in the cylindrical and the spherical
heater cases under various heating conditions. Since our focus

is the heat transfer following a single heat pulse, a small
initial vortex-line density L0 = 102 cm−2 is assumed in the
calculations. This L0 is comparable to the typical density of
remnant vortices pinned to He II container walls [55]. Indeed,
it has been shown that in relatively high-flux counterflow, the
simulated temperature profile in He II is nearly independent of
L0 when L0 is smaller than about 105 cm−2 due to the source
term in Eq. (7) [23]. To avoid the complication of possible
boiling in He II near the heater surface, we have also assumed
that the heater is placed at a 1-m depth below the He II free
surface in all the cases. We will discuss in the last section
how this hydrostatic head pressure ensures the helium to be
always in the He II state during the transient heat transfer. This
discussion also provides a foundation for our future study of
the peak heat flux for the onset of boiling in He II.

A. Transient heat transfer characteristics
in different heater geometries

To compare the heat-transfer characteristics in different
heater geometries, we show the simulated spatial profiles
of the temperature increment �T = T − T∞, the vortex-line
density L, and the thermal energy density W = ρCp�T at
various times t in Fig. 3. In this calculation, we set the He
II bath temperature to T∞ = 1.78 K. A heat pulse with a
surface flux qh = 23 W/cm2 and a fixed duration �t = 0.5
ms is applied to the heater at t = 0 in all three cases. The
radii of both the cylindrical and the spherical heaters are set
to rh = 2 mm. We also set the planar heater surface to be at
r = rh = 2 mm. In what follows, we discuss the main features
of the transient heat transfer.

1. Second-sound pulse

As shown in Figs. 3(1a)–3(1c), a second-sound pulse with
positive �T emerges when the heater turns on, which carries
the heat energy and propagates away from the heater surface at
the known second-sound speed (i.e., c2 = 19.6 m/s at 1.78 K
[43]) in all three cases. Inside the pulse profile, a counterflow
establishes where the normal-fluid velocity is determined by
the thermal energy flux as vn = c2W/ρsT = (c2Cp/s)�T/T .
This counterflow leads to a rapid generation of the quantized
vortices. In the planar heater case, the second-sound pulse
gradually evolves from a rectangular profile near the heater
to a front-shock profile due to the combined effects of the
vortex attenuation and the positive ε(T ). In the cylindrical and
the spherical heater cases, as the second-sound pulse propa-
gates outward, the wave-front area per unit length, A(r), in
the cylindrical geometry increases as 2π (rh + c2t ) and in the
spherical geometry A(r) = 4π (rh + c2t )2. In regions where
the vortex-line density is low and hence the mutual friction is
negligible, the total flux of kinetic energy of each fluid through
the cylindrical or the spherical surface area is nearly constant.
For the normal fluid, this means that vn in the second-sound
pulse must drop as 1/

√
r in the cylindrical geometry and as

1/r in the spherical geometry. Since �T is proportional to
vn, it also drops in a similar fashion as the pulse propagates,
which is clearly seen in Figs. 3(1b) and 3(1c).
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FIG. 3. Profiles of (1) temperature increment �T , (2) vortex-line density L, and (3) thermal energy density W compensated by the ratio
of the cross-section area A(r) to the heater surface area Ah in (a) planar, (b) cylindrical, and (c) spherical geometries at 1.78 K. In all cases,
qh = 23 W/cm2, �t = 0.5 ms, and rh = 2 mm.

2. Quantized vortices

The vortices are created as a consequence of the counter-
flow in the second-sound pulse. In the planar heater case, the
thermal energy flux W in the pulse remains high as the pulse
propagates. Therefore, a dense tangle of vortices is created in
the entire space traversed by the second-sound pulse; these
vortices continuously distort the pulse profile [see Fig. 3(1a)].
In the cylindrical and the spherical heater cases, since the
thermal energy flux drops with r due to the diverging geome-
tries, the line density L is high (i.e., greater than 105 cm−2)
only in a thin layer of He II near the heater surface [see
Figs. 3(1b) and 3(1c)]. Outside this region, the second-sound
pulse experiences negligible attenuation.

