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Phase-coherent thermoelectricity and nonequilibrium Josephson current
in Andreev interferometers
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We develop a detailed theory describing a nontrivial interplay between nonequilibrium effects and long-range
quantum coherence in superconducting hybrid nanostructures exposed to a temperature gradient. We establish
a direct relation between thermoelectric and Josephson effects in such structures and demonstrate that at
temperatures exceeding the Thouless energy of our device both phase-coherent thermoelectric signal and the
supercurrent may be strongly enhanced due to nonequilibrium low-energy quasiparticles propagating across
the system without any significant phase relaxation. By applying a temperature gradient, one can drive the
system into a well-pronounced π -junction state, thereby creating novel opportunities for applications of Andreev
interferometers.
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I. INTRODUCTION

It is well known that Cooper pairs can penetrate deep into a
normal metal attached to a superconductor. As a result of this
proximity effect, normal metals may also acquire supercon-
ducting properties [1–3]. At sufficiently low temperatures T
such macroscopic quantum coherence of electrons in normal
metals is limited either by thermal fluctuations or by electron-
electron interactions [4,5]. Accordingly, proximity-induced
superconducting coherence extends into a normal metal at a
typical length equal to the shortest of two different length
scales, so-called thermal length LT ∼ √

D/T (here and below
D is the electron diffusion coefficient) and Cooper pair de-
phasing length Lϕ that remains temperature independent [4–6]
at low enough T .

As a consequence of this proximity effect, macroscopic
phase coherence can be established in the structure that con-
sists of two superconductors (S) connected via a normal
metal (N) layer (of length L and normal state resistance Rn)
forming the so-called SNS junction. Hence, a nonvanishing
supercurrent IJ may flow across such junctions which depends
periodically on the superconducting phase difference χ be-
tween two superconductors. Provided L remains shorter than
Lϕ electron-electron interactions inside it can be neglected.
Then, the magnitude of dc Josephson current IJ in such SNS
junctions is controlled by the thermal length LT reaching ap-
preciable values IJ � ETh/(eRn) in the low-temperature limit
[7–9] and dropping down to exponentially small values IJ ∝
e−√

2πT/ETh at temperatures exceeding an effective Thouless
energy ETh = D/L2 of the N layer.

In somewhat more complicated geometries, such as, e.g.,
that of an SNS transistor [10], one can also control both
the magnitude and the sign of IJ by applying an external
voltage and driving the quasiparticle distribution function out
of equilibrium [10–13]. Very recently it was demonstrated
[14] that yet another efficient way to control the Josephson

current is to expose the junction to a temperature gradient.
This situation can be realized in structures analogous to those
considered in Refs. [10–13], e.g., in a system composed of two
superconducting and two normal terminals interconnected by
normal metallic wires forming a cross. Following [14] below
we will denote this structure as X junction.

Similarly to the case of voltage-biased X junctions
[10–13], by applying a temperature gradient one also drives
the quasiparticle distribution function out of equilibrium. At
the same there also exists an important difference between
these two situations. Namely, in the voltage-biased case the
Josephson current IJ remains exponentially small in the high-
temperature limit T � ETh, whereas exposing an X junction
to a thermal gradient may yield substantial supercurrent
stimulation in this temperature range [14]. Thus, applying a
temperature gradient, one can effectively support long-range
phase coherence in the SNS type of structures at high enough
temperatures where the equilibrium Josephson current already
becomes negligible.

Exposing the system to a temperature gradient one also
generates electric currents and/or voltages inside the sample.
This is the essence of the so-called thermoelectric effect in
superconducting structures [15]. The magnitude of this ef-
fect becomes large as soon as electron-hole symmetry in a
superconductor is violated in some way [16]. On top of that,
at low enough temperatures thermoelectric signals are phase
coherent, thus depending periodically on the phase of a super-
conducting condensate. In hybrid superconducting structures
involving normal metals such phase-dependent thermoelec-
tricity yields a variety of interesting and nontrivial effects
which were extensively studied both experimentally [17–23]
and theoretically [24–30]. In addition, thermoelectric effects
in superconductors give rise to a number of applications
ranging from refrigeration and thermometry [31] to phase-
coherent caloritronics [32] and thermal logics [33] aiming to
transmit information in the form of energy.
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FIG. 1. Four-terminal Andreev interferometer under consideration.

It turns out that thermoelectric and Josephson effects in the
presence of a temperature gradient are intimately related to
each other [14]. For instance, in the case of X junctions with
two normal terminals kept at different temperatures T1 and T2

(both exceeding the Thouless energy ETh) a phase-coherent
thermoelectric voltage signal V generated at these terminals
is related to the Josephson current as [14]

eV (χ ) ∼ eIJ (χ )Rn ∼ E2
Th|1/T1 − 1/T2|. (1)

This result demonstrates that the thermoelectric voltage V
does not decay exponentially even in the high-temperature
limit T1,2 � ETh having exactly the same temperature de-
pendence as IJ . Such nonexponential dependence of both V
and IJ on temperature is due to the presence of nonequi-
librium low-energy quasiparticles suffering little dephasing
while propagating through normal wires connecting two su-
perconducting terminals.

One can also demonstrate [14] that a nonvanishing thermo-
electric signal V may only occur in asymmetric X junctions.
The same observation holds for the nonequilibrium contri-
bution to IJ and, furthermore, a rather strong degree of the
junction asymmetry is required for this contribution to reach
appreciable values [34]. It appears, however, that the latter
observations are of no general validity being merely specific
to the X -junction geometry.

Here we will develop a general microscopic theory of both
thermoelectric and Josephson effects in superconducting hy-
brid structures exposed to a temperature gradient. Specifically,
we will address the four-terminal hybrid structures, frequently
called Andreev interferometers, which geometry differs from
that of an X junction [14,34]. An example of such structure is
displayed in Fig. 1.

We will work out a different approach to the description
of the phase-coherent transport in quasi-one-dimensional con-
ductors interconnected between each other and attached to
bulk external normal and superconducting terminals. For this
purpose we reformulate the standard quasiclassical theory of
superconductivity [3] in the spirit of Nazarov’s circuit theory
[35,36] extending the latter with the emphasis put on quasi-
one-dimensional metallic conductors.

With the aid of this approach we will set up a de-
tailed theory describing a nontrivial interplay between

proximity-induced quantum coherence and nonequilibrium
effects in Andreev interferometers exposed to a temperature
gradient. In particular, we will address both thermoelectric
and Josephson effects which demonstrate a number of in-
teresting features which can be directly observed in modern
experiments. We will also emphasize a close relation between
these two nonequilibrium effects in the presence of a temper-
ature gradient.

The structure of our paper is as follows. In Sec. II, we
introduce our model system and describe the quasiclassical
formalism serving as a basis for our further considerations.
Section III is devoted to extending the circuit theory and
adopting it to superconducting hybrid structures under con-
sideration. In Sec. IV, we present a detailed analysis of both
thermoelectric and Josephson effects in four-terminal An-
dreev interferometers under the influence of a temperature
gradient. In Sec. V, we briefly discuss the results and formu-
late our main conclusions. As usually, technical details of our
calculation are relegated to the Appendices.

II. THE MODEL AND QUASICLASSICAL EQUATIONS

Below we will consider a metallic heterostructure which
consists of two superconducting and two normal terminals in-
terconnected by five quasi-one-dimensional normal wires (of
lengths Lp, LS1,2 , LN1,2 and cross sections Ap, AS1,2 , AN1,2 ) as it
is shown in Fig. 1. We will assume that two superconducting
electrodes S1 and S2 are described by the order-parameter
values |�| exp(iχ1,2) and are kept at temperature T and the
same electrostatic potential which, without loss of generality,
can be set equal to zero. Two normal electrodes N1 and N2 are,
in turn, kept at different temperatures T1 and T2. Provided both
normal terminals are disconnected from any external circuit,
no electric current can flow into or out of these terminals, i.e.,
the conditions

IN1 = 0, IN2 = 0 (2)

should apply.
In the presence of a temperature gradient quasiparticle

distribution function inside normal wires is driven out of
equilibrium. As a result, electrostatic potentials of two normal
terminals N1 and N2 do not anymore equal to zero due to
the thermoelectric effect. These two thermoelectric voltages,
respectively V1 and V2, induced by the temperature gradient
T1 − T2, will be evaluated below along with the supercurrent
IS flowing between two superconducting terminals S1 and S2.

Electron transport in metallic heterostructures can be
conveniently described by means of quasiclassical Usadel
equations [3] for 4 × 4 Green-Keldysh matrix functions in
Keldysh⊗Nambu space

Ǧ =
(

ĜR ĜK

0 ĜA

)
. (3)

These equations read as

iD∇(Ǧ∇Ǧ) = [�̌, Ǧ], ǦǦ = 1,

�̌ =
(

�̂ 0
0 �̂

)
, �̂ =

(
ε + eV �

−�∗ −ε + eV

)
.

(4)
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Here and below, D is the diffusion coefficient, ε labels the
quasiparticle energy, and � is the superconducting order pa-
rameter. The current density j is related to the matrix Ǧ (3) in
a standard manner as

j = − σ

8e

∫
dε Sp(τ̂3Ǧ∇Ǧ)K , (5)

where σ is the normal-state Drude conductivity and τ̂i are
Pauli matrices in the Nambu space.

