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Chiral tunneling in single-layer graphene with Rashba spin-orbit coupling: Spin currents
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We study forward scattering of two-dimensional massless Dirac electrons at Fermi energy ε > 0 in single-
layer graphene (SLG) through a one-dimensional rectangular barrier of height u0 in the presence of uniform
Rashba spin-orbit coupling (of strength λ). The role of the Klein paradox in graphene spintronics is thereby
exposed. It is shown that (1) for ε − 2λ < u0 < ε + 2λ, there is partial Klein tunneling, the transmission
coefficient T (λ) < 1, and quite remarkably, T (λ � 0.1 meV) ≈ 0 when the scattering energy equals the barrier
height ε = u0 [whereas T (λ = 0) = 2]. (2) Spin density and spin-current density are remarkably different than in
bulk SLG. They are sensitive to λ and u0. (3) Spin current densities are space dependent, implying the occurrence
of nonzero spin torque density. Such a system may serve as a graphene-based spintronic device without the use
of an external magnetic field or magnetic materials.
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I. INTRODUCTION

Shortly after the discovery of graphene [1], numerous
novel physical phenomena were revealed in its electronic
properties [2,3]. One of these, the occurrence of chiral tun-
neling and the Klein paradox [4] in single-layer graphene
(SLG), was reported in a seminal paper [5]. This work was
further expanded in Refs. [6–8]. It was shown that, due to
chirality near a Dirac point, electrons execute unimpeded
transmission for energies below the potential barrier. This
phenomenon is related to the absence of backscattering for
electron-impurity scattering in carbon nanotubes [9]. Several
additional extensions have been reported in Refs. [10–12]. In
parallel, investigation of the role of electron spin in graphene
led to the emergence of a field: graphene spintronics [13–56].

Here, we study Klein tunneling of two-dimensional (2D)
massless Dirac electrons at Fermi energy ε > 0 in SLG,
through a one-dimensional (1D) barrier of height u0 in the
presence of uniform Rashba spin-orbit coupling (RSOC) of
strength λ [57]. The motivation is to elucidate the effect of
the Klein paradox on observables such as spin density, spin
current density, and spin torque [58]. The calculated spin
observables have properties that are remarkably different from
those predicted in bulk SLG [48] (i.e., in the absence of a 1D
potential so that the Klein paradox does not play a role). Sym-
metry relations are broken (see below), and the spin current
is space dependent so that there is a finite spin torque. Most
importantly, the response of the spin densities to the RSOC
strength is substantial even for small RSOC coupling (the
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strength of Rashba splitting caused by a strong electric field
in SLG is reported in Ref. [45] to be a fraction of an meV).
Hence, we hope that our paper will motivate the fabrication of
graphene-based spintronic devices that do not rely on the use
of an external magnetic field or magnetic materials.

In addition to the study of spin-related observables, we
also expose the occurrence of partial Klein tunneling, which
causes an intriguing behavior of the transmission coefficient
T . Explicitly, the pertinent scattering problem involves two
scattering channels. In the narrow region ε − 2λ < u0 < ε +
2λ (for λ > 1 meV), only one scattering channel is open, and
T < 1. Moreover, for scattering energy equal to the barrier
height ε = u0, one channel just closes while the second chan-
nel just opens, and T ≈ 0 (recall that T = 2 for λ = 0).

In the sections below, we present the formalism used
(Sec. II), explain the choice of parameters (Sec. III), an-
alyze the properties of the transmission (Sec. IV), derive
expressions and present results for spin density and spin cur-
rent density (Sec. V), and conclude with a short summary
(Sec. VI). Some technical steps and additional figures are
relegated to the Appendix.

II. FORMALISM

Consider massless 2D Dirac electrons in SLG (lying in the
x-y plane) that are scattered from a 1D rectangular potential
barrier of u(x) = u0�(x)�(d − x) and subject to a uniform
electric field E = E0ẑ. Our treatment is carried out within the
continuum formulation near one of the Dirac points, say K′,
and focuses on forward scattering ky = 0 (rendering the prob-
lem 1D). Recall that, in addition to the isospin τ encoding the
two-lattice structure of graphene, there is now a real spin σ.
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The pertinent Hamiltonian (in units where the kinetic energy
parameter h̄vF = 1) is

h(−i∂x, λ) = [−i∂x + λ(ẑ × σ )x]τx + λ(ẑ × σ )yτy + u(x)

