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The pseudogap regime of the cuprate high-temperature superconductors is characterized by a variety of
competing orders, the nature of which are still widely debated. Recent experiments have provided evidence
for electron nematic order, in which the electron fluid breaks rotational symmetry while preserving translational
invariance. Raman spectroscopy, with its ability to symmetry resolve low energy excitations, is a unique tool
that can be used to assess nematic fluctuations and nematic ordering tendencies. Here we compare results
from determinant quantum Monte Carlo simulations of the Hubbard model to experimental results from Raman
spectroscopy in La,_Sr,CuO,, which show a prominent increase in the B;, response around 10% hole doping
as the temperature decreases, indicative of a rise in nematic fluctuations at low energy. Our results support a
picture of nematic fluctuations with B;, symmetry occurring in underdoped cuprates, which may arise from

melted stripes at elevated temperatures.
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I. INTRODUCTION

High-temperature superconductivity is an important area
of research in physics, not only due to its potential applica-
tions but also the interesting physics of the strong electron
correlation in high-7, materials. However, the physics of
cuprate high-7T, superconductors is still largely unclear [1].
For example, the pseudogap regime of the phase diagram,
out of which superconductivity emerges, is characterized by
an anomalous suppression of electron density of states and a
variety of competing and coexisting orders [2]. The precise
relationship between these orders and their connection to the
pseudogap, and ultimately the mechanism for unconventional
superconductivity, remains controversial. Likely they each
play an important but complex role in the mechanism of
superconductivity and are therefore deserving of continued
investigation [3,4].

Common to the cuprates are charge and spin order in
the form of stripes, unidirectional charge- and spin-density
waves in the copper oxide plane that break rotational and
translational symmetry. While evidence for charge order has
been found in all families of cuprates [5], there appears to be
less universality in spin stripes, with varied behavior in dif-
ferent compounds, such as the periodicity of the modulation
and their static or fluctuating nature. Whether these stripes
compete or cooperate with superconductivity still represents
an active area of research [6]. A related order, electronic
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nematicity [7], unlike stripes, breaks rotational symmetry
while preserving translational symmetry. The kind of ex-
perimental anisotropies suggestive of electronic nematicity
have been observed in a number of experiments including
transport [8—11], neutron scattering [12], scanning tunneling
microscope [13], and nuclear magnetic resonance [14]. How-
ever, properties, such as the inferred nematic orientation and
onset temperature lack any universal character across cuprate
families. Electronic nematicity and stripes may be closely
related, as nematicity can arise naturally from the melting of
stripe order [7]. Electron nematicity also may play an impor-
tant role in the formation or enhancement of superconducting
order, as suggested by several theories [15-17].
Theoretically, the Hubbard model is considered a canonical
starting point for the study of strongly correlated electrons,
and, in particular, has been able to capture signatures of a
number of the orders relevant to the cuprates. The case for
stripes was made by early mean-field calculations, which
predicted their formation [18-20], and subsequently more
sophisticated methods have further corroborated the presence
of stripes in both the ground state and at finite tempera-
tures within the Hubbard model [21-27]. While a number
of methods have been developed to study strongly corre-
lated models, including the Hubbard model, a particularly
powerful, finite-temperature, numerically exact technique is
determinant quantum Monte Carlo (DQMC) [28], although
it has been restricted to relatively high temperatures due to
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the fermion sign problem [29-31]. Recent DQMC simulations
have shown the presence of fluctuating spin stripes, but with
no discernible signatures of fluctuating charge order, possibly
due to the high simulation temperatures [26,27]. This leads
us to ask whether signatures of fluctuating charge order may
be present in a different form in the Hubbard model at the
temperatures accessible by DQMC and whether these may be
corroborated by experiment.