The Keldysh component ĜK of the Green function matrix
(3) can be expressed via retarded (ĜR) and advanced (ĜA)
components of this matrix in the form

ĜK = ĜRĥ − ĥĜA, (6)

where ĥ = hL + τ̂3hT is the matrix distribution function
conveniently parametrized by two different quasiparticle dis-
tribution functions hL and hT . In normal conductors the latter
functions obey diffusionlike equations

D∇[DT ∇hT + Y∇hL + jεhL] = 0, (7)

D∇[DL∇hL − Y∇hT + jεhT ] = 0, (8)

where DT,L and Y denote dimensionless kinetic coefficients
and jε represents the spectral current

DT = 1
4 Sp(1 − ĜRτ̂3ĜAτ̂3) = ν2 + 1

4 |F R + F A|2, (9)

DL = 1
4 Sp(1 − ĜRĜA) = ν2 − 1

4 |F R − F A|2, (10)

Y = 1
4 Sp(ĜRτ̂3ĜA) = − 1

4 (|F R|2 − |F̃ R|2), (11)

jε = 1
4 Sp(τ̂3[ĜR∇ĜR − ĜA∇ĜA])

= 1
2 Re(F R∇F̃ R − F̃ R∇F R), (12)

ν = ReGR is the local density of states and GR,A, F R,A, and
F̃ R,A are components of retarded and advanced Green func-
tions

ĜR,A =
(

GR,A F R,A

F̃ R,A −GR,A

)
. (13)

Note that the kinetic coefficient Y specifically accounts for the
presence of electron-hole asymmetry in our system.

In the vicinity of the interfaces between normal wires
and bulk metallic terminals the Green functions may change
abruptly, in which case quasiclassical equations (4) cannot
be applied and should be supplemented by proper boundary
conditions. In the case of diffusive conductors considered
here, these boundary conditions read as [36]

Aσ−Ǧ−∇Ǧ− = Aσ+Ǧ+∇Ǧ+

= e2

π

∑
n

2Tn[Ǧ−, Ǧ+]

4 + Tn({Ǧ−, Ǧ+} − 2)
, (14)

where Ǧ− and Ǧ+ are the Green-Keldysh matrices, respec-
tively, at the left and the right sides of the interface, the sum
runs over all conducting channels of the interface, and Tn is
the transmission of the nth conducting channel.

In the next section we will work out a circuit theory that
will allow us to establish a formal solution of the above equa-
tions for the system displayed in Fig. 1 and, more generally,
for an arbitrary network of quasi-one-dimensional normal
wires.

III. CIRCUIT THEORY

Our approach is to a certain extent similar to Nazarov’s
circuit theory which was originally formulated for low-energy
transport [35] and subsequently generalized to arbitrary en-
ergies [36]. This circuit theory, being quite general, can in
principle be employed for conductors of arbitrary dimension-
ality. Still, in the case of spatially extended low-dimensional
structures it sometimes remains rather complicated for prac-
tical calculations. Below we will focus our attention on
quasi-one-dimensional conductors and reformulate the qua-
siclassical theory of superconductivity in a form that appears
more suitable both for quantitative calculations and for quali-
tative analysis.

A. Extended conductors

Let us rewrite Eqs. (7) and (8) in the matrix form

D∇[D̂∇Ĥ + τ̂1 jεĤ ] = 0, (15)

where we defined

Ĥ =
(

hT

hL

)
, D̂ =

(
DT Y
−Y DL

)
. (16)

In the case of quasi-one-dimensional conductors Eq. (15)
yields

D̂Ĥ ′ + τ̂1 jεĤ = −eÎ/(Aσ ), (17)

where A is the wire cross section and

Î =
(

IT

IL

)
= −Aσ

4e

(
Sp(ǦǦ′τ̂3)K

Sp(ǦǦ′)K

)
(18)

is the matrix current which remains conserved along the nor-
mal wire segment. The total electric current I flowing across
the wire is linked to the IT component of the matrix current
by means of the following relation:

I = 1

2

∫
IT dε. (19)

It will be convenient for us to introduce the matrix evolu-
tion operator Û which obeys the equation

D̂Û ′(x, x̃, ε) + τ̂1 jεÛ (x, x̃, ε) = 0 (20)

combined with the initial condition

Û (x, x, ε) = 1, (21)

where x, x̃ are two coordinates along the normal wire. With
the aid of this evolution operator we can resolve Eq. (17)
and establish the relation between the matrix current Î and
the matrix distribution function Ĥ at the points x and x̃ [cf.
Fig. 2(a)]. It reads as

Ĝx,x̃Ĥ (x) + Ĝx̃,xĤ (x̃) = −eÎ, (22)
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FIG. 2. (a) A segment of a quasi-one-dimensional normal wire
and (b) several normal wires connected to each other in the node.

where Ĝx,x̃ is 2 × 2 conductance matrix

Ĝx,x̃ = σ jεAτ̂1[1 − Û (x, x̃, ε)]−1. (23)

It obeys the following relations:

Ĝx,x̃ + τ̂3ĜT
x̃,x τ̂3 = 0, Ĝx,x̃ + Ĝx̃,x = Ĝ j, (24)

where we defined Ĝ j = τ̂1Gj and Gj = σ jεA.
Equation (22) represents an important result. Its form

closely resembles that of the standard Kirchhoff law for nor-
mal electric circuits where the matrix distribution function Ĥ
plays the role analogous to that of the voltage. This obser-
vation enables one to operate with both matrix distribution
functions Ĥ (x) and conductance matrices Ĝx,x̃ employing
the standard rules of electric engineering. For instance, in
Appendix A we demonstrate that the conductance matrices of
several elements connected either in series or in parallel can
be replaced by a single equivalent conductance matrix in the
same way as it is routinely done for conductances in normal
electric circuits. Furthermore, in Appendix B we also establish
a direct matrix analog of the standard transformation between
Y-shaped and �-shaped electric circuits.

Finally, we verify that in the absence of superconductivity
(i.e., provided all terminals in our structure remain normal)
the conductance matrix Ĝx,x̃ reduces to a trivial form

Ĝx,x̃ = σA
x − x̃

1̂. (25)

B. Boundary conditions

Let us now specify the boundary conditions at the points
where the wire is connected to another wire and/or to a bulk
metallic terminal.

1. Intersection nodes

At the nodes where several normal wires cross each other
[see Fig. 2(b)] the sum of the matrix currents flowing into the
node equals to zero ∑

Îk = 0. (26)

The same applies for the spectral currents∑
Ak jε,k = 0. (27)

The matrix distribution function Ĥ (x) remains continuous
across the node taking the same value for all wires at their
end points connected to the same node.

2. Interface barriers

Turning now to intermetallic interfaces we introduce the
distribution functions hT,L

− and hT,L
+ on both sides of the inter-

face and rewrite Eq. (6) as

ĜK
− = ĜR

−ĥ− − ĥ−ĜA
−, ĥ− = hL

− + τ̂3hT
−, (28)

ĜK
+ = ĜR

+ĥ+ − ĥ+ĜA
+, ĥ+ = hL

+ + τ̂3hT
+. (29)

With the aid of these equations we can identically transform
the Keldysh component of the boundary conditions (14) to the
following matrix Kirchhoff-type equation

Ĝ−+Ĥ− + Ĝ+−Ĥ+ = −eÎ, (30)

where

Ĝ+− =
(

gT gY + Aσ jε/2

−gY + Aσ jε/2 gL

)
, (31)

Ĝ−+ = −
(

gT gY − Aσ jε/2

−gY − Aσ jε/2 gL

)
(32)

are the interface matrix conductances,

Ĥ± =
(

hT
±

hL
±

)
(33)

define the matrix distribution functions on both sides of the
barrier, and

jε = e2

2πAσ

∑
n

[ TnSp(τ̂3[ĜR
−, ĜR

+])

4 + Tn({ĜR−, ĜR+} − 2)
− TnSp(τ̂3[ĜA

−, ĜA
+])

4 + Tn({ĜA−, ĜA+} − 2)

]
, (34)

gT (ε) = e2

2π

∑
n

TnSp[(ĜR
+ − τ̂3ĜA

+τ̂3)(ĜR
− − τ̂3ĜA

−τ̂3)[4 + Tn(ĜR
−ĜR

+ + τ̂3ĜA
−ĜA

+τ̂3 − 2)]]

(4 + Tn({ĜR−, ĜR+} − 2))(4 + Tn({ĜA−, ĜA+} − 2))
, (35)

gL(ε) = e2

2π

∑
n

TnSp[(ĜR
+ − ĜA

+)(ĜR
− − ĜA

−)[4 + Tn(ĜR
−ĜR

+ + ĜA
−ĜA

+ − 2)]]

(4 + Tn({ĜR−, ĜR+} − 2))(4 + Tn({ĜA−, ĜA+} − 2))
, (36)

gY (ε) = − e2

4π

∑
n

TnSp[8(ĜR
−ĜA

+τ̂3 + ĜR
+ĜA

−τ̂3) + 4Tn(ĜR
+ − ĜR

−)(ĜA
+ − ĜA

−)τ̂3 + Tn[ĜR
−, ĜR

+][ĜA
−, ĜA

+]τ̂3]

(4 + Tn({ĜR−, ĜR+} − 2))(4 + Tn({ĜA−, ĜA+} − 2))
. (37)

134501-4



PHASE-COHERENT THERMOELECTRICITY AND … PHYSICAL REVIEW B 103, 134501 (2021)

0 xx̃

Î
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FIG. 3. A normal wire attached to a superconducting terminal.