≡ h0(−i∂x, λ) + u(x), (1)

which is a 4 × 4 matrix first-order differential operator in
σ ⊗ τ space acting on the four component wave function ψ (x)
subject to scattering boundary conditions. The wave function
ψ (x) is expressible as a combination of plane-wave vectors
exp(±ikxx)v(±kx ) for x /∈ [0, d]), and exp(±iqxx)w(±qx ) for
x ∈ [0, d]. Here, kx, qx, ε, u0, and λ are expressed in (nm)−1,
and d is expressed in nm. However, in presenting our numer-
ical results below, energies ε, u0, and RSOC strength λ are
presented in meV, [1 (nm)−1 = 659.107 meV]. The four com-
ponent vectors v(±kx ) and w(±qx ) have unit current density
v† ĵxv = w† ĵxw = 1, where ĵx = 1

A I2×2 ⊗ τx is the current op-
erator, and A is an area unit. They satisfy the equations

h0(±kx, λ)v(±kx ) = εv(±kx ),

h(±qx, λ)w(±qx ) = εw(±qx ). (2)

Because RSOC acts in all space (not only in the barrier
region), the vectors v(±kx ) cannot be chosen as spin eigen-
functions since spin is not conserved. The equations in Eq. (2)
are not eigenvalue equations. Rather, they are implicit equa-
tions for the wave numbers kx(ε) and qx(ε), which depend
on the fixed scattering energy as well as for u[±kx(ε)] and
w[±qx(ε)]. For ε > 0, there are two wave numbers in each
region that solve these implicit equations, ±kxn(ε) for x /∈
[0, d], and ±qxn(ε) for x ∈ [0, d] (n = 1,2). The solution of
Eq. (2) yields (see Appendix)

k2
xn = [ε + (−1)n+1λ]2 − λ2,

q2
xn = [ε + (−1)n+1λ − u0]2 − λ2. (3)

The wave function corresponding to an incoming wave in
channel n (n = 1, 2) in the three regions is

ψn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|kxn〉 + rn1|k̄x1〉 + rn2|k̄x2〉︸ ︷︷ ︸
x<0

a+
n1|qx1〉 + a+

n2|qx2〉 + a−
n1|q̄x1〉 + a−

n2|q̄x2〉︸ ︷︷ ︸
0<x<d

tn1|kx1〉 + tn2|kx2〉︸ ︷︷ ︸
x>d

, (4)

where |kxn〉 ≡ exp(ikxnx)vn(kxn), |k̄xn〉 ≡ | − kxn〉, |qxn〉 ≡
exp(iqxnx)wn(qxn), and |q̄xn〉 ≡ | − qxn〉.

The matching conditions at x = 0 and x = d yield the
transmission and reflection amplitude matrices t = (t11t12

t21t22

)
and

r = (r11r12

r21r22

)
together with the eight coefficients {a±

nm}, (n, m =
1, 2). The wave functions ψn(x) with scattering boundary
conditions are therefore determined everywhere. The solution
obeys unitarity and current conservation:

T + R = Tr[t†t] + Tr[r†r] = 2,

d

dx
j(x) ≡ d

dx

2∑
n=1

ψ†
n (x) ĵxψn(x) = 0. (5)

Here, T and R are the transmission and reflection coefficients,
and ĵx = I2 ⊗ τx is the current operator defined after Eq. (2).

FIG. 1. Partial Klein tunneling (T < 1) and full Klein tunneling
(1 < T < 2) through a barrier of small height u0 occurs when |u0 −
ε| < 2λ (partial) and u0 > ε + 2λ (full). For ε = 1.977 meV, λ =
0.30314 meV, and d = 60 nm, T is plotted vs u0 in the range ε −
2λ < u0 < 3.5 meV. A remarkable feature of RSOC is that, for u0 ≈
ε (where channel 1 is about to close and channel 2 is about to open),
T nearly vanishes except for λ → 0 where, as shown in the inset, it
sharply rises to 2 [see Eq. (6)].