Experimentally, the nematic susceptibility is proportional
to the real part of the Raman response at zero frequency
(static Raman susceptibility) [32,33]. This will enable us to
compare the results from simulations directly against Raman
measurements on cuprates. Previous Raman spectra that were
taken on La;_,Sr,CuO4 (LSCO) have shown prominent low
energy peaks at low temperatures due to charge stripe excita-
tions [34]. In underdoped cuprates this contribution dominates
the spectra, since particle-hole excitations in Bjy symmetry
are largely gapped out below 1000 cm™' in the pseudo-
gap [35]. A key question will be whether similar signatures
can be found in simulations of the Hubbard model, even at
high temperatures, and how such features can be interpreted in
terms of electronic nematic fluctuations and “melted” stripes.

Here, using DQMC, we calculate the nematic susceptibility
of the single-band Hubbard model on a square lattice, which is
proportional to the static Raman response, and draw a compar-
ison to Raman scattering experiments in LSCO. The nematic
susceptibility in By, symmetry of the Hubbard model, with
no explicit symmetry breaking terms, shows an unexpected
nonmonotonic dependence on doping, not tied to simple band
structure effects, such as the van Hove singularity, but rather
this may arise from strong electron correlations. The Ra-
man B, susceptibility, extracted from the Raman spectra of
LSCO, shows a similar, but more dramatic doping depen-
dence, albeit at much lower temperatures, which previously
has been attributed to charge excitations in the presence of
stripes [35,36].

II. METHODS

The Hubbard model is one of the simplest models describ-
ing strongly correlated electron physics and has been taken as
a starting point for understanding the low-energy physics of
the cuprates [37]. The Hamiltonian is given by

H==Y tijchcio+U> iy —pnY hig. (1)

ijo i

where #; are electron hopping matrix elements which
parametrize the kinetic energy (here we assume only nonzero
nearest- and next-nearest-neighbor hopping matrix elements);
U is the Hubbard repulsion, giving rise to the strongly cor-
related nature of the model; w is the chemical potential
controlling the number of electrons; cL (ci») are electron cre-
ation (annihilation) operators for electrons at site i with spin
o; and 7l;y = cz,ci(7 is the number operator. As in previous
studies of stripes [26], we choose U = 6¢ to ensure that we
capture the effects of strong correlations while simultaneously
mitigating the effects of the fermion sign problem, which
allows us to access lower temperatures in our DQMC simu-
lations. The results that we present below were obtained from
64-site square clusters.

In our numerical simulations, the Raman response in imag-
inary time s(t) is given by the correlation function of the
effective scattering operator p, [38],

5a(T) = (Ty pu(T)p1(0)), )

where « is one of the two common symmetry projected scat-
tering channels Bj, or B,, and the scattering operators are
properly projected charge density operators. These projected
symmetry channels highlight different portions of the Bril-
louin zone and depend on the polarization of the incident and
scattered light in a Raman experiment, such that the scattering
operators in momentum space take the form

1
P8y, = > Z(cos k. — cos ky)cj, (k)c, k), 3)
ko
P, = Y _ sink,sin kyc} (k)eq (k). )
ko

These operators, and the corresponding response function, can
capture broken Cy rotational symmetry, or nematicity, as one
can see when the operators are written in real space

PB, = Z (Cigcl#fc,a - Ciaci+y,o + H.c.), ©)
io
0By, = Z (CIgCi-&-fc-ﬁ-ﬁ,(r - Czaci—i-&-ﬁ,a +Hc). (6
io
Real-frequency Raman spectra can be obtained by analytic
continuation, equivalent to inverting the following equation:
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where x_ () is the imaginary part of the Raman response, di-
rectly comparable to Raman measurements. Inverting Eq. (7)
is ill-defined because of the behavior of the kernel at large
frequencies; however, after integrating over imaginary time

B oo "
/drsa(r)=2/ d—”MEX;(w=0). (8)
T w

0 0

The left-hand side of this expression can be determined en-
tirely from the results of DQMC simulations. The right-hand
side is just a Kramers-Kronig relation, proportional to the
real part of the Raman response function at zero frequency
X (w = 0), which can be readily obtained from experimental
measurements, allowing for a direct comparison.