3. Rarefaction tail

A peculiar feature of the temperature profile in the cylin-
drical and the spherical geometries, as compared to the planar
case, is the appearance of a tail region with negative �T
following the positive second-sound pulse [see Figs. 3(1b) and
3(1c)]. This negative �T tail, which emerges after the heater
is switched off, is known as the rarefaction wave [56–58].
The underlying physics can be understood as follows. The
total thermal energy carried by the second-sound pulse can
be evaluated as Qs = ∫

�R W (r)A(r) dr, where �R � c2�t is
the thickness of the pulse. Since W (r)A(r) is expected to in-
crease as

√
r in the cylindrical geometry and as r in spherical

geometry [confirmed in our simulation; i.e., see Figs. 3(3b)

and 3(3c)], Qs increases as the pulse propagates. To supply
this ever-growing thermal energy carried by the second-sound
pulse, there must be a flow of the internal energy from the
tail region towards the pulse front, which thereby leads to the
formation of the negative �T rarefaction tail. If we integrate
Qs over both the positive pulse and the rarefaction tail, the
total thermal energy carried by them always equals the input
heat energy, which fulfills the energy-conservation law.

4. Thermal layer

Near the heater surface where the vortex-line density L
is high, the interaction between the vortices and the second-
sound pulse effectively converts the thermal energy carried by
the pulse to locally deposited heat, resulting in a heated layer
of He II, i.e., the thermal layer. To see this layer clearly, we
plot the �T profile near the heater in all three cases in Fig. 4.
As the heat pulse ends, �T on the heater surface reaches the
highest value. In the planar heater case, �T (rh) = 170 mK
on the heater surface, which is about seven times the �T in
the second-sound pulse. The heat content in this thermal layer
diffusely spreads out [3]. On the contrary, in the cylindrical
and the spherical heater cases, the temperature buildup in the
thermal layer is much weaker. Indeed, both the layer thickness
and the maximum �T in the spherical geometry are insignifi-
cant. Another important feature of the thermal-layer dynamics
in the two nonhomogeneous geometries is that this layer dies
out rapidly before it has time to undergo diffusive spreading.
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FIG. 4. Profiles of the temperature increment �T near the heater surface in (a) planar, (b) cylindrical, and (c) spherical geometries at
1.78 K. In all cases, qh = 23 W/cm2, �t = 0.5 ms, and rh = 2 mm.

This prompt suppression is due to the same mechanism for the
formation of the rarefaction tail: the internal energy in these
nonhomogeneous geometries is actively transferred towards
the second-sound pulse front in order to supply the ever-
growing thermal energy carried by the pulse. The depletion of
the deposited heat in the thermal layer occurs simultaneously
with the formation of the rarefaction tail.

5. Heat energy partition

The partition of the heat energy between the thermal layer
and the second-sound pulse as well as how this partition varies
with time are topics of fundamental interest. To examine
this partition, we calculate the heat energy in the thermal
layer, Qth, by integrating W from the heater surface rh to the
boundary rb of the thermal layer as Qth = ∫ rb

rh
W (r)A(r) dr.

This boundary rb in the planar heater case is set to be the
minimum temperature location between the heater surface and
the second-sound pulse. For the cylindrical and the spherical
heater cases, rb is set to the location where �T drops to zero.
In Fig. 5, we show the calculated time evolution of the ratio
of Qth to the input heat Q = qhAht (where qh = 23 W/cm2 at
0 � t � �t) as well as the �T (rh) on the heater surface for
all three cases. The fraction Qth/Q in the planar heater case
increases to about 35% by the end of the heat pulse, and it
slowly increases even after the heater is turned off since the
second-sound pulse keeps producing vortices and experienc-
ing attenuation. Following the heat pulse, the thermal layer
spreads out and therefore �T (rh) decreases. In the cylindrical
and the spherical heater cases, Qth/Q only reaches 5% and
0.4%, respectively, with �T (rh) = 100 and 26 mK by the end
of the heat pulse. Furthermore, Qth quickly drops to zero due
to the aforementioned mechanism that occurs in nonhomo-
geneous geometries. In the end, the input heat energy is all
carried away by the second-sound pulse and the rarefaction
tail.

B. Effects of heating conditions and bath temperature on the
thermal-layer dynamics

In this section, we present more detailed studies on the
thermal-layer dynamics in the two nonhomogeneous geome-
tries under various heating conditions and bath temperatures.