The numerical choice of parameters is dictated by exper-
iments. In Ref. [45], it is shown that, for a field ER = 2
V/nm, λ is of the order of a fraction of 1 meV. Here, we let
0 < λ � 0.659 meV and vary the barrier height in the range
0 < u0 < 200. The barrier width d is taken at 200 nm (except
for Fig. 1, where d = 60 nm). Concerning the choice of ε, it
is expected that the interesting physics occurs for ε close to λ.
The reason is that the RSOC partially lifts the spin degeneracy,
and at the Dirac point, the energy splitting is of the order of λ.
The role of electron spin is relevant when the scattering energy
is close to the two split levels (see Fig. 8(b) in Ref. [34]).

III. TRANSMISSION

For ky = 0, the two channels are uncoupled, and the trans-
mission coefficient is obtained analytically:

T (u0; ε, λ) =
2∑

n=1

q2
xn

(u0 − ε)[(u0 − ε) + 4λ] − λ2 sin2(qxnd )
.

(6)

A necessary condition for the occurrence of Klein tunneling is
k2

n > 0, n = 1, 2 ⇒ ε > 2λ > 0. Full Klein tunneling occurs
if q2

n > 0, n = 1, 2, i.e., u0 > ε + 2λ. If (q1q2)2 < 0, i.e., ε >

u0 > 2λ > 0 (where q2
x1 > 0, q2

x2 < 0), or ε + 2λ > u0 > ε −
2λ > 0 (where q2

x1 < 0, q2
x2 > 0), we have partial Klein tun-

neling. If q2
xn < 0, the corresponding denominator in Eq. (6) is

very large so that the contribution of this term to the transmis-
sion is minuscule because − sin2(qxnd ) = sinh2(|qxn|d ) 
 1,
and channel n is virtually closed. Thus, Klein tunneling is still
manifest even if only one channel is open, but then T � 1.
Inspecting T (u0; ε, λ) as a function of u0 in Fig. 1 shows that,
when the scattering energy equals the barrier height (ε = u0,
where channel 1 is about to close and channel 2 is about
to open), T (u0; ε = u0, λ) ≈ 0. Recall from Eq. (6) that, for
λ = 0, the transmission at the forward direction is unimpeded
T (u0; ε, λ = 0) = 2 (identically). However, the inset in Fig. 1
shows that this happens for very small λ. Note that, in the cor-
responding 1D Schrödinger problem for ε = u0, T = 4

4+(kd )2 ,

where k =
√

2mε

h̄2 . Therefore, an experimental measurement of
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FIG. 2. Transmission T (blue) and current jx (red) for the p-n-p
junction vs λ for u0 = 195 meV, d = 200 nm, ε = 6.65 meV, and
ky = 0 [recall that, for λ = 0, T (ky = 0) = 2 identically].

transmission for λ �= 0 should be an excellent probe of the
strength of RSOC in SLG.

We now consider the transmission coefficient T and the
(matter) current j(x) as a function of potential barrier height
parameter u0 > ε + 2λ and the RSOC strength parameter λ.
Figure 2 shows the transmission and current vs λ for fixed
u0, and Fig. 8(a) in the Appendix shows the transmission and
current vs u0 for fixed λ. The main conclusion from these
figures is that, in the presence of RSOC, the transmission
coefficient is no longer unimpeded. Rather, for fixed u0 and
for experimentally relevant interval 0 < λ < 0.65 meV, the
transmission smoothly decreases as in Fig. 1. For fixed λ,
considered as a function of the barrier height u0, it shows a
pattern of oscillations below the unitarity upper limit T = 2,
as shown in Fig. 8(a) in the Appendix. It is of course not
surprising that the current and the transmission coefficient are
highly correlated. Note that the current is space independent
[see before Eq. (2)].

IV. SPIN DENSITY

Spin density (and spin current density) operators {O} are
representable as 4 × 4 matrices in σ ⊗ τ space. Spin observ-
ables are obtained as O(x) = ψ†(x)Oψ (x) (this is not an
expectation value; spin observables may depend on x). The
spin density operators Ŝ and the spin density observables S(x)
are given by

Ŝ = 1
2 h̄σ ⊗ I2, S(x) = 1

4

2∑
n=1

ψ†
n (x)Ŝψn(x), (7)

where ψn(x) is defined in Eq. (4). The unit of spin density
used here is S0 = h̄/A. As expected, Sx = Sz = 0 because the
polarization is proportional to k × E ‖ ŷ, and here, ky = 0.
Figure 3 shows the spin density Sy as a function of λ (spin
densities are space independent). The polarization increases
rapidly for λ > 0.20 meV. Figure 8(b) in the Appendix plots
Sy vs u0 and shows a rich oscillatory pattern that decreases
near the lower limit u0 = ε + 2λ, below which one channel is
closed (see discussion of Fig. 1). Both figures substantiate the
role of λ and u0 as useful parameters to control the degree of
polarization.

