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Domain wall dynamics of ferrimagnets influenced by spin current near
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We report on a theoretical study of the spin current excited dynamics of domain walls (DWs) in ferrimagnets in
the vicinity of the angular momentum compensation point. For a two-sublattice ferrimagnet effective Lagrangian
and nonlinear dynamic equations are derived taking into account both the spin torques and the external magnetic
field. The dynamics of the DW is calculated before and after the Walker breakdown for any direction of the spin
current polarization. It is shown that for the in-plane polarization of the spin current, the DW mobility reaches
a maximum near the temperature of the angular momentum compensation. On the contrary, for the out-of-plane
spin polarization, the spin current with densities below the Walker breakdown does not excite DW dynamics.
After overcoming the Walker breakdown, the domain wall velocity increases linearly with increasing current
density. In this configuration of spin current polarization, the possibility of a gigahertz oscillation dynamics of the
quasiantiferromagnetic vector under the action of a dampinglike torque at the angular momentum compensation
point is demonstrated. Possible structures for experimental demonstration of the considered effects are discussed.
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I. INTRODUCTION

Spintronics, which is a rapidly developing branch of na-
noelectronics, is based on the concept that the principal
role in information processing belongs to electron spins, not
charges [1,2]. The mainstream of spintronics concentrates on
the winning combination of the spin transport efficiency and
nanoscale size of spintronic devices. In this regard, magnetic
domain walls (DWs) have attracted increasing attention [3–5]:
they can be used to store and transmit information in race track
or magnetic random access memory devices [6–10].

Conventional spintronic devices use ferromagnetic (FM)
materials due to their property of creating and subsequently
exploiting the spin polarization of the conducting electrons.
The natural limitations of ferromagnetic spintronic devices
are associated with limited operating frequencies and overall
energy efficiency. Recent advances in the field of spin current
injection into insulating antiferromagnets (AFMs) revealed
the prospects of antiferromagnetic spintronics, whose advan-
tage is an extremely high frequency compared to the operating
frequency of ferromagnetic devices [11,12]. At the same time
antiferromagnetic spintronics has its own drawbacks associ-
ated with the difficulties in detecting the magnetization states
and magnetization dynamics. These drawbacks motivate the
accelerated development of ferrimagnetic spintronics, which
combines ultrahigh operation frequencies close to those of
antiferromagnetic devices with much more reliable ways to
detect magnetization states. In these materials, a very rich
and interesting in terms of fundamental and applied physics
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magnetization dynamics [13,14] is observed near the points
of compensation of magnetization and angular momentum.
Moreover, by manipulating the temperature of the ferrimag-
net near the compensation points one can obtain outstanding
magnetization switching characteristics [15–17]. It was shown
that electric current can be an effective method for magne-
tization switching [18–21]. The GdFeCo ferrimagnetic layer
demonstrates ultrafast magnetization reversal under the influ-
ence of femtosecond laser pulses in various experiments [22].
These results suggest that the ferrimagnetic-based structures
can make a promising technological platform for ultrafast
spintronic memory devices.

The angular momentum compensation point TA, where
M1/γ1 = M2/γ2, with γi being the gyromagnetic ratio of
the ith sublattice (i = 1, 2), represents a very promising
line of research of ferrimagnet (FiM) magnetization dynam-
ics [13,23,24]. Recent field-driven experiments demonstrated
high velocity and great mobility of a domain wall in FiM near
TA [25]. The next natural step in this direction is to use the spin
currents to manipulate DW position and dynamics [26]. While
the spin current induced phenomenon in ferromagnets seems
to be very comprehensible, the mechanisms of spin transfer in
AFMs and compensated FiMs have still not been figured out
properly.

In the present research we develop a model to describe DW
motion in ferrimagnets near the angular momentum compen-
sation point in the case of arbitrary spin current polarization
and torque type. DW dynamics influenced by a spin current in
FiMs is studied generally by using the collective coordinates
model and Landau-Lifshitz-Gilbert equation with the addition
of spin-transfer torque components [27–29]. Here, instead,
we employ the Lagrangian formalism for two sublattice
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FIG. 1. Schematic of the considered FiMs with a single domain
wall; σ is the polarization vector of the spin current, l is thickness
of the sample, and θ and ϕ are the polar and azimuthal angles of the
quasiantiferromagnetic vector L.

ferrimagnets [30]. This approach allows us to strictly de-
fine ferrimagnetic parameters such as the width of the DW,
velocity of the magnons, transverse magnetic susceptibility,
effective Gilbert damping parameter, and gyromagnetic ratio
by using perturbation theory.

We derive nonlinear dynamic equations based on the
Lagrangian formalism, which is similar to Slonczewski
equations [31]. Using this model, we calculate the dynamics
of the domain wall in FiMs, depending on the direction of
the polarizer, electric current density, and temperature, before
and after the Walker breakdown. In our modeling we observe
that for the in-plane polarization of the spin current, the DW
mobility reaches a maximum near the temperature of the an-
gular momentum compensation and vanishes after bypassing
the Walker breakdown. For the out-of-plane spin polarization,
in contrast, a spin current with the densities below the Walker
breakdown does not excite the stationary dynamics of the
DW. After overcoming the Walker breakdown, the domain
wall velocity increases linearly with increasing electric cur-
rent density. In this configuration of the spin current, near the
compensation point TA we observe gigahertz oscillations of
the quasiantiferromagnetic vector.