In the tunneling limit Tn 	 1, Eqs. (14) reduce to
Kupriyanon-Lukichev boundary conditions [37]. In this limit,
the spectral supercurrent jε and the interface conductances
gL,T,Y in Eqs. (30)–(32) reduce to

jε = GN

8Aσ
Sp(τ̂3[ĜR

−, ĜR
+] − τ̂3[ĜA

−, ĜA
+]), (38)

gT (ε) = GN

8
Sp(ĜR

+ − τ̂3ĜA
+τ̂3)(ĜR

− − τ̂3ĜA
−τ̂3), (39)

gL(ε) = GN

8
Sp(ĜR

+ − ĜA
+)(ĜR

− − ĜA
−), (40)

gY (ε) = −GN

8
Sp(ĜR

−ĜA
+τ̂3 + ĜR

+ĜA
−τ̂3), (41)

where GN = (e2/π )
∑

n Tn is the normal-state interface con-
ductance.

We observe that the matrix relation between the distribu-
tion functions at the opposite sides of the interface barrier (30)
has the same structure as Eq. (22) we derived for a quasi-one-
dimensional wire. Hence, the circuit theory developed here
allows to treat both diffusive wires and interface barriers on
equal footing, thereby greatly simplifying the whole consider-
ation. With the aid of the above equations it already becomes
straightforward to evaluate the quasiparticle distribution func-
tions everywhere inside our system, as it will be demonstrated
below.

3. Subgap electron transport

Owing to the absence of quasiparticle states in both ter-
minals S1 and S2 at subgap energies the matrix conductance
of an SN interface acquires a particularly simple structure
at such energies. Let Ǧ− be the bulk Green function for a
superconducting terminal. Employing the condition ĜR

− = ĜA
−

applicable at subgap energies we observe from Eqs. (34), (36),
and (37) that the gL component of the matrix conductance
vanishes identically, while its gY component is linked to the
spectral current jε by means of a simple formula

jε = 2

Aσ
gY . (42)

Making use of the above relations we conclude that at subgap
energies the matrix conductance for the SN interface can be
parametrized by the two spectral conductances gT and Gj , i.e.,

Ĝ−+ =
(−gT 0

Gj 0

)
, Ĝ+− =

(
gT Gj

0 0

)
. (43)

Considering now a normal wire connected to the supercon-
ducting terminal via some barrier (Fig. 3) and employing the
Kirchhoff rule for series resistances derived in Appendix A

one can evaluate the effective subgap matrix conductance for
a complex resistor consisting of both the interface barrier and
the attached normal wire. After a simple calculation we obtain

Ĝ0,x =
(−G 0

Gj 0

)
, Ĝx,0 =

(
G Gj

0 0

)
, (44)

where G(ε) is a spectral parameter characterizing both the
interface and the normal wire. Note that the above structure
of the subgap matrix conductance is by no means accidental
being consistent with the fundamental observation stating that
the heat spectral current εIL vanishes identically at subgap
energies.

For fully transparent interfaces the boundary conditions
(14) reduce to a simple continuity condition for the Green
functions across the interface which reads as Ǧ− = Ǧ+. In
this case the functions Y and DL vanish at the SN interface
and, hence, the matrix D̂ becomes singular at this interface.
Hence, special care should be taken while evaluating the sub-
gap matrix conductance of the normal wire attached directly to
the superconducting electrode. In Appendix C we demonstrate
that the matrix conductance structure in Eq. (44) remains
preserved also in this particular case.

IV. THERMOELECTRIC AND JOSEPHSON EFFECTS

Let us now employ the above circuit theory formalism in
order to describe phase-coherent thermoelectric and Joseph-
son effects in Andreev interferometers displayed in Fig. 1.

As we already indicated above, keeping the normal ter-
minals N1 and N2 at different temperatures T1 and T2 one
drives the quasiparticle distribution functions inside our struc-
ture out of equilibrium which in general makes the whole
problem rather difficult to deal with. Some simplifications
can be achieved provided we assume that the order-parameter
value |�| in both superconducting terminals strongly exceeds
both temperatures T1,2 and thermoelectric voltages eV1,2 as
well as the characteristic Thouless energy of our structure
ETh = D/L2 (where L = Lp + LS1 + LS2 ) along with tempera-
ture T of both superconducting terminals. Except pointed out
otherwise, below we will adopt this assumption which allows
to disregard the effect of overgap quasiparticles and focus our
attention only on subgap electron transport.

Further drastic simplifications are achieved if we make use
of Eq. (22) which allows us to write the relations between the
matrix currents and the matrix distribution functions for each
of the five wires in our structure. We obtain

(
GS1 Gj

0 0

)
Ĥp1 = −eÎS1 , (45)(

GS2 −Gj

0 0

)
Ĥp2 = −eÎS2 , (46)

ĜN1

(
ĤN1 − Ĥp1

) = eÎN1 , (47)

ĜN2

(
ĤN2 − Ĥp2

) = eÎN2 , (48)

Ĝp1 p2 Ĥp1 + Ĝp2 p1 Ĥp2 = −eÎp, (49)
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where Ĥp1 and Ĥp2 are the matrix distribution functions at the
nodes p1 and p2 and the spectral matrix conductances ĜN1,2 ,
Ĝp1 p2 , and Ĝp2 p1 can be expressed in the form

ĜN1,2 =
(

GT
N1,2

GY
N1,2

−GT
N1,2

GL
N1,2

)
, (50)

Ĝp1 p2 = −
(

GT
p GY

p − Gj/2

−GY
p − Gj/2 GL

p

)
, (51)

Ĝp2 p1 =
(

GT
p GY

p + Gj/2

−GY
p + Gj/2 GL

p

)
. (52)

The distribution functions ĤN1,2 inside the normal terminals
read as

ĤN1,2 =
(

hT
N1,2

hL
N1,2

)
, (53)

hT
N1,2

= 1

2

[
tanh

ε + eV1,2

2T1,2
− tanh

ε − eV1,2

2T1,2

]
, (54)

hL
N1,2

= 1

2

[
tanh

ε + eV1,2

2T1,2
+ tanh

ε − eV1,2

2T1,2

]
. (55)

In addition, it is necessary to employ the continuity conditions
(26) for the matrix current at the crossing points p1 and p2,
i.e.,

ÎS1 + ÎN1 = Îp, ÎS2 + ÎN2 + Îp = 0. (56)

Making use of the above system of linear equations one can
evaluate the matrix distribution functions Ĥp1 and Ĥp2 as well
as the matrix currents depending on the distribution functions
hT,L

N1,2
in the normal terminals. Then, one can derive the general

expressions for thermoelectric voltages V1, V2 along with the
supercurrent IS as functions of the phase difference χ = χ1 −
χ2 between the superconducting electrodes, temperatures T1

and T2, and other relevant parameters.

A. Symmetric structures

Let us focus our attention on a special case of symmetric
interferometers in which case the whole analysis becomes
simpler due to the presence of extra symmetry conditions.
Setting LN1 = LN2 ≡ LN , LS1 = LS2 ≡ LS , AN1 = AN1 ≡ AN ,
and AS1 = AS1 ≡ AS we gain extra relations between spectral
conductances for different wire segments:

GS1 = GS2 = GS, (57)

GT,L
N1,2

= GT,L
N , (58)

GY
N1

= −GY
N2

= GY
N , GY

p = 0. (59)

With the aid of these relations it becomes possible to decouple
the equations for the combinations of the distribution func-
tions Ĥp1 ± τ̂3Ĥp2 and write(

GS + GT
N GY

N + Gj

−GY
N − Gj GL

N + 2GL
p

)(
Ĥp1 + τ̂3Ĥp2

)
= ĜN

(
ĤN1 + τ̂3ĤN2

)
(60)

and (
GS + GT

N + 2GT
p GY

N

−GY
N GL

N

)(
Ĥp1 − τ̂3Ĥp2

)
= ĜN

(
ĤN1 − τ̂3ĤN2

)
. (61)

These equations can easily be resolved providing the expres-
sions for Ĥp1 and Ĥp2 in terms of the terminal distribution
functions ĤN1 and ĤN2 .

The conditions (2) yield∫ (
GS + 2GT

p

)[
GL

N GT
N + (

GY
N

)2]
GL

N

(
GT

N + GS + 2GT
p

) + (
GY

N

)2

(
hT

N1
− hT

N2

)
dε = 0 (62)

and

∫ GT
N

(
2GSGL

p + G2
j

) + GS
[
GT

N GL
N + (

GY
N

)2]
(
GS + GT

N

)(
2GL

p + GL
N

) + (
Gj + GY

N

)2

(
hT

N1
+ hT

N2

)
dε

+
∫ GY

N

(
GS2GL

p + G2
j

)+ Gj
[
GT

N GL
N + (

GY
N

)2]
(
GS + GT

N

)(
2GL

p + GL
N

)+ (
Gj + GY

N

)2

(
hL

N1
− hL

N2

)
dε = 0. (63)

The general expression for the supercurrent IS can be derived from Eq. (45) together with matrix distribution function Ĥp1

evaluated from Eqs. (60) and (61). We obtain

eIS = −1

4

∫ {
GS

[
GT

N GL
N + (

GY
N

)2] − GjG
Y
N

(
GS + 2GT

p

)
GL

N

(
GT

N + GS + 2GT
p

) + (
GY

N

)2

(
hT

N1
− hT

N2

) + Gj
(
hL

N1
+ hL

N2

)}
dε. (64)

Let us emphasize that Eqs. (62)–(64) involve no approxima-
tions and represent a full solution of the problem of the subgap
electron transport in symmetric Andreev interferometers dis-
played in Fig. 1. Equations (62) and (63) allow to evaluate
the thermoelectric voltages V1,2 induced in the normal termi-
nals, while Eq. (64) determines the Josephson current flowing

between the superconducting terminals S1 and S2 in the pres-
ence of a temperature gradient applied to normal ones N1

and N2.
Below we will specifically address the limits of sufficiently

high and low temperatures and explicitly resolve Eqs. (62)–
(64) in these two limits.
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B. High-temperature limit

We first consider the high-temperature limit T1,2 � ETh. It
is easy to observe that in this limit energies |ε| ∼ T1,2 provide
the main contribution to the integral in Eq. (62). In this case
the spectral conductances GY

N are exponentially small and,
hence, can be disregarded, the conductances GT

p and GT
N in

Eq. (62) can simply be replaced by their normal-state values,
respectively Gn

p and Gn
N , and, finally, the conductance GS can

be taken in the form [3]

GS � Gn
S

(
1 + α

LS

√
D

|ε|

)
, α � 0.29 (65)

where Gn
S is the corresponding normal-state conductance.