1. Effects of heating conditions

First, we vary the heater radius rh in the range of 1 to
5 mm while keeping the same surface heat flux qh = 24

W/cm2, pulse duration �t = 0.5 ms, and bath temperature
T∞ = 1.78 K. The results are shown in Fig. 6. It is clear that
both the deposited heat energy Qth and the surface temper-
ature increment �T (rh) increase with the heater size. This
is not surprising, since the heater surface appears flatter to
the adjacent He II at larger rh. Therefore, the thermal-layer
dynamics is expected to evolve towards that in the planar
geometry as rh increases. Figure 7 shows the results with a
varying surface heat flux qh in the range 20–28 W/cm2 at
fixed pulse duration �t = 0.5 ms, heater radius rh = 2 mm,
and bath temperature T∞ = 1.78 K. As the surface heat flux
qh increases, the thermal layer starts to grow earlier and can
reach a higher �T (rh) with more deposited energy Qth. Inter-
estingly, we see that when qh is lower than a threshold q(c)

h ,
i.e., about 20 W/cm2 in the cylindrical geometry and about
22 W/cm2 in the spherical geometry, the thermal layer does
not grow at all. In the planar case, q(c)

h is significantly lower,
i.e., about 15 W/cm2 in our simulation, in agreement with the

FIG. 5. Evolution of (a) the fraction of the heat energy Qth/Q
deposited in the thermal layer and (b) the temperature increment
�T (rh) at the heater surface at 1.78 K. In all three cases, qh = 23
W/cm2, �t = 0.5 ms, and rh = 2 mm.
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FIG. 6. Effect of the heater radius rh on the evolution of
(a) Qth/Q and (b) �T (rh ) in (1) the cylindrical and (2) the spherical
heater geometries. In both cases, T∞ = 1.78 K, qh = 24 W/cm2, and
�t = 0.5 ms.

reported values [3,17]. Although the exact value of q(c)
h de-

pends on other heating parameters and the bath temperature, it
is always higher in nonhomogeneous geometries under given

FIG. 7. Effect of the surface heat flux qh on the evolution of (a)
Qth/Q and (b) �T (rh ) in (1) the cylindrical and (2) the spherical
heater geometries. In both cases, T∞ = 1.78 K, �t = 0.5 ms, and
rh = 2 mm.

FIG. 8. Effect of the pulse duration �t on the evolution of (a)
Qth/Q and (b) �T (rh ) in (1) the cylindrical and (2) the spherical
heater geometries. In both cases, T∞ = 1.78 K, qh = 22 W/cm2, and
rh = 2 mm.

heating conditions. Finally, we show the effect of the pulse
duration �t in Fig. 8, where �t is varied from 0.5 to 1.0 ms
at fixed qh = 22 W/cm2, rh = 2 mm, and T∞ = 1.78 K. The
deposited heat energy Qth increases almost linearly with �t
in both geometries.

2. Effect of bath temperature

The effect of the bath temperature T∞ on the thermal-layer
dynamics is more complicated, since nearly all the parameters
in the governing equations are temperature dependent but their
variations with T∞ can be quite different. Figure 9 shows our
calculation results when T∞ is varied from 1.46 to 1.96 K
while all other heating conditions remain fixed, i.e., rh = 2
mm, �t = 0.5 ms, and qh = 20 W/cm2 in the cylindrical ge-
ometry and qh = 22 W/cm2 in the spherical geometry. As T∞
increases from 1.46 K, the maximum heat energy deposited
in the thermal layer first decreases and becomes negligible
when T∞ is in a range of roughly 1.6 to 1.8 K. Then, as
T∞ further increases, the deposited energy starts to rise. This
nonmonotonic behavior can be qualitatively understood as
being caused by the temperature dependence of αV |vns| in the
vortex generation term in Eq. (7). In Fig. 10, we plot αV |vns|
as a function of temperature, where vns = q/ρssT is evaluated
at the surface heat flux qh = 22 W/cm2. It is clear that αV |vns|
exhibits a nonmonotonic temperature dependence and reaches
a minimum value at around 1.75 K. Since the generation
term in Eq. (7) largely controls the rate of vortex produc-
tion, for a fixed pulse duration �t , the vortex-line density in
the thermal layer is low at small αV |vns|. Consequently, the
attenuation to the second-sound pulse is weak, which limits
the heat energy deposited in the thermal layer. The αV |vns|
curve rises sharply near the lambda point, which implies that
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FIG. 9. Effect of the bath temperature T∞ on the evolution of (a)
Qth/Q and (b) �T (rh ) in (1) the cylindrical heater geometry with
qh = 20 W/cm2 and (2) the spherical heater geometry with qh = 22
W/cm2. In both cases, �t = 0.5 ms and rh = 2 mm.

the vortex generation and hence the thermal-layer effect can
become quite pronounced in this regime. Indeed, Goldner
et al. studied nonlinear second-sound waves near the lambda
point and concluded that the coupling to the first sound and
the self-interaction effect could become important [59], which
warrants further investigation.