II. MODEL AND BASIC EQUATIONS

We develop a model based on the Lagrange formalism
for describing DW dynamics due to spin current. For two
sublatticed FiMs ordering parameters related to magnetiza-
tions M1 and M2 of these sublattices can be introduced
in the vicinity of compensation temperatures as quasianti-
ferromagnetic vector L = M1 − M2 and ferromagnetic M =
M1 + M2 order parameters. We consider a spin current
with a polarization σ flowing through the FiM film (see
Fig. 1). The spin current excites a spin transfer torque
acting on local magnetization of the ith sublattice and in
the general case is composed of the in-plane and out-of-
plane components Ti

ST = Ti
FL + Ti

DL. The Ti
FL component

due to its symmetry is usually referred to as a fieldlike
torque and has the following form: Ti

FL ∼ [Mi × σ]. The Ti
DL

torque component has a symmetry similar to the damping
torque and is usually referred to as a dampinglike torque
(or an antidampinglike torque): Ti

DL ∼ [Mi × [Mi × σ]].
Typically, the magnitude of the antidampinglike torque com-
ponent is significantly larger than the fieldlike one for
magnetic tunnel junctions; however, in the case of spin-orbit
torques they can be of a similar magnitude.

The magnetization dynamics is described by a system of
Euler-Lagrange equations:

d

dt

(
∂L
∂θ̇i

)
− δL

δθi
= −∂Ri

∂θ̇i
− ∂W

∂θ̇i
,

d

dt

(
∂L
∂ϕ̇i

)
− δL

δϕi
= −∂Ri

∂ϕ̇i
− ∂W

∂ϕ̇i
, (1)

where L and Ri are the Lagrangian and Rayleigh functions,
W is spin transfer torque power density, and θi and ϕi are
the polar and azimuthal angles characterizing the orientation
of the ith sublattice magnetization (i = 1, 2). Note that δW
represents the external spin current effect on the magnetic
structure and consists of the dampinglike and fieldlike com-
ponents. Due to its symmetry the fieldlike component can
be included in the Lagrangian by using the quasiantiferro-
magnetic approximation. Thus, δW in the Euler-Lagrange
equations consist of only the dampinglike spin current com-
ponent. Hereafter we turn to the effective Lagrangian Leff ,
effective Rayleigh function Reff , and power density of a spin
current δW in the quasiantiferromagnetic approximation ap-
plicable in the vicinity of compensation temperatures (see [32]
for a derivation of the effective Lagrangian) [30]. The proce-
dure to get these equations is quite similar to the approach that
was used in [33] to study DW dynamics in antiferromagnets
and compensated ferrimagnets:

Leff = χ⊥
2

(
θ̇

γ eff

)2

+ m

(
H − ϕ̇

γeff

)
cos θ

+ χ⊥
2

(
H − ϕ̇

γ eff

)2

sin2 θ − Ku sin2 θ

− K⊥ sin2 θ sin2 ϕ − A

[(
dθ

dx

)2

+ sin2 θ

(
dϕ

dx

)2]
− χ⊥

2

(
B

M

)2

[sin2θn⊥ + cos2 θ cos2(ϕ − ψ )n‖

+ sin2(ϕ − ψ )n‖],

Reff = αeffM
γeff

(θ̇2 + sin2 θϕ̇2),

δW = −A sin(ϕ − ψ )n‖δθ̇

+ [−An⊥ sin2 θ + An‖ cos θ cos(ϕ − θ )]δϕ̇, (2)

where m = M2 − M1, M = M1 + M2, χ⊥ = M/Hex is the
transverse magnetic susceptibility, and Hex is an ex-
change magnetic field acting between sublattices. Ku

and K⊥ are constants of uniaxial and in-plane mag-
netic anisotropies, respectively. A is an exchange stiff-
ness constant. θ and ϕ are the polar and azimuthal
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angles of a quasiantiferromagnetic vector L, H = (0, 0, Hz )
is a magnetic field applied along the “easy magne-
tization axis.” αeff = αm/(m − m0), γeff = γ m/(m − m0),
γ eff = γ (1 − mm0/M2)−1, α = (α1γ2 + α2γ1)/2(γ1 + γ2),
and 1/γ = (1/γ1 + 1/γ2)/2, where αi and γi are the damping
constant and gyromagnetic ratio for the ith sublattice, respec-
tively, and m0 = M(γ1 − γ2)/(γ1 + γ2). A = h̄JPDL/(2el )
and B = h̄JPFL/(2el ) are the damping (or antidamping) and
fieldlike spin transfer torque coefficients, where J is the elec-
trical current density, l is the thickness of the magnetic film,
and e > 0 is the electron charge. n⊥ and n‖ are the out-of- and
in-plane components of unit vector n = (nx, ny, nz ) along the
polarization of spin current σ, and ψ is an angle between the
projection of the polarization vector of the spin current σ on
the x-y plane and the x axis. PDL and PFL are the damping (or
antidamping) and fieldlike polarizations of the spin current,
respectively.