Performing all these manipulations in Eq. (62), combining
it with Eqs. (54), introducing the voltages V = (V1 + V2)/2,
δV = V1 − V2, and making use of the inequality |δV | 	 |V |

that holds in the high-temperature limit considered here, one
arrives the following relation between V and δV :

δV

V
= − αIGn

N Gn
S(

Gn
N + Gn

S + 2Gn
p

)(
Gn

S + 2Gn
p

)
× L

LS

√
ETh

2

(
1√
T1

− 1√
T2

)
, (66)

where

I =
∫ ∞

0

dx√
x cosh2 x

= 2(1 − 1/
√

8)√
π

ζ (3/2) ≈ 1.9. (67)

In order to evaluate the thermoelectric voltage V it is nec-
essary to employ Eq. (63) combined with Eqs. (54) and (55).
In the leading order in the parameter ETh/T1,2 	 1 it suffices
to replace the combination in front of hT

N1
+ hT

N2
in Eq. (63) by

its normal-state value. Then, after simple algebra we obtain

V = 1

2

Gn
N

Gn
S

(
2Gn

p + Gn
N

) [IJ (T1, χ ) − IJ (T2, χ )] +
(

1

T1
− 1

T2

) ∫
[KY (ε, χ ) + Kj (ε, χ )]ε dε, (68)

KY (ε, χ ) = −Gn
S + Gn

N

8eGn
SGn

N

GY
N

(
2GSGL

p + G2
j

)
(
GS + GT

N

)(
2GL

p + GL
N

) + (
Gj + GY

N

)2 , (69)

Kj (ε, χ ) = − Gj

8eGn
S

[
GT

N GL
N + (

GY
N

)2

(
GS + GT

N

)(
2GL

p + GL
N

) + (
Gj + GY

N

)2

Gn
S + Gn

N

Gn
N

− Gn
N(

2Gn
p + Gn

N

)
]
, (70)

where IJ (T, χ ) is the equilibrium Josephson current in our
structure at temperature T . Note that the first term in Eq. (68)
proportional to the difference of the Josephson currents
IJ (T1, χ ) − IJ (T2, χ ) agrees with that previously derived by
Virtanen and Heikkilä [25] whereas the last term ∝1/T1 −
1/T2 does not coincide with the corresponding extra contri-
bution to V found in that work. We observe that the kernel KY
(69) is fully determined by electron-hole asymmetry in the
spectrum, and it vanishes identically provided this asymmetry
is absent. In contrast, the kernel Kj (70) has a mixed origin
and remains nonzero even if electron-hole symmetry would
be restored.

Now, let us specify the expression for the Josephson cur-
rent IS in the presence of a temperature gradient T1 − T2. In
the limit T1,2 � ETh, Eq. (64) reduces to

IS = 1

2
[IJ (T1, χ ) + IJ (T2, χ )]

− 1

4e

∫ GS
[
GT

N GL
N + (

GY
N

)2] − GjG
Y
N

(
GS + 2GT

p

)
GL

N

(
GT

N + GS + 2GT
p

) + (
GY

N

)2

× (
hT

N1
− hT

N2

)
dε. (71)

The last term in Eq. (71) can be significantly simplified mak-
ing use of Eq. (62). With this in mind after some algebraic
manipulations from Eq. (71) we obtain

IS = 1
2 [IJ (T1, χ ) + IJ (T2, χ )] + Gn

pδV. (72)

Equations (66), (68), and (72) provide the expressions both
for thermoelectric voltages V and δV and for the Josephson
current IS which are formally exact in the high-temperature

limit T1,2 � ETh. They also illustrate an intimate relation be-
tween thermoelectric and Josephson effects in the presence of
a temperature gradient.

In the above expressions one can identify the two types of
terms, quasiequilibrium and nonequilibrium ones. Quasiequi-
librium terms contain the combinations IJ (T1) ± IJ (T2) which
decay exponentially at temperatures exceeding ETh. Thus, at
sufficiently high values of T1,2 these quasiequilibrium terms
can be safely neglected and the expressions for V , δV , and IS

will be dominated by nonequilibrium ones which, according
to Eqs. (66), (68), and (72), yield slower (power-law) temper-
ature dependencies, i.e.,

V ∝ 1

T1
− 1

T2
(73)

and

δV ∝ IS ∝
(

1

T1
− 1

T2

)(
1√
T2

− 1√
T1

)
. (74)

We also note that in the limit Lp → 0 both thermoelec-
tric voltages V and δV vanish identically together with the
nonequilibrium contribution to the supercurrent IS . These ob-
servations fully agree with the results derived earlier for the
case of symmetric X junctions [14].

In order to specify the quasiequilibrium contributions to
both thermoelectric voltages and the Josephson current it
suffices to simply evaluate the equilibrium supercurrent IJ

at a given temperature T � ETh. This task can easily be
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accomplished (see Appendix D) with the result

IJ (T, χ ) = 128

3 + 2
√

2

ETh

eL

A2
SApσ

(AS + AN + Ap)2
sin χ

×
(

2πT

ETh

)3/2

e−√
2πT/ETh , (75)

which reduces to the standard expression for the super-
current in SNS junctions [7,8] provided we set Ap = AS

and AN → 0.
The remaining nonequilibrium terms originating from the

last term in Eq. (68) contain certain combinations of the
spectral conductances (69) and (70) integrated over energy.
Hence, explicit evaluation of such terms requires solving the
Usadel equations at all energy values. While at small and large
energies (as compared to the Thouless energy) this problem
can be handled analytically, for energies |ε| ∼ ETh only a
numerical solution is possible. In order to proceed we first
evaluate the nonequilibrium terms in Eqs. (66), (68), and
(72) approximately employing analytic results for the spectral
conductances derived at higher energies |ε| > ETh and then
combine these approximate results with a numerically exact
calculation.

Notice that in the interesting for us high-energy limit |ε| �
ETh, the kernels (69) and (70) can be significantly simplified.
In this limit we can neglect higher powers of Gj and GY

conductances and replace GT,L
N,p by its normal-state values.

Moreover, GS can be replaced by Gn
S in the KY kernel whereas

in the Kj kernel it is necessary to keep the correction term for
GS . As a result we obtain

KY � − GY
N

4e
(
2Gn

p + Gn
N

) Gn
p

Gn
N

, (76)

Kj � − Gn
N Gj

(
Gn

S − GS
)

8eGn
S

(
2Gn

p + Gn
N

)(
Gn

S + Gn
N

) . (77)

Here the expression for GS is defined in Eq. (65), whereas the
conductances Gj and GY

N can easily be recovered employing
the solution of the Usadel equations at higher energies |ε| �
ETh worked out in Appendix D [cf. Eqs. (D13) and (D14)].
Substituting Eqs. (65), (D13), and (D14) into Eqs. (76) and
(77), combining the latter two equations with Eq. (68) and
formally extending the integral over ε to all energies we arrive
at the following result for the symmetric part of the induced
thermoelectric voltage:

V = 1

2

Gn
N

Gn
S

(
2Gn

p + Gn
N

) [IJ (T1, χ ) − IJ (T2, χ )]

+ 32

3 + 2
√

2

E2
Th sin χ

e
(
2Gn

p + Gn
N

)(
1

T1
− 1

T2

)
σA2

SAp

(AS +AN +Ap)2

×
{

4Ap

(AS + AN + Ap)

L4
(
3L2 − L2

p

)
LN

(
L2 + L2

p

)3 − 3αGn
N

LS
(
Gn

S + Gn
N

)
}

,

(78)

where IJ (T, χ ) is defined in Eq. (D1). The asymmetric part of
the thermoelectric voltage δV and the supercurrent IS are then
defined, respectively, by Eqs. (66) and (72) combined with
Eq. (78).

FIG. 4. Symmetric part of the thermoelectric voltage V as a
function of temperature T2. Solid line corresponds to a numerically
exact solution of the Usadel equation, short dashed line indicates our
analytic result in Eq. (78), dotted and long dashed lines represent
Eq. (68) combined with exact and approximate expressions for KY
and Kj defined, respectively, in Eqs. (69) and (70) and in Eqs. (76)
and (77). The chosen parameter values T1 = 40ETh, χ = π/2, LN =
LS = Lp = L/3, and AS = AN = Ap remain the same for all curves.