We also note that at the lowest temperature that we have
examined, i.e., T∞ = 1.46 K, the highest �T (rh) on the heater
surface is achieved despite the fact that only up to 5% of the
heat energy is deposited. This pronounced temperature change
is essentially caused by the small heat capacity of He II at low
temperatures. As shown in Fig. 10, the heat capacity drops
rapidly with decreasing the temperature. At low T∞, even a

FIG. 10. The temperature dependence of the coefficient αV |vns|
and the He II heat capacity Cp. The crosses mark the temperatures
examined in Fig. 9.

Saturation

line

t=0.5 ms

t=0 ms

FIG. 11. The evolution of the He II state near the heater surface
with a 1-m hydrostatic head pressure. In all the cases, T = 1.78 K,
qh = 22 W/cm2, �t = 0.5 ms, and rh = 2 mm. The circle and the
crosses mark the start and the end time of the heat pulse, respectively.

small energy deposition in the thermal layer can therefore
result in a large temperature increment.

C. Boiling in He II during transient heat transfer

An important parameter in He II heat-transfer applications
is the so-called peak heat flux qc [3]. This qc denotes the heat
flux from the heater surface above which boiling occurs in the
helium. There have been extensive studies of qc in the planar
geometry, and existing correlations can reasonably predict the
values of qc at various temperatures and heating conditions
[3]. However, the studies on qc in nonhomogeneous geome-
tries are very limited. Here, we discuss how our model will
allow us to systematically evaluate qc for He II transient heat
transfer in different geometries.

Note that in all the cases we have studied, the highest
temperature in He II is always achieved near the heater sur-
face. Therefore, we just need to monitor the state of the He
II adjacent to the heater during a transient heat transfer. If,
at any instance, the state in the P-T phase diagram traverses
the saturation line to the vapor phase (or the lambda line to
the He I phase), boiling is deemed to occur. Figure 11 shows
representative P-T curves of the He II near the heater surface
at T∞ = 1.78 K, qh = 22 W/cm2, �t = 0.5 ms, and rh = 2
mm in three heater geometries. As the heater turns on, a sud-
den drop in the local pressure is seen in all three cases. Then,
in the planar heater case the state curve moves horizontally
towards the saturation line, while in the two nonhomogeneous
geometries the pressure rises a bit before the state curve
moves horizontally. Under the specified heating conditions,
the horizontal move in the spherical geometry is negligible.
After the heat pulse ends, the pressure spikes up in all the
cases and the P-T curves then evolve back to the starting
point. The complex evolution paths in the nonhomogeneous
geometries are intimately related to the rarefaction physics.
From this example calculation, one can see clearly that the
He II state approaches the saturation line furthermost in the
planar heater case. If we increase the surface heat flux qh, the
state curve in the planar geometry will touch the saturation
line first, which allows us to determine the qc in this geometry.
The qc in the other two geometries can be determined in a
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similar fashion as we further increase qh. It is clear that under
the same heating conditions qc is the lowest in the planar
geometry and is the highest in the spherical geometry. We may
then vary parameters such as the hydrostatic head pressure,
the pulse duration �t , and the heater radius rh to study their
effects on qc. The relevant details will be presented in a future
publication.

V. CONCLUSION

We have conducted numerical simulations of transient heat
transfer in He II by solving the He II two-fluid equations
of motion coupled with Vinen’s equation for the evolution
of quantized vortices. The characteristics of transient heat
transfer from planar, cylindrical, and spherical heaters are
systematically examined. Compared to the planar heater case,
the heat transfer in the nonhomogeneous geometries exhibits
some distinct key features. These include (1) a rapid drop of
the vortex-line density away from the heater surface, (2) the
formation of a thin thermal layer near the heater beyond which
the second-sound pulse experiences negligible attenuation, (3)
the emergence of a rarefaction tail with a negative temperature
increment following the second-sound pulse, and (4) a prompt
suppression of the thermal layer upon the completion of the
heat pulse such that all the input heat can be completely

carried away by the outgoing second-sound pulse and the
rarefaction tail. We have also examined the effects of various
heating parameters and the He II bath temperature on the evo-
lution of the thermal layer. Our result shows that the thermal
layer diminishes more quickly with a smaller heater size, a
lower surface heat flux, or a shorter pulse duration. When the
heating conditions are fixed, the buildup of the thermal layer
exhibits a nonmonotonic dependence on the bath temperature.
To invoke the next topic of our series of studies, we have
also illustrated how our model will allow us to systemati-
cally examine the peak heat flux for the onset of boiling in
He II during a transient heat transfer. These studies should
provide us a solid foundation towards the development of a
comprehensive understanding of He II transient heat transfer
in different geometries.
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