FIG. 3. Spin density Sy versus λ for u0 = 192 meV, d = 200 nm,
ε = 2.60 meV, and ky = 0.

V. SPIN CURRENT DENSITY OPERATORS AND
OBSERVABLES

The (tensor) spin current density operator J and the ob-
served components of the spin current density Ji j (x) are
defined as

Ĵ = 1

2
{Ŝ, V̂}, ⇒ Ĵi, j = ŜiV̂j + V̂j Ŝi,

Ji j (x) = 1

2

2∑
n=1

ψ†
n (x)Ĵi jψn(x), (8)

where Ŝ is the spin density operator defined in Eq. (7),
and V̂ = I2 ⊗ τ is the velocity operator [= ĵx defined be-
fore Eq. (2)]. In Eq. (8), i = 1, 2, 3 = x, y, z specifies the
polarization direction, and j = 1, 2 = x, y the direction of
propagation. The unit of spin current density is J0 = S0vF =
γ /A = 659.107 meV/nm.

The spin current density was calculated in bulk SLG in
Ref. [48]; it was found that (1) Jxx = Jyy = Jzx = Jzy = 0, (2)
Jxy = −Jyx, and (3) the spin currents are independent of space
(see Eq. (5) in Ref. [48]). Below, we show that (1) in the
presence of a 1D potential (where there is no rotational sym-
metry around the z axis), the symmetry relation Jxy = −Jyx

that is valid in bulk SLG [48] is broken. (2) Although the
value of λ used in our calculations is much smaller than that
used in Ref. [48], the size of spin current densities of both
systems is the same. (3) The spin current densities are not
uniform, and the continuity equation includes a spin torque
density term [58] (see below). Figure 4 shows Jxy(d ) and
Jyx(d ) as a function of λ. Note the nearly linear increase of,
e.g., Jxy(d ) with λ. No symmetry exists between Jxy and Jyx.
Figures 9(a) and 9(b) in the Appendix show the spin current
densities Jxy(0) (red curve) and Jyx(0) (blue curve) just at the
left wall of the barrier, for the p-n-p junction as a function of λ

and u0 respectively. The size of the spin current density Jxy(0)
(electrons polarized along x and propagated along y) for λ ≈
0.659 meV is indeed large (as compared with Jxy in bulk SLG
calculated for λ ≈ 45 meV).

To stress the role of the Klein paradox in the present sys-
tem, we compare our results with those obtained in bulk SLG
(where there is no Klein paradox). In eq. (7) of Ref. [48], the
authors found that, in bulk SLG, Jyx = J0

η2+cos 2φ

1+η2 , where η =
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FIG. 4. Spin current densities Jyx and Jxy (in units of J0) vs λ at
the right wall of the barrier (x = d) vs λ for u0 = 192 meV, d = 200
nm, and ε=2.60 meV. Note that the symmetry condition Jxy = −Jyx

valid in bulk single-layer graphene (SLG) [48] is broken by the one-
dimensional (1D) potential barrier.

ε√
k2

x +k2
y

is of the order of unity, and φ = arctan ky/kx. Thus, for

ky = 0, this implies Jyx = −Jxy ≈ J0. As shown in Figs. 4–6,
in the presence of 1D potential barrier, the spin current density
can reach similar values. However, in Ref. [48], the value of
λ is about 200 times higher than the one we have used. As
shown in Ref. [45], such high values of λ are not achievable in
SLG. It is possible to have higher values of RSOC if the SLG
is in contact with metals such as Au or Pb. However, upon
passing a current through the metallic substrate, the electrons
will flow through the metal and not through the SLG, so at the
Fermi level, the electronic states are metallic.

Spin current densities vs u0 are shown in Fig. 5. Recalling
the behavior of Sy(u0) shown in Fig. 8(b)

in the Appendix and of Jxy(u0) and Jyx(u0) in Fig. 5, it is
clear that the spin density and the spin current density are
significantly correlated.