From the above results we observe that at high tempera-
tures T1,2 � ETh, symmetric Andreev interferometers exhibit
purely sinusoidal dependence of both thermoelectric voltages
V and δV as well as the supercurrent IS on the Josephson phase
χ , i.e., V ∝ δV ∝ IS ∝ sin χ . Provided the nonequilibrium
contribution Gn

pδV in Eq. (72) exceeds the quasiequilibrium
one, the sign of the supercurrent IS is negative for any positive
value of the combination in the curly brackets in Eq. (78).
Hence, in this case the system is driven into a π -junction state
[cf. also Eq. (74)].

In order to verify the accuracy of the employed simple ap-
proximations we also evaluated the thermoelectric voltages V
and δV numerically by directly solving the Usadel equations.
The corresponding results are displayed in Figs. 4 and 5 as
functions of temperature for one of the two normal terminals
together with our analytic estimates for V and δV . For both
these quantities we observe a remarkably good agreement

FIG. 5. Asymmetric part of the thermoelectric voltage δV as a
function of T2. Solid line corresponds to a numerically exact solution
of the Usadel equation, dashed line indicates our analytic result
defined in Eq. (66) combined with Eq. (78). The parameter values
are the same as in Fig. 4.
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between numerically exact results and those defined by our
Eqs. (78) and (66).

Note that the first and the second terms in curly brackets
in Eq. (78) originate, respectively, from KY and Kj terms. We
verified that our simple approximation (76) for KY remains
sufficiently accurate in a wide range of parameters of our
structure. At the same time, the approximation (77) for Kj

may sometimes become less accurate since the high-energy
expansion in Eq. (65) is not supposed to work well at lower
energies |ε| � ETh.

C. Lower temperatures

Let us now briefly address the opposite low-temperature
limit T1,2 	 ETh. In this limit the integrals in Eqs. (62) and
(63) are restricted to energy intervals where all spectral con-
ductances behave as smooth functions of energy and with a
good accuracy can be expanded in Taylor series near ε = 0.
Below we will also make use of the fact that diagonal elements
of the matrix conductances are even functions of ε, whereas
their off-diagonal elements are odd functions of energy.

At temperatures well below the Thouless energy ETh, the
combination of spectral conductances in front of the term
(hT

N1
− hT

N2
) under the energy integral in Eq. (62) can be sim-

plified and replaced by(
Gn

S + 2Gn
p

)
Gn

N(
Gn

N + Gn
S + 2Gn

p

) [1 + c(ε/ETh)2], c ∼ 1. (79)

Then, Eq. (62) yields

δV

V
= −π2c

3

T 2
1 − T 2

2

E2
Th

, (80)

i.e., for symmetric interferometers the inequality |δV | 	 |V |
holds also in the low-temperature limit T1,2 	 ETh.

As before, the symmetric part of the thermoelectric voltage
V can be derived from Eq. (63). Making use of the fact that
the spectral conductances GS and GT

N,p evaluated in the zero-
energy limit exactly coincide with their normal-state values
due to the so-called reentrance effect [3,38,39] we obtain

V = π2

12

(
GY

N

)′
Gn

S2GL
p(0) + G′

jG
n
N GL

N (0)

eGn
SGn

N

[
2GL

p(0) + GL
N (0)

] (
T 2

1 − T 2
2

)
. (81)

Here and below, GL
p,N (0) define the spectral conductances

in the zero-energy limit while (GY
N )′ and G′

j represent the
derivatives of the corresponding spectral conductances with
respect to energy at ε = 0. For the supercurrent IS we get

IS = 1

2
[IJ (T1, χ ) + IJ (T2, χ )] + π2

6
V

T 2
1 − T 2

2

E2
Th

G̃, (82)

where V and G̃ are defined, respectively, in Eqs. (81) and
(D15). Having in mind that at low T the temperature depen-
dence of the equilibrium supercurrent is determined by the
expression

IJ (T, χ ) � IJ (0, χ ) + π2

6
G′

jT
2, G′

j < 0 (83)

we conclude that in this limit the leading T -dependent cor-
rection to the supercurrent behaves as ∼−(T 2

1 + T 2
2 )/E2

Th

FIG. 6. Thermoelectric voltages V and δV as functions of tem-
perature T2 for T1 = T = 0.1ETh, χ = π/2, |�| = ETh, LN = LS =
Lp = L/3, and AS = AN = Ap. Solid lines correspond to numer-
ically exact solutions of the Usadel equation while dashed lines
display analytic results for V (81) and δV (80), where the prefactors
are also evaluated numerically.

and originates from the quasiequilibrium contribution to IS .
At the same time, the nonequilibrium terms produce only a
subleading correction ∼(T 2

1 − T 2
2 )2/E4

Th which can be safely
neglected in the low-temperature limit.

Qualitatively the same conclusion holds also in the limit
T1 	 ETh 	 T2 in which case IS is again dominated by the
quasiequilibrium contribution IS � IJ (T1, χ )/2. Let us also
remind the reader that everywhere in the above analysis we
merely addressed the most relevant limit of not too short
metallic wires with ETh 	 |�|. It is easy to demonstrate that
the latter condition can actually be relaxed while Eqs. (80),
(81), and (82) will remain applicable also at ETh � |�|
(though still for T1,2, T 	 |�|). In this case one should be
somewhat more cautious since the contribution of quasiparti-
cles with overgap energies should also be taken into account.
Fortunately, however, at |ε| � T1,2, T the spectral current IT

depends neither on temperature nor on thermoelectric voltages
V1,2, i.e., eIT = −Gjsgnε. Combining this expression for IT

with Eq. (64) we again arrive at Eq. (D15).
In Fig. 6 we compare Eqs. (81) and (80) for the thermoelec-

tric voltages V and δV as functions of T2 with numerically
exact results for these quantities obtained directly from the
Usadel equation. We observe that at low temperatures our an-
alytic results indeed remain very accurate and start deviating
from numerical curves at T2 � 0.2ETh.

D. Asymmetric structures

Our general approach can also be applied in order to
describe both thermoelectric and nonequilibrium Josephson
effects in asymmetric Andreev interferometers presented in
Fig. 1. The resulting expressions for V1, V2, and IS , which
provide a complete solution of our problem in this general
case, turn out to be rather lengthy and cumbersome. For that
reason both the final results and their derivation are relegated
to Appendix E. For symmetric structures these general results
reduce to the corresponding expressions found above.

The behavior of asymmetric Andreev interferometers is in
many respects qualitatively similar to that of asymmetric X
junctions [14,34]. At high temperatures T1,2 � ETh coherent
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thermoelectric voltages V1 and V2 generated at two normal
metallic electrodes N1 and N2 in the presence of a temperature
gradient are defined in Eqs. (E14) and (E15). Similarly to the
symmetric case, for asymmetric structures both thermoelec-
tric voltages V1,2 depend periodically on the phase difference
χ and can be represented as a sum of a quasiequilibrium
contribution ∝IJ (χ, T1) − IJ (χ, T2) and a nonequilibrium one
being proportional to 1/T1 − 1/T2 and dominating the result at
higher temperatures. In contrast to symmetric structures, here
the voltage difference δV = V1 − V2 is not anymore small and
can be of the same order as the voltage V = (V1 + V2)/2 itself.

The Josephson current IS in the limit T1,2 � ETh is given
by Eq. (E18) which also consists of quasiequilibrium terms
[defined as a sum of IJ (χ, T1) and IJ (χ, T2) “weighted”
by certain combinations of normal-state wire conductances]
and nonequilibrium ones decaying as ∝1/T1 − 1/T2. At high
enough temperatures this nonequilibrium contribution ex-
ceeds the quasiequilibrium one, thereby signaling about the
possibility of a π -junction state. For strongly asymmetric
structures and high temperatures the absolute value of IS can
be rather large and may even reach the same order of magni-
tude as the equilibrium Josephson current at T → 0 (cf. [34]).

At low temperatures T1,2 	 ETh both quasiequilibrium and
nonequilibrium contributions to V1 and V2 are defined in
Eqs. (E20) and (E21) and have the same temperature depen-
dence ∝T 2

1 − T 2
2 . The Josephson current IS is expressed by

Eq. (E22). Combining this result with Eq. (83) we obtain
IS � IJ (0, χ ) minus small terms proportional to T 2

1 and T 2
2

associated with the temperature correction to the Josephson
current (83) plus an extra term ∝T 2

1 − T 2
2 of a nonequilibrium

origin. The latter term turns out to be parametrically larger
than that for symmetric structures.

V. CONCLUSIONS

We worked out a detailed theory describing a nontrivial
interplay between proximity-induced quantum coherence and
nonequilibrium effects in Andreev interferometers exposed
to an arbitrary temperature gradient. We elaborated a cir-
cuit theory applying it to the analysis of quantum coherent
effects in the network of interconnected diffusive quasi-one-
dimensional normal wires attached to external normal and
superconducting terminals. We formulated transparent rules
of the circuit theory resembling the standard Kirchhoff rules
well known in the circuit electrodynamics. Our theory allows
to explicitly derive the solution for the kinetic Usadel equation
in terms of the spectral conductances. One of the key advan-
tages of our approach is that it enables one to unambiguously
identify different contributions responsible for a variety of
physical phenomena involved in our problem.

We demonstrated that the thermoelectric voltage response
V to an externally imposed temperature gradient T1 − T2 de-
pends periodically on the superconducting phase difference
χ and is determined by the two groups of terms originat-
ing from different physical mechanisms. One of them is the
quasiequilibrium contribution proportional to the difference
of the equilibrium Josephson currents IJ (χ, T1) − IJ (χ, T2).
This contribution exactly coincides with that identified pre-
viously [25]. It plays a significant role as long as at least
one of the two temperatures, T1 or T2, remains below an

effective Thouless energy ETh of our device. At the same time,
this quasiequilibrium contribution decays exponentially with
increasing temperature and eventually becomes vanishingly
small in the limit T1,2 � ETh.