III. RESULTS

Published work from earlier Raman scattering studies
on LSCO showed that a low energy peak in Bj, symme-
try emerged with decreasing temperature, most prominently
near 10% hole doping [34], attributed to charge stripe ex-
citations [39]. The real part of the Raman response at
zero frequency (static Raman susceptibility) is dominated by
these low energy features as the integrand falls off as 1/w.
Figure 1 shows data for x,;lg(T) determined from previous
experimental spectra [34]. Xgle(T) exhibits a Curie-Weiss-
like temperature dependence for the doping concentrations
x = 0.08, 0.1, and 0.12. At higher doping there is an increase
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FIG. 1. Real part Xl/?lg(T) of the static Raman susceptibility in
B, symmetry as a function of temperature for various doping levels
x. The doping ranges below and above x = 0.1 are shown separately
for clarity in (a) and (b), respectively. A clear Curie-like increase of
x,’glg(T) at low temperatures can only be resolved for x = 0.08, 0.1,
and 0.12.

of x[glg(T) as temperature decreases, but the shape is convex
rather than concave. In the overdoped regime, the particle-hole
continuum represents a dominant contribution to the intensity
and any possible contributions from stripe fluctuations cannot
be resolved, and presumably are not present [34].

To highlight the special nature of x = 0.1, we interpolate
Xg,,(x, T) from the experimental data and plot an x-T" “phase”
diagram in Fig. 2. Xélg(x, T) is enhanced prominently in the
vicinity of x = 0.1 at low temperatures and falls off at higher
and lower doping. A continuous increase towards higher dop-
ing originates from the buildup of the particle-hole continuum.
In contrast to the substantial temperature dependence of the
susceptibility in By, around x = 0.1, there is only a small in-
crease in the otherwise flat response of x ng(T) at the onset of
the superconducting dome [cf. Fig. 2(b) and in the Appendix
(Additional Figures) Fig. 6, which shows the real part of the
Raman susceptibility in the B,, channel at the corresponding
doping values].

To address these findings, we calculate the nematic sus-
ceptibility of the Hubbard model [Eq. (8)] using DQMC.
The susceptibility as a function of temperature for various
doping levels is displayed in Fig. 3. We choose a next-nearest-
neighbor hopping of ¢'/t = —0.25 to mimic a similar Fermi
surface to that of the cuprates. However, and as we show later,
the behavior that we observe is not tied to any special features
of the band structure, such as the position of the van Hove
singularity that would be tied to this choice of ¢’ (Fig. 4). As
one can see from Fig. 3, the general trend for the By, suscep-
tibility is to increase with decreasing temperature, indicating
an enhancement of the nematic correlations. This would be
expected on general grounds as reduced thermal fluctuations
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FIG. 2. Continuous color plots of the susceptibility x'(x, T).
(a) In B, symmetry x'(T) increases in the region around x = 0.1.
(b) In comparison, the B,, susceptibility is weakly temperature de-
pendent at the onset of superconductivity and remains flat otherwise.

at lower temperatures result in sharper charge excitation
peaks and an enhanced susceptibility. Unlike the susceptibility
extracted from experiments at half-filling, which decreases
with temperature due to the presence of a gap at low fre-
quency, the susceptibility derived from DQMC simulations
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FIG. 3. Nematic/Raman susceptibility calculated using DQMC
as a function of temperatures for various doping levels for (a) B,
symmetry and (b) B,, symmetry. Both susceptibility increases with
decreasing temperature. For B, the rate of increase for different
doping becomes different as temperature is lowered through the point
indicated by the arrow, which is near T = 2¢ /3 = J (the data point to
the right of the arrow), the magnetic exchange. The B,, susceptibility
does not show similar behavior, and is gapped at half-filling.
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FIG. 4. Curie-Weiss temperature T obtained from Curie-Weiss
fit of the B, susceptibility as a function of doping level for different
values of ¢/, all showing a peak at (x) = 0.1. The peak moves slightly
to higher doping level with increasing —#'/¢, which may be due to the
van-Hove point moving to higher doping level with increasing —t'/z.