Consider now the space dependence of the spin current
densities Jxy(x) and Jyx(x) (recall that the spin density S is
space independent). They are plotted in Fig. 6 to the left of
the barrier (the reflected region), where the wave numbers kxn

[defined in the first row of Eq. (3)], are small (since ε and
λ are small). This space dependence results in nonzero di-
vergence, and the corresponding continuity equation requires

FIG. 5. Spin current densities Jxy(d ), Jyx (d ) on the right wall
of the barrier vs λ for ε + 2λ < u0 < 200 meV, d = 200 nm, ε =
2.60 meV, λ = 0.695 meV, and ky = 0.

FIG. 6. Space dependence of the spin current densities Jxy(x)
and Jyx (x) (in units of J0) for −1200 < x < 0 nm (region to the
left of the barrier, where the wave is reflected) for λ = 0.695 meV,
ε = 2.60 meV, and u0 = 198.2 meV. Oscillations due to the linear
combination of plane waves continues to x → −∞. The inset shows
the spin torque density Ty(x) in units of J0/nm.

the inclusion of finite spin torque density Ti, (i = x, y, z)
[58]. Following the discussion in Sec. 3 of Appendix, there
are two relevant vector fields J1(x) = [0, Jxy(x)] and J2(x) =
[Jyx(x), 0] that satisfy continuity equations ∇ · Ji = Ti. There-
fore, in our case, the only nonzero spin torque density is
T2(x) = dJyx(x)/dx. As shown in Fig. 6, in the region x < 0,
Jyx(x) is smooth, and the spin torque density derived from it is
well defined (and measurable).

VI. SUMMARY AND CONCLUSION

The Klein paradox in SLG occurs at the Fermi energy
ε when an electron tunnels through a 1D potential barrier
of height u0 (which can be experimentally controlled by a
gate voltage) in the region u0 > ε > 0. When, in addition, a
uniform perpendicular electric field E = E0ẑ is applied, the
role of electron spin enters due to RSOC. Here, we elucidate
the physics when the Klein paradox and RSOC are combined
to expose interesting facets of graphene spintronics within a
time-reversal invariant formalism. The fact that u0 and λ can
be easily experimentally controlled makes our analysis readily
verifiable.

Our main results can be summarized in terms of the figures.
(1) Transmission coefficient T : Due to partial Klein tunnel-
ing, 0 < T < 1 for |u0 − ε| < 2λ, and T ≈ 0 for ε = u0 and
λ > 0.2 meV (Fig. 1). For u0 > ε + 2λ, the transmission de-
creases smoothly as a function of λ (Fig. 2). Recall that T = 2
for λ = 0 and ky = 0. (2) Spin density: Sx = Sz = 0, and as
shown in Fig. 3, the space-independent spin density Sy(λ)
increases rapidly with λ. (3) Spin current densities Ji j (x): As
shown in Figs. 4–6: The symmetry Jxy = −Jyx in bulk SLG
is broken, Jxy increases linearly with λ, and both Jxy(x) and
Jyx(x) are space dependent, the continuity equation for Jyx(x)
includes a nonzero spin torque density [58]. Clearly, in the
present system (as compared with bulk SLG), spin density and
spin current density have a much richer behavior.

Complimenting the developments in spintronics [59,60],
this paper is partially motivated by the quest for constructing
spintronic devices without the use of an external magnetic
field or magnetic materials [61–63]. Specifically for graphene,
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FIG. 7. Various configurations related to Klein transmission
through a barrier of height u0, in the presence of Rashba spin-orbit
coupling (RSOC) of strength λ, when |u0 − ε| < 2λ. Here, we take
ε = 1.977 meV, λ = 0.30314 meV, and barrier width d = 60 nm.
(a) Squared wave numbers q2

xn defined in Eq. (3) (blue for n = 1
and red for n = 2). The blue, green, and red points mark u0 =
(ε − 2λ, ε, ε + 2λ). Negative q2

xn implies that channel n is closed
(does not contribute to the transmission). (b) Dirac cones for various
values of u0 (schematic), Fermi energy ε and spin-order splitting
ε ± 2λ (magnified): In panels 1–5, u0 = 0, ε − λ, ε, ε + λ, and u0 >