The thermoelectric response, however, does not vanish
in this limit because of another contribution of essentially
nonequilibrium origin. This nonequilibrium contribution in-
volves different terms both related and unrelated to particle-
hole asymmetry generated by the temperature gradient. As a
result, with increasing temperature the thermoelectric voltage
signal decays only as a power law eV ∼ E2

Th|1/T1 − 1/T2|
and dominates the system behavior at high enough temper-
atures. We also note the thermoelectric response varies for
two metallic terminals N1 and N2. At high temperatures the
corresponding voltage difference δV = V1 − V2 is parametri-
cally smaller and decays faster than V in the case of symmetric
structures [cf. Eq. (74)], whereas in asymmetric interferome-
ters δV gets larger and may reach the same order of magnitude
as V .

We also investigated the Josephson current IS flowing
across our hybrid structure between two superconducting
terminals. Unlike in the equilibrium case, here both the mag-
nitude of this current and its sign can be controlled not only by
the phase difference χ and temperature, but also by the tem-
perature gradient T1 − T2 applied to normal terminals of our
device. Similarly to the thermoelectric signal, the Josephson
current is determined by a sum of two different contributions:
quasiequilibrium and nonequilibrium ones. The first contri-
bution takes a simple form aIJ (χ, T1) + bIJ (χ, T2), where
a + b = 1 and, in particular, a = b = 1

2 for symmetric inter-
ferometers. The second, nonequilibrium, contribution gains
importance at higher temperatures and dominates the super-
current IS in the limit T1,2 � ETh where it decays as a power
law with increasing T1,2 in contrast to exponentially decaying
equilibrium Josephson current. It is remarkable that in the
presence of a temperature gradient IS can strongly exceed IJ

evaluated at any of the two temperatures T1 or T2.
This supercurrent stimulation effect is directly related

to the presence of nonequilibrium low-energy quasiparticles
inside our device which suffer little dephasing while propagat-
ing between superconducting terminals. Note that a somewhat
similar situation is encountered for the Aharonov-Bohm effect
in superconducting-normal metallic heterostructures [39,40]
and for the effect of supercurrent stimulation in long SNS
junctions exposed to an external rf signal [41,42]. In both
these cases, long-range phase coherence is also maintained
due to nonequilibrium quasiparticles with energies below ETh

propagating inside the structure almost with no phase relax-
ation.

Yet another interesting phenomenon is the possibility of
switching our device to the π -junction state by creating
nonequilibrium quasiparticles with the aid of a temperature
gradient. Combining this effect with supercurrent stimulation
one can realize a comparably large [cf., e.g., Eq. (1)] π -shifted
Josephson current well observable in the limit T1,2 � ETh.
Previously, a similar Josephson current inversion effect was
discussed in the context of driving the electron distribution
function out of equilibrium by applying an external voltage
bias Vx to normal terminals [10–13]. Unlike here, how-
ever, in that case the magnitude of the supercurrent remains
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FIG. 7. Resistors connected in parallel (a) and in series (b).

exponentially small for eVx, T � ETh [10]. Supercurrent stim-
ulation with an external voltage bias can nevertheless become
possible in more complicated configurations where nonequi-
librium quasiparticles are supplied, e.g., by an extra normal
terminal [43].

Actually, one can also combine both these physical sit-
uations by simultaneously exposing normal terminals to
temperature gradient and voltage bias. In this case, thermo-
electric voltages V1,2 should obey an obvious constraint V1 −
V2 = Vx and the current conservation condition IN1 + IN2 = 0
should hold. Elaborating the circuit theory analysis devel-
oped here and observing these additional constraints it is
straightforward to find both induced thermoelectric voltages
V1, V2 and the Josephson current IS as functions of the phase
difference χ , temperatures T1,2, bias voltage Vx, and other
parameters. This task, however, goes beyond the frames of
this work.

The results presented here demonstrate that low-
temperature transport properties of superconducting hybrid
nanostructures, such as Andreev interferometers, can be
controlled and manipulated by means of a temperature
gradient. This observation may create a variety of
opportunities for novel applications of such structures in such
fields as superconductivity-based quantum nanoelectronics,
phase-coherent caloritronics, and metrology.

APPENDIX A: KIRCHHOFF RULES FOR
MATRIX CONDUCTANCES

Let us establish simple Kirchhoff rules for matrix con-
ductances of metallic wires connected either in parallel or in
series. Consider first a circuit displayed in Fig. 7(a). In this
case the total matrix current Î equals to a sum of the matrix
currents in each of the two branches connected in parallel, i.e.,
Î = Îa + Îb. Employing Eq. (22) in both “a” and “b” branches

Ĝa,12Ĥ (1) + Ĝa,21Ĥ (2) = −eÎa, (A1)

Ĝb,12Ĥ (1) + Ĝb,21Ĥ (2) = −eÎb, (A2)

we immediately obtain

Ĝ12Ĥ (1) + Ĝ21Ĥ (2) = −eÎ, (A3)

where total conductances Ĝ12 and Ĝ21 read as

Ĝ12 = Ĝa,12 + Ĝb,12, Ĝ21 = Ĝa,21 + Ĝb,21. (A4)

Î2c

Î1c

Î3c

Î2c

Î1c

Î3c

2

1
3

c
Î12 Î23

Î31

Î2c

Î1c

Î3c

2

1
3

⇔

FIG. 8. Y-shaped and �-shaped circuits.

We observe that these relations for matrix conductances are
identical to those for equivalent conductance of two normal
resistors connected in parallel.

In the case of the wires connected in series [see Fig. 7(b)],
Eq. (22) can be written separately for each wire segment. We
have

Ĝ12Ĥ (1) + Ĝ21Ĥ (2) = −eÎ, (A5)

Ĝ23Ĥ (2) + Ĝ32Ĥ (3) = −eÎ. (A6)

Combining these two equations, we obtain

Ĝ13Ĥ (1) + Ĝ31Ĥ (3) = −eÎ, (A7)

where the matrix conductances Ĝ13 and Ĝ31 read as

Ĝ−1
13 = Ĝ−1

12 − Ĝ−1
12 Ĝ21Ĝ−1

23 , (A8)

Ĝ−1
31 = Ĝ−1

32 − Ĝ−1
32 Ĝ23Ĝ−1

21 . (A9)

In the absence of superconductivity the matrix conductances
are symmetric (Ĝi j = Ĝ ji) being proportional to the unity
matrix [cf. Eq. (25)]. In this limit Eqs. (A8) and (A9) simply
reflect the standard rules for equivalent conductance of two
normal resistors connected in series.

APPENDIX B: Y-� TRANSFORMATION

It is well known that a Y-shaped circuit composed of nor-
mal resistors can be transformed to a �-shaped circuit of such
resistors and vice versa. This Y-� transformation can be di-
rectly generalized to the case of matrix resistances considered
here. Employing Eq. (22) for the Y-shaped circuit displayed
in the left part of Fig. 8, we have

Ĝ1cĤ1 + Ĝc1Ĥc = −eÎ1c, (B1)

Ĝ2cĤ2 + Ĝc2Ĥc = −eÎ2c, (B2)

Ĝ3cĤ3 + Ĝc3Ĥc = −eÎ3c. (B3)

Making use of the matrix current conservation condition, we
obtain an extra equation for the matrix currents Îic:

Î1c + Î2c + Î3c = 0. (B4)
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In the case of the �-shaped circuit displayed in the right
part of Fig. 8 the relations between the matrix currents and
the matrix distribution functions take the form

Ĝ12Ĥ1 + Ĝ21Ĥ2 = −eÎ12, (B5)

Ĝ23Ĥ2 + Ĝ32Ĥ3 = −eÎ23, (B6)

Ĝ31Ĥ3 + Ĝ13Ĥ1 = −eÎ31, (B7)

whereas the matrix currents Îic read as

Î1c = Î12 − Î31, (B8)

Î2c = Î23 − Î12, (B9)

Î3c = Î31 − Î23. (B10)

It is easy to verify that the relations between the matrix
currents Îic and the matrix distribution functions Ĥi for the
�-shaped circuit governed by Eqs. (B5)–(B10) are equivalent
to Eqs. (B1)–(B3) for the Y-shaped circuit provided we set

Ĝ21 = −Ĝc1(Ĝc1 + Ĝc2 + Ĝc3)−1Ĝ2c, (B11)

Ĝ31 = Ĝc1(Ĝc1 + Ĝc2 + Ĝc3)−1Ĝ3c, (B12)

Ĝ12 = Ĝc2(Ĝc1 + Ĝc2 + Ĝc3)−1Ĝ1c, (B13)

Ĝ32 = −Ĝc2(Ĝc1 + Ĝc2 + Ĝc3)−1Ĝ3c, (B14)

Ĝ13 = −Ĝc3(Ĝc1 + Ĝc2 + Ĝc3)−1Ĝ1c, (B15)

Ĝ23 = Ĝc3(Ĝc1 + Ĝc2 + Ĝc3)−1Ĝ2c. (B16)

Note that the inverse transformation from the �-shaped
circuit to the Y-shaped one is not always possible. Under the
condition

Ĝ−1
31 Ĝ21Ĝ−1

23 Ĝ13Ĝ−1
12 Ĝ32 = −1, (B17)

this inverse transformation can be formulated. In this case it
reads as

Ĝ1c = Ĝ12 − Ĝ13 + Ĝ21Ĝ−1
23 Ĝ13, (B18)

Ĝ2c = Ĝ23 − Ĝ21 + Ĝ32Ĝ−1
31 Ĝ21, (B19)

Ĝ3c = Ĝ31 − Ĝ32 + Ĝ13Ĝ−1
12 Ĝ32, (B20)

Ĝc1 = Ĝ21 − Ĝ31 + Ĝ31Ĝ−1
32 Ĝ12, (B21)

Ĝc2 = Ĝ32 − Ĝ12 + Ĝ12Ĝ−1
13 Ĝ23, (B22)

Ĝc3 = Ĝ13 − Ĝ23 + Ĝ23Ĝ−1
21 Ĝ31. (B23)

APPENDIX C: MATRIX CONDUCTANCE
AT SUBGAP ENERGIES

At subgap energies |ε| < |�| the kinetic equation (20) for
the evolution operator Û becomes singular in the vicinity of
the interface between a superconducting terminal and a nor-
mal wire. This is because at such energies one has ĜR = ĜA

and, hence, the functions DL and Y vanish at the SN interface
together with the first derivative of DL.