does not decrease. This can be attributed to contributions from
relatively broad two-magnon excitations, which extend to low
energy at DQMC temperatures, expected to manifest in the
Bz symmetry channel. The two-magnon peak in experiments,
while present, is comparatively sharp and at too high a rel-
ative energy to contribute significantly to the susceptibility
x8,,(T)

The rate of increase for different doping levels becomes
different as the temperature is lowered through the value indi-
cated by the arrow, which is near T = 2¢/3 = J, the magnetic
exchange for the Hubbard model with the chosen parameters.
Although the increase of the susceptibility going from the
highest temperature to the lowest is about three times for all
dopings, it is clear that at low temperatures the rate of increase
has a nonmonotonic dependence on doping, as shown in the
zoomed-in view in the inset. In particular, at (x) = 0.1, the
susceptibility increases the fastest, qualitatively similar to the
behavior in experiments, where the Raman susceptibility is
highly enhanced at this doping. We note that at half-filling, the
curve of the susceptibility turns from convex to concave at low
temperatures. At finite temperatures, interband transitions at
frequencies smaller than the onset of the Mott gap are present.
As temperature is lowered, such transitions are suppressed,
giving rise to the smaller rate of increase for the susceptibility.

The B,, nematic susceptibility is plotted in Fig. 3(b). At
half-filling, unlike B, the susceptibility decreases with tem-
perature. Since the two-magnon excitation is mostly absent in
the By, symmetry, the susceptibility is determined predom-
inantly by the Mott gap of the half-filled Hubbard model.
The B, Raman spectral weight at small frequencies due to
finite temperatures are suppressed as temperature is lowered,
resulting in decreasing susceptibility. For all other dopings,
the susceptibility rises with decreasing temperature, similar
to Bi,. However, the rate of increase does not show a non-
monotonic dependence on the doping level as seen in Bi,.
Instead, the susceptibility rises with increasing hole doping
monotonically, due to the increasing spectral weight of the
quasiparticles in the Brillouin zone diagonal.

At low temperatures, the B, susceptibility is approxi-
mately inversely proportional to temperature, suggesting that
it can be fit to a Curie-Weiss form. The Curie-Weiss temper-

ature 7p, as a function of doping for different values of the
next-nearest-neighbor hopping ¢’, is shown in Fig. 4. While
Ty is negative in all cases, suggesting that the system does
not possess a transition into an ordered nematic state, at least
as far as one can tell at these temperatures, it does show a
nonmonotonic dependence on doping. While broad, the max-
imum of Ty occurs around (x) = 0.1 for all values of #’. This
behavior generally agrees with the experimental data which
shows a sharper, more prominent peak at a similar doping.

The results presented here were all obtained from 64-
site square clusters. As shown in the Appendix (Additional
Figures) Fig. 7, we also have checked that the notable be-
havior is present in 100-site square clusters. While finite-size
effects clearly are present in the data, the peak in Xz’;,g(T)
remains, both qualitatively and quantitatively.

IV. DISCUSSION

Although DQMC calculations are performed at high tem-
peratures, many of the properties of the Hubbard model
obtained with this method are still consistent with those found
in experiments done at low temperatures on cuprate materials.
Here our results show that the doping dependence of the
Raman susceptibility in LSCO is captured by the Hubbard
model. The enhancement of the susceptibility at (x) = 0.1 in
LSCO is much more prominent than that seen in the calcula-
tions, because of the low temperature of the experiments. We
expect this similar enhancement in calculations to be more
pronounced as temperature is lowered.

The maximum of the B, nematic susceptibility may be
closely related to fluctuating stripes. Electron nematicity may
arise from melting of stripes due to quantum or thermal fluc-
tuations, where the translational symmetry is restored but the
rotational symmetry is still broken [7]. It is possible that at
the temperatures accessible by DQMC, charge stripe has been
melted, leaving an electron fluid with a nematic correlation
that is strongest near the doping where stripe correlation is
otherwise strong. Furthermore, the enhancement of the By,
Raman susceptibility of LSCO due to prominent low energy
peaks in the Raman spectra may be interpreted in terms of
signals for charge excitations within stripes [35,36,39]. This
further corroborates the connection between electron nematic-
ity and stripes in cuprates and the Hubbard model.