ε + 2λ. (c) The total transmission is plotted vs u0 for ε − 2λ < u0 <

3.5 (meV). A remarkable feature of RSOC is that, for u0 ≈ ε [red
point in (a) where one channel is about to open and the other is
about to close], the transmission nearly vanishes except very near
λ, as shown in the inset of Fig. 1, where it sharply rises to 2 [see
Eq. (7)].

it shows the vanishing of the transmission at energy ε = u0,
the linear dependence of spin current density Jxy(d ) on λ, and
the occurrence of spin torque density, thereby advancing this
goal.
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FIG. 8. (a) Transmission T (blue) and current jx (red) for the
p-n-p junction vs u0 in the range ε + 2λ < u0 < 200 meV for λ =
0.695 meV. Other parameters as in Fig. 1. (b) Spin density Sy

vs ε + 2λ < u0 < 200 meV for λ = 0.695 meV and ky = 0. Other
parameters are as in Fig. 3. Note that Sy(x) is independent of x
throughout the sample.

APPENDIX

Here, we briefly expand on several points discussed in the
main text. Recall that the pertinent system consists of electron
scattering in SLG at Fermi energy ε that undergoes Klein
tunneling through a 1D rectangular barrier of height u0, width
�, and subject to a RSOC of strength λ. The main topics
clarified below include (1) derivation of Eqs. (2) and (3); (2)
additional details on the occurrence of partial Klein tunneling
in the region ε − 2λ � u0 � ε + 2λ and its dramatic effect
on the transmission in this region; (3) additional figures show-
ing the spin current density as a function of the barrier height
u0 and the RSOC strength λ; (4) discussion of the space
dependence of spin current density, the pertinent continuity
relation, and its relation to the spin torque density [58].

1. Equations (2) and (3)

The precise form of h0(kx, ky, λ) in Eq.(2), in the general
case ky �= 0, is

h0(kx, ky, λ) =

⎛
⎜⎝

0 kx − iky 0 0
kx + iky 0 2iλ 0

0 −2iλ 0 kx − iky

0 0 kx + iky 0

⎞
⎟⎠.

(A1)
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Its two positive eigenvalues are

ε1,2 = μ(kx, ky, λ) ∓ λ, (A2)

where

μ(kx, ky, λ) ≡
√

k2
x + k2

y + λ2. (A3)

The corresponding eigenvectors are

v1,2(kx, ky) = 1

2

√
1 ± λ

μ(kx, ky, λ)

⎧⎪⎨
⎪⎩

∓ikx + ky

i[λ ∓ μ(kx, ky, λ)]
∓λ + μ(kx, ky, λ)

kx + iky

⎫⎪⎬
⎪⎭.

(A4)

For ky = 0 (forward propagation) and fixed scattering energy
ε, this means that the energies in Eq. (A2) are both equal ε1 =
ε2 = ε. Solving for kx in each equation yields the two wave
numbers {kxn(ε)} (n = 1, 2) specified in Eq. (3). These wave
numbers, when inserted into the vectors v1,2(kx ) defined in
Eq. (A4) above determine the spinors {v(kxn)} used in Eq. (4).
A similar procedure applies for the wave vectors {qxn(ε)} and
the spinors wn(qxn). They are obtained, respectively, from kxn

and {v(kxn)} after replacing ε → ε − u0.

2. Transmission through a low barrier
and partial Klein tunneling

There are various configurations related to Klein transmis-
sion through a barrier of height u0 in the presence of RSOC of
strength λ, determined by inequalities involving u0, ε, and λ.
(1) For 0 < u0 < ε − 2λ < ε [to the left of the blue point in
Fig. 7(a) and 1 < T < 2 in the left of Fig. 7(c)], we have scat-
tering above the barrier with two channels open q2

x1, q2
x2 > 0,

and there is no tunneling. (2) For ε − 2λ < u0 < ε [between
the blue and red points in Fig. 7(a), panel 2 in Fig. 7(b),
and 0 < T < 1 in the left of Fig. 7(c)], q2

x1 > 0, q2
x2 < 0,

we have scattering above the barrier with one channel open.
This is partial Klein tunneling above the barrier. (3) For ε <

u0 < ε + 2λ [between the red and green points in Fig. 7(a),
panel 4 in Fig. 7(b), and 0 < T < 1 in the right of Fig. 7(c)],
q2

x1 < 0, q2
x2 > 0, we have scattering below the barrier with

one channel open. This is partial Klein tunneling below the
barrier. (4) For 0 < ε + 2λ < u0 [to the right of the green
point in Fig. 7(a), panel 5 in Fig. 7(b), and 1 < T < 2 in the
right of Fig. 7(c)], q2

x1, q2
x2 > 0, and we have scattering below

the barrier with two channels open. This is full Klein tunneling
below the barrier.