In order to tackle this problem let us take a closer look
at the solution of Eq. (20) in the vicinity of this interface.
Expanding the kinetic coefficients DL,T and Y to the lowest

nonvanishing order in the distance to SN interface x and
making use of the identity ĜR(0) = ĜA(0), we get

D̂ ≈
(

dT jεx

− jεx dLx2

)
, (C1)

where dT = DT (0), dL = DL ′′(0)/2, and jε = Y ′(0). With
this in mind the equation for the evolution operator can be
solved explicitly, and we obtain

Û (x, x̃) =
(

dT dL + j2
ε x/x̃ −dL jε (x − x̃)

dT jε (1/x − 1/x̃) dT dL + j2
ε x̃/x

)
dT dL + j2

ε

. (C2)

The matrix conductance then reads as

Ĝx,x̃ = σA
x − x̃

(
dT jεx

− jε x̃ dLxx̃

)
(C3)

and, hence, we have

Ĝ0,x = σA
x

(−dT 0
jεx 0

)
, Ĝx,0 = σA

x

(
dT jεx
0 0

)
. (C4)

Combining the above results with the relation for the two ma-
trix conductances connected in series one can easily observe
that the matrix conductance of the whole wire has the same
structure as that in Eq. (44).

APPENDIX D: EQUILIBRIUM JOSEPHSON CURRENT
AND SPECTRAL CONDUCTANCES

In equilibrium the supercurrent IJ flowing across our struc-
ture can be derived from the equation

IJ (T, χ ) = −σA
2e

∫
jε tanh

ε

2T
dε, (D1)

where jε is the spectral current defined in Eq. (12) and the
cross section A equals to either Ap or AS depending on the
wire in which jε is evaluated. Accordingly, the task at hand
is to evaluate anomalous Green functions F R and F̃ R inside
all normal wires interconnecting superconducting and normal
terminals.

In general, this task can be accomplished only numerically
since quasiclassical Usadel equations constitute a complicated
system of coupled nonlinear differential equations. However,
in the high-energy limit Usadel equations can be simplified
and resolved analytically for an arbitrary network of quasi-
one-dimensional normal wires connected to each other and to
normal or superconducting terminals.

Let us assume that electron energy ε exceeds the Thouless
energy for any wire segment. In this case the Usadel equation
can be integrated straightforwardly from the superconducting
terminal deep into normal wire network. At relatively short
distances x 	 LS away from a superconducting terminal one
can safely disregard the effect of all other terminals and the
anomalous Green function can be expressed in the form

F R = −i
4y(1 − y2)

(1 + y2)2
eiχ , y = aSe−√−2iε/Dx, (D2)

aS (ε) = tan

[
1

4
arcsin

|�|√
|�|2 − ε2

]
, (D3)
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i
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FIG. 9. An example of the network formed by quasi-one-
dimensional normal wires attached to a superconducting terminal.

where � = |�|eiχ is the order parameter in the corresponding
superconducting terminal.

At distances away from S terminals exceeding
√

D/|ε|
one can linearize the Usadel equation everywhere inside the
network of normal wires

(F R)′′ − k2F R = 0, k =
√

−2iε/D (D4)

and the anomalous Green functions take exponentially small
values

F R = −4iaSe−√−2iε/Dxeiχ . (D5)

At larger distances from the superconducting terminal the
anomalous Green function F obeys Eq. (D4) which can be
integrated step by step along the normal wire network.

As an illustration, let us consider an arbitrary normal wire
segment xbxc with length L and cross-section area A (see
Fig. 9). A general solution of Eq. (D4) reads as

F R = C−e−k(x−xb) + C+ek(x−xb), (D6)

where one obviously has C+ 	 C−. Hence, with a good accu-
racy we can set

C− = F R(xb). (D7)

The prefactor C+ can be derived from the boundary conditions
at the point x = xc which include the continuity condition for
the Green function F R combined with the equation

A(F R(xc))′ =
∑

i

Ai
(
F R

i (xc)
)′

, (D8)

where the index i enumerates all normal wires attached to the
wire segment xbxc at the node xc. As a result, we obtain

C+ = F R(xb)
A − ∑

i Ai

A + ∑
i Ai

e−2kL (D9)

and, hence,

F R(xc) = F R(xb)
2A

A + ∑
i Ai

e−kL. (D10)

This equation together with Eqs. (D6), (D7), and (D9) allows
one to evaluate the anomalous Green functions everywhere
inside our structure.

Obviously, the above analysis can easily be generalized
to the network of normal wires connected to several super-
conducting terminals. In this case, the resulting anomalous
Green function everywhere inside this network is given by a
simple superposition of the contributions from each of these
terminals.

Turning back to the structure depicted in Fig. 1 and making
use of the above results, in the high-energy limit |ε| � ETh

we get

F R = − κASe−kLS eiχ1

AS + AN + Ap
e−kx − κASe−kLS eiχ2

AS + AN + Ap
e−k(Lp−x)

(D11)

in the central wire and

F R = − κASe−kLS eiχ1

AS + AN + Ap
e−kx − κASe−kLS eiχ2

AS + AN + Ap

× e−kLp
2Ap

AS + AN + Ap
e−kx (D12)

in the wire connected to the normal terminal N1. Here x
is a coordinate along the wire from the crossing point p1,
and κ = 8i/(1 + √

2). The anomalous Green function F̃ R is
recovered from the expressions (D11) and (D12) by inverting
their overall sign and performing the phase inversion χ1,2 ↔
−χ1,2. Substituting these results for F R and F̃ R into Eq. (12)
and evaluating the integral in Eq. (D1), we arrive at Eq. (75)
for the equilibrium Josephson current in our structure.

The spectral conductances Gj and GY
N can be evaluated

analogously. In the high-energy limit we obtain

Gj = 128

3 + 2
√

2

A2
SApσ

(AS + AN + Ap)2
sin χ

× k′e−k′L(cos k′L − sin k′L)sgnε (D13)

and

GY
N � −Gn

N

64

3 + 2
√

2

A2
SAp

(AS + AN + Ap)3

× sin χe−k′L sin k′Lp
1

k′LN
sgnε, (D14)

where we define L = 2LS + Lp and k′ = √|ε|/D.
Finally, we specify the expression for G̃ which enters

Eq. (82). It reads as

G̃ = E2
Th

[
1

4

(
GY

N

)′
G′

jG
n
S2GL

p(0) + (G′
j )

2Gn
N GL

N (0)

Gn
SGn

N

[
2GL

p(0) + GL
N (0)

] +
[
G′′

SGn
p − Gn

S

(
GT

p

)′′]
Gn

N GL
N (0) − (

Gn
S + 2Gn

p

)2
G′

j

(
GY

N

)′

GL
N (0)

(
Gn

N + Gn
S + 2Gn

p

)(
Gn

S + 2Gn
p

)
]
, (D15)

where G′′
S and (GT

p )′′ represent the second derivatives of the corresponding spectral conductances with respect to energy
at ε = 0.
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APPENDIX E: ASYMMETRIC INTERFEROMETERS

Let us apply our circuit theory approach to the analysis of subgap electron transport in Andreev interferometers displayed
in Fig. 1 making no assumption about their symmetry. Resolving the system of matrix equations (45)–(56) we can derive the
expressions for the matrix currents as functions of the electron distribution functions inside the terminals. We obtain

ÎN1 = ĜN1 P̂
[
ĜS1 + ĜS2 + (

ĜS2 + ĜN2 − τ̂+Gj
)
(Ĝp + τ̂1Gj/2)−1

(
ĜS1 − τ̂−Gj

)]
ĤN1 + Â

(
ĤN1 − ĤN2

)
, (E1)

ÎN2 = ĜN2 τ̂3P̂T τ̂3
[
ĜS1 + ĜS2 + (

ĜS1 + ĜN1 + τ̂+Gj
)
(Ĝp − τ̂1Gj/2)−1

(
ĜS2 + τ̂−Gj

)]
ĤN2 − τ̂3ÂT τ̂3

(
ĤN1 − ĤN2

)
, (E2)

where the matrices P̂ and Â read as

P̂ = [
ĜS1 + ĜS2 + ĜN1 + ĜN2 + (

ĜS2 + ĜN2 − τ̂+Gj
)
(Ĝp + τ̂1Gj/2)−1

(
ĜS1 + ĜN1 − τ̂−Gj

)]−1
, Â = ĜN1 P̂ĜN2 . (E3)