The Raman response which relates to the nematic suscep-
tibility through the Kramers-Kronig relation may be obtained
from the imaginary-time data using analytic continuation.
Here we use the maximum entropy method (MEM) to perform
numerical analytic continuation [40]. Although the resulting
spectra are generally broad due to the high temperatures of
the simulation, some qualitative comparisons may be made
between the By, and B,, responses, and between theory and
experiments.

Figure 5 shows the spectra for different doping levels at
T/t = 0.22. At half-filling, the Bj, spectrum (a) shows two
peaks, one at a frequency slightly higher than w/t = 6 = U/t,
and one at around w/t = 1.2. By contrast, the B, spectrum
(b) shows only one broad peak. The low energy feature in
the By, spectrum can be attributed to the two-magnon scat-
tering, which is not captured by the B,, form factor. With hole
doping, the high energy peak in the B, spectrum broadens,
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FIG. 5. Raman spectra obtained via maximum entropy analytic
continuation for (a) B, and (b) B, symmetries for different doping
levels, at 8 =4.5/t and t' = —0.25¢t. The broad peak at around
w/t = 6 arises from interband transitions across the Mott gap.

and the peak height decreases with doping due to spectral
weight being transferred to the quasiparticle band that ap-
peared with hole doping [41]. For the low energy part, the
two-magnon peak is quickly reduced when doped away from
half-filling, and a quasiparticle peak at lower energy appears.
With further hole doping, the quasiparticle peak sharpens
while maintaining the peak height. For B, the high energy
part shows varying peak heights and positions for different
doping levels, but remains generally broad. At low energy
the By, spectrum develops a clear quasiparticle peak which
becomes more prominent with hole doping.

The By, and B,, form factors highlight the antinodal and
nodal regions of the Brillouin zone, respectively. With doping,
the quasiparticles in the antiodal region are less coherent than
those in the nodal region, due to the much stronger quasipar-
ticles scattering, which have been also observed in ARPES
experiments [42]. Since the Kramers-Kronig transform high-
lights the low energy part [Eq. (8)], the steady increase of the
coherent quasiparticle peak in B, with doping gives rise to
the monotonically increasing B, susceptibility. On the other
hand, the quasiparticle peak in B, does not increase with dop-
ing. The apparent shift of the low energy part to lower energy,
when doped from half-filling to about (x) = 0.1, gives rise
to the initial increase of the Bj, susceptibility. Upon further
doping, the relatively unchanged quasiparticle peak and the
decreasing high energy part together lead to the decrease in
the susceptibility, and hence a maximum at 10% hole doping.

Detailed studies of the Raman spectra of LSCO have been
reported previously [34]. While the experimental spectra and
the theoretical ones presented in Fig. 5 cannot be compared
quantitatively, certain features of the spectra are consistent.
In particular, in both LSCO and the Hubbard model, the
dominant peak in the B, spectra are from the two-magnon ex-
citation (compare Fig. 8 in [34] and Fig. 5). A previous study
on the Raman response in the Hubbard model using DQMC

did not produce the two-magnon peak, because the form of
the response function used did not include vertex corrections
and hence only captured particle-hole excitations projected by
the Raman form factors [41]. Here the full Raman response
function goes beyond particle-hole excitations and includes
contributions from higher order processes that give rise to
the two-magnon scattering. This demonstrates the ability of
the Hubbard model, which describes electronic degrees of
freedom, to capture an important feature in the cuprates due
to spin excitations. In addition, the experimental B, response
develops a peak from electron-hole excitations at high doping,
which has similar trends in the theoretical spectra.