3. Spin current densities as function of λ and u0

Here, we display additional figures showing current densi-
ties as a function of barrier height u0 and RSOC strength λ.
Figure 8(a) shows the transmission and the charge current for
fixed λ vs u0 in the region u0 > ε + 2λ, where there is full
Klein tunneling. From Eq. (6), it is evident that the pattern
of the transmission is that of small oscillations (determined
by the trigonometric term in the denominator), just below the
maximal value T = 2. It is also reasonable to expect that the
current is correlated with the transmission (note, however, that
the current is space independent, while the transmission is
defined only to the right of the barrier). Figures 8(a) and 7(c)
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�

�

� � �

�
�

�
�

�

�

� �
�
�

�
�

(a)

(b)

FIG. 9. (a) Spin current densities Jyx (0) and Jxy(0) (in units of
J0) vs λ at the left wall of the barrier (x = 0) vs λ for u0 = 192 meV,
d = 200 nm, and ε = 2.60 meV. Note that the symmetry condition
Jxy = −Jyx valid in bulk SLG is broken by the 1D potential barrier.
(b) Spin current densities Jxy(0), Jyx (0) on the left wall of the barrier
vs λ for ε + 2λ < u0 < 200 meV, d = 200 nm, ε = 2.60 meV, λ =
0.695 meV, and ky = 0.

together with Fig. 2 complete our visage of the transmission
coefficient as a function of u0 and λ. Figure 8(b) plots the
only nonzero spin density Sy for fixed λ as a function of u0

in the region u0 > ε + 2λ, where there is full Klein tunneling.
Recall that Sy is space independent.

Figure 9(a) shows the spin current densities Jxy(0) (red
curve) and Jyx(0) (blue curve) vs λ, just to the left wall of the
barrier for the p-n-p junction. In the main text, these quantities
are shown at x = d (that is, the right wall of the barrier). Both
Jxy(0) and Jxy(d ) are nearly linear with λ but have different
signs. The size of the spin current density Jxy(0) (electrons
polarized along x and propagated along y) for λ ≈ 0.659 meV
is indeed large (same order of magnitude as in Jxy calculated
in bulk SLG for λ ≈ 45 meV, that is, about two orders of
magnitude higher than the value of λ used here). Figure 9(b)
shows the spin current densities Jxy(0) (red curve) and Jyx (0)
(blue curve) as a function of λ on the left wall of the barrier.
Compare this with Fig. 5, where these quantities are shown at
the right wall of the barrier at x = d .

4. Space dependence of spin current density, continuity
equation, and spin torque

In the general case of a three-dimensional material, the ob-
servable spin current density tensor Ji j (r, t ) depends on space
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and time. For each polarization direction i = 1, 2, 3 = x, y, z,
the vector field

Ji(r, t ) = [Jix(r, t ), Jiy(r, t ), Jiz(r, t )], (A5)

satisfies the continuity equation

∂Si(r, t )

∂t
+ ∇ · Ji(r, t ) = Ti(r, t ) ≡ Re[ψ†(r, t )T̂iψ (r, t )].

Here, the scalar Ti(r, t ) is the spin torque density, and T̂i =
1
ih̄ [Ŝi, H] is the spin torque density operator, where H = (p +
λσ × nE ) · τ is the Hamiltonian operator, and nE is the unit
vector in the direction of the electric field. The volume integral
of Ti(r, t ) sometimes vanishes due to symmetry relations [58],
and then there exists a vector field Pi(r, t ) such that Ti(r, t ) =

−∇ · Pi(r, t ). Because ky = 0, the space dependence varies
only with x. Hence, in the static case the continuity equation
becomes

Ti(x) = dJi(x)

dx
. (A6)

For 2D systems, with Jiz(x) = 0, the nonzero two component
vector fields are

J1(x) = [0, Jxy(x)], J2(x) = [Jyx(x), 0]. (A7)

According to our discussion above, the only nonzero torque
density scalar field is

Ty(x) = dJyx (x)

dx
. (A8)
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