The currents IN1,2 flowing in the normal wires connected to the terminals N1 and N2 are defined by the formula

IN1,2 = 1

2

∫
IT
1,2dε. (E4)

Obviously, both these currents vanish provided the terminals are disconnected from any external circuit, i.e., the conditions (2)
apply which determine the thermoelectric voltages V1 and V2 induced at these terminals. In the high-temperature limit T1,2 � ETh,
the calculation of V1 and V2 is simplified since the prefactors in front of the distribution functions hT

N1,2
entering the general

expressions for IN1,2 can be replaced by their normal-state values. Then, we get

0 = IN1 = Gn
N1

Gn
p

(
Gn

S1
+ Gn

S2

) + (
Gn

S2
+ Gn

N2

)
Gn

S1(
Gn

S1
+ Gn

S2
+ Gn

N1
+ Gn

N2

)
Gn

p + (
Gn

S2
+ Gn

N2

)(
Gn

S1
+ Gn

N1

)V1

+ Gn
N1

Gn
N2

Gn
p[

Gn
p

(
Gn

S1
+ Gn

S2
+ Gn

N1
+ Gn

N2

) + (
Gn

S1
+ Gn

N1

)(
Gn

S2
+ Gn

N2

)] (V1 − V2) + 1

2e

∫
A12

[
hL

N1
− hL

N2

]
dε (E5)

and

0 = IN2 = Gn
N2

Gn
p

(
Gn

S1
+ Gn

S2

) + (
Gn

S1
+ Gn

N1

)
Gn

S2(
Gn

S1
+ Gn

S2
+ Gn

N1
+ Gn

N2

)
Gn

p + (
Gn

S2
+ Gn

N2

)(
Gn

S1
+ Gn

N1

)V2

− Gn
N1

Gn
N2

Gn
p[

Gn
p

(
Gn

S1
+ Gn

S2
+ Gn

N1
+ Gn

N2

) + (
Gn

S1
+ Gn

N1

)(
Gn

S2
+ Gn

N2

)] (V1 − V2) + 1

2e

∫
A21

[
hL

N1
− hL

N2

]
dε, (E6)

where A12 and A21 denote the off-diagonal elements of the matrix Â:

Â =
(

A11 A12

A21 A22

)
. (E7)

Resolving Eqs. (E5) and (E6), we obtain

V1 = − 1

2e

∫ [
Gn

p

(
Gn

S1
+ Gn

S2
+ Gn

N1

) + (
Gn

S1
+ Gn

N1

)
Gn

S2

]
A12 + Gn

pGn
N1

A21

Gn
N1

[(
Gn

S1
+ Gn

S2

)
Gn

p + Gn
S2

Gn
S1

] [
hL

N1
− hL

N2

]
dε, (E8)

V2 = − 1

2e

∫ [
Gn

p(Gn
S1

+ Gn
S2

+ Gn
N2

) + (
Gn

S2
+ Gn

N2

)
Gn

S1

]
A21 + Gn

pGn
N2

A12

Gn
N2

[(
Gn

S1
+ Gn

S2

)
Gn

p + Gn
S2

Gn
S1

] [
hL

N1
− hL

N2

]
dε. (E9)

Here, with a good accuracy one can neglect the voltage dependence of the distribution functions hL
N1,2

replacing them by their
equilibrium values hL

N1,2
= tanh[ε/(2T1,2)]. It is convenient to identically rewrite the matrix elements A12 and A21 in the form

A12 = 1

Qn

(
Gn

N1

)2(
Gn

S2
+ Gn

N2
+ 2Gn

p

)
Gn

N2
Gj/2 +

[
A12 − 1

Qn

(
Gn

N1

)2(
Gn

S2
+ Gn

N2
+ 2Gn

p

)
Gn

N2
Gj/2

]
, (E10)

A21 = 1

Qn

(
Gn

N2

)2(
Gn

S1
+ Gn

N1
+ 2Gn

p

)
Gn

N1
Gj/2 +

[
A21 − 1

Qn

(
Gn

N2

)2(
Gn

S1
+ Gn

N1
+ 2Gn

p

)
Gn

N1
Gj/2

]
, (E11)

where we explicitly extracted Gj terms with the prefactors replaced by their normal-state values. Here

Qn = [
Gn

p

(
Gn

S1
+ Gn

S2
+ Gn

N1
+ Gn

N2

) + (
Gn

S1
+ Gn

N1

)(
Gn

S2
+ Gn

N2

)][
Gn

p

(
Gn

N1
+ Gn

N2

) + Gn
N1

Gn
N2

]
(E12)
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is the normal-state value of the function

Q = det

∣∣∣∣∣ĜS1 + ĜS2 + ĜN1 + ĜN2 ĜS2 + ĜN2 − τ̂+Gj

ĜS1 + ĜN1 − τ̂−Gj −(Ĝp + τ̂1Gj/2)

∣∣∣∣∣. (E13)

With this in mind Eqs. (E8) and (E9) can be rewritten as

V1 = Gn
N1

Gn
N2

2

2Gn
p + Gn

S2[
Gn

p

(
Gn

N1
+ Gn

N2

) + Gn
N1

Gn
N2

][
Gn

p

(
Gn

S1
+ Gn

S2

) + Gn
S2

Gn
S1

] [IJ (T1, χ ) − IJ (T2, χ )]

− 1

4e

(
1

T1
− 1

T2

)
1

Gn
N1

[(
Gn

S1
+ Gn

S2

)
Gn

p + Gn
S2

Gn
S1

] ∫ {[
Gn

p

(
Gn

S1
+ Gn

S2
+ Gn

N1

) + (
Gn

S1
+ Gn

N1

)
Gn

S2

]
A12 + Gn

pGn
N1

A21

− Gn
N1

Gn
N2

2

Gn
N1

(
2Gn

p + Gn
S2

)
[
Gn

p

(
Gn

N1
+ Gn

N2

) + Gn
N1

Gn
N2

]Gj

}
ε dε, (E14)

V2 = Gn
N1

Gn
N2

2

2Gn
p + Gn

S1[
Gn

p

(
Gn

N1
+ Gn

N2

) + Gn
N1

Gn
N2

][
Gn

p

(
Gn

S1
+ Gn

S2

) + Gn
S2

Gn
S1

] [IJ (T1, χ ) − IJ (T2, χ )]

− 1

4e

(
1

T1
− 1

T2

)
1

Gn
N2

[(
Gn

S1
+ Gn

S2

)
Gn

p + Gn
S2

Gn
S1

] ∫ {[
Gn

p

(
Gn

S1
+ Gn

S2
+ Gn

N2

) + (
Gn

S2
+ Gn

N2

)
Gn

S1

]
A21 + Gn

pGn
N2

A12

− Gn
N1

Gn
N2

2

Gn
N2

(
2Gn

p + Gn
S1

)
[
Gn

p

(
Gn

N1
+ Gn

N2

) + Gn
N1

Gn
N2

]Gj

}
ε dε. (E15)

Quasiequilibrium contributions containing the difference between the Josephson currents IJ (T1, χ ) − IJ (T2, χ ) in Eqs. (E14) and
(E15) coincide with the corresponding terms derived in Ref. [25].

The supercurrent IS flowing in our circuit can be derived with the aid of the formula

IS = 1

2

∫
IT
S1

dε. (E16)

Here IT
S1

is the corresponding component of the matrix current ÎS1 obtained from Eqs. (45)–(56) in the form

eÎS1 =−(
ĜS1 + τ̂+Gj

)
ĤN1 + (

ĜS1 + τ̂+Gj
)
P̂
[
ĜS1 + ĜS2 + (

ĜS2 + ĜN2 − τ̂+Gj
)
(Ĝp + τ̂1Gj/2)−1

(
ĜS1 − τ̂−Gj

)]
ĤN1

+ (
ĜS1 + τ̂+Gj

)
P̂ĜN2

(
ĤN1 − ĤN2

)
. (E17)

At high temperatures T1,2 � ETh the supercurrent can be evaluated explicitly in exactly the same manner as the thermoelectric
voltages V1,2. In this limit we obtain

IS =
(
Gn

S1
+ Gn

S2

)
Gn

N1

(
Gn

p

)2 + [
Gn

N1
Gn

N2
Gn

S2
+ Gn

S1
Gn

S2
Gn

N1

]
Gn

p + 1
2 Gn

S1
Gn

S2
Gn

N1
Gn

N2[
Gn

p

(
Gn

N1
+ Gn

N2

) + Gn
N1

Gn
N2

][(
Gn

S1
+ Gn

S2

)
Gn

p + Gn
S2

Gn
S1

] IJ (T1, χ )
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For completeness, let us also consider the low-temperature limit T1,2 	 ETh. In order to evaluate thermoelectric voltages V1

and V2 in this limit it suffices to replace GT and GL components of the matrix conductances by their zero-energy values and set

Gj ≈ G′
jε, GY

X ≈ (
GY

X

)′
ε, X = N1,2, p. (E19)
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With the same accuracy we can neglect products of the Gj and GY conductances since they have higher power of energy. At zero
energy GT components of the matrix conductances are known to exactly coincide with corresponding normal-state conductances
[3,38,39]. With this in mind, one can demonstrate that Eqs. (E8) and (E9) remain applicable also in the low-temperature limit.
Evaluating A12 and A21, we get
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, (E20)
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, (E21)

where the spectral conductances GL
N1

, GL
N2

, and GL
p are evaluated at ε = 0.

The Josephson current IS is evaluated in exactly the same way. As a result, we obtain
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