Muschler et al. discussed several ways of analyzing the Ra-
man spectra, such as calculating the Raman resistivity ['o(7T)
and integrated spectral weight [34]. In particular, in connec-
tion to the low energy charge stripe excitations, the Raman
resistivity, or the inverse of the initial slope of the spectrum,
provides information about the dynamics of the quasiparticles
in different symmetry channels. For cuprates with maximum
1; around 100 K such as Bi,Sr,CaCu;0s,5, YBa,Cu30,, and
Tl,BayCuOgs, a dichotomy between the Bj, and B, relax-
ation rates is found at about 20% doping where I'¢ 5, (T)
shows metallic behavior while g (T) is T independent.
The behavior of LSCO is different in that Lo 5, (T') increases
with T for a wide doping range down to at least 5%. Muschler
et al. indicated that the low energy peaks in the B, response
giving rise to the metallic behavior of I'gp (T) are due to
charge excitations in the presence of stripes, which was sup-
ported by its consistency with other experimental findings as
well as descriptions of microscopic models.

Here we analyzed the Raman spectra by taking the
Kramers-Kronig transform, which highlights the low energy
part of the spectra dominated by the charge stripe excitations.
The qualitatively similar behavior of the obtained Raman (ne-
matic) susceptibility between experiment and theory, and the
close relation between fluctuating charge stripes and nematic-
ity, provides one more piece of evidence supporting the charge
stripe excitation interpretation of the low energy structures in
the B, response of LSCO.

V. CONCLUSIONS

Using DQMC calculations, we have shown that the doping
dependence of the B;, nematic susceptibility of the Hubbard
model qualitatively agrees with the Raman B, susceptibility
in LSCO. Specifically, both have a maximum at 10% hole
doping. The peak in the susceptibility from experiments are
much more prominent than that in the calculations, likely due
to the high temperatures of the calculations. We expect the
nematic fluctuations to continue to grow as temperature is
lowered beyond the region accessible to DQMC simulations,
as can be seen from the Curie-Weiss temperatures in Fig. 4.

The agreement between the calculations and the experi-
ments is consistent with the picture of electron liquid crystals.
In this framework, melting of charge stripes due to quantum
or thermal fluctuations may give rise to electron nematicity.
Since DQMC calculations of the Hubbard model is performed
at very high temperatures, it is possible that charge stripes
are melted and result in a state with strong nematic cor-
relation. The doping where the nematic correlation of the
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Hubbard model is maximum coincides with the doping where
charge stripe excitations in LSCO gives the most prominent
Raman signal, supporting the scenario of the electron liquid
crystals.

While the theoretical spectra from analytic continuation
cannot be quantitatively compared to the experimental spec-
tra, the prominent two-magnon peak in the Bjg spectra at
half-filling and its quick reduction upon doping, as well as
the emerging quasiparticle peak, are observed in both experi-
ment and theory. Previous work by Muschler et al. discussed
several analyses, such as Raman resistivity and integrated
spectral weight, in connection to the low energy structures
due to charge stripe excitations. In this work we analyzed
the spectra by calculating its real part at zero frequency
through the Kramers-Kronig relation, and the comparison
with theoretical calculations further supports the attribution
of charge stripes to the emerging low energy structures in the
spectra.

Our result demonstrates the capability of the Hubbard
model to capture tendencies of electron nematicity that aligns
with experiments in cuprates. The agreement with experi-
ments also supports the notion of electron liquid crystal states
where nematicity results from melting of stripe order.
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APPENDIX: ADDITIONAL FIGURES
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FIG. 6. Real part Xézg(T) of the static Raman susceptibility in
B, symmetry as a function of temperature for various doping levels
x. The doping ranges below and above x = 0.1 are shown separately
for clarity in (a) and (b), respectively.
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FIG. 7. Curie-Weiss temperature T for the B;, susceptibility as a
function of doping, for L = 8 and L = 10 square clusters, both show-
ing a peak around (x) = 0.1. The next-nearest-neighbor hopping is
t'=—0.2t.
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