Implementing the procedure described in the Supplemental
Material, we derive the system of dynamic equations for the
180◦ DW without external magnetic field:

2αM
γ
0

q̇ + m
ϕ̇

γeff
= T̃θ ,

− χ⊥
γ 2

eff

ϕ̈ + m

γeff

q̇


0
− K⊥ sin 2ϕ − 2αM

γ
ϕ̇ = T̃ϕ, (3)

where q is a coordinate of the DW center and 
0 = √
A/Ku is

the width of the DW. The spin transfer torque components are
written as

T̃θ = −π

2
A sin(ϕ − ψ )n‖,

T̃ϕ = −An⊥ + χ⊥
2

(
B

M

)2

sin 2(ϕ − ψ )n‖. (4)

Note that in the general case the width of the DW is deter-
mined as 
 = 
0

√
1 − (q̇/c)2, where c = γ eff

√
2A/χ⊥ is the

magnon velocity (see [32] for Euler-Lagrange equations and
the Fredholm alternative). For our set of parameters it can
be estimated as c ∼ 8 km/s. As a result, the variation of the
DW width for the considered velocities is of the order of 1%
(
/
0 ∼ 0.01). Thus, we can assume that q̇ � c and DW
width 
 ≈ 
0.

III. DYNAMIC EQUATION ANALYSIS

To understand the peculiar features of the current induced
DW dynamics in compensated FiMs following from Eqs. (3)
and (4), we analyze several particular cases. To calculate the
DW dynamics we use typical GdFeCo parameters [25]: Ku ∼
1×105 erg/cm3, M ≈ 900 emu/cm3, α ∼ 0.02, γ ∼ 2×107,
A ∼ 1×10−6 erg/cm, gd = 2.2, g f = 2, TM = 220 K, TA =
310 K, and l = 10 nm, where gd and g f are Landé g factors
for d and f sublattices, respectively. The constant of in-plane
magnetic anisotropy in the case of an infinite film is K⊥ =
2πm2; however, in the case of a narrow FiM nanowire it has
a different form due to magnetostatic interaction. Note that all
dynamic parameters (such as velocity, DW displacement, and
others) are functions of ν = m/M, which can be rewritten in
terms of temperature T by using the following expression:

ν = m

M = T − TM

T ∗ , (5)

In-plane spin current polarization (n =1)║
(a) (b)

T=T
T=290 K
T=280 K
T=270 K

T=350 K

T=T
T=290 K
T=280 K
T=270 K

T=350 K

J J

FIG. 2. (a) Average DW velocity in Walker and post-Walker
regimes as a function of the electrical current density J . (b) Absolute
value of the azimuthal angle ϕ in Walker and post-Walker regimes
as a function of the electrical current density J . Blue, green, yellow,
red, and black curves correspond to the temperatures T = 270 K,
T = 280 K, T = 290 K, T = TA, and T = 350 K respectively; the
black arrows indicate the transition in the post-Walker regime. All
curves are plotted for the in-plane spin current polarization.

where T ∗ = 1891 K is obtained from the GdFeCo parameters
[25]. For all further mentioned modeling results PDL = 0.3
and PFL = 0.03.

First, let us analyze DW dynamics for the in-plane spin
current when K⊥ 
= 0 and the spin polarization is along the
y axis n = (0, 1, 0) (ψ = π/2 and n‖ = 1). In this geometry
stationary DW motion (ϕ̇ = 0 and a constant DW velocity) is
observed below the Walker breakdown. In TA the azimuthal
angle ϕ tends to zero [see the red curve in Fig. 2(b)], and the
stationary DW motion is observed with the velocity q̇/
0 =
πγ A/4αM, which follows from the first equation in (3).
As follows from (3) and (4) in this case the dampinglike
(or antidampinglike) spin transfer torque component with
magnitude A initiates DW dynamics, while the fieldlike one
modifies only the magnetostatic term. The magnitude of the
azimuthal angle ϕ increases with increasing electric current
density and tends to π/2, which is demonstrated in Fig. 2(b).
Note that in the case of the in-plane polarizer after reaching
the critical current density corresponding to the Walker break-
through J∗ = 16el|αeff |K⊥/πν h̄PAD, there is no domain wall
motion observed; it is indicated by the black arrows in the
Figs. 2(a) and 2(b). We can see that in the angular momentum
compensation temperature αeff → +∞ and critical current
density J∗ → +∞. Therefore, in TA stationary DW motion is
observed without post-Walker range. This range (after Walker
breakdown) corresponds to the constant azimuthal angle ϕ ≈
π/2. Spin current cannot push the domain wall when the
angle ϕ reaches π/2 [see Fig. 2(b)] for the case of in-plane
polarization. This means that the steady precessional motion
of the DW is impossible for in-plane polarized spin current,
and the DW velocity eventually drops to zero for all tem-
peratures except for TA. A similar situation was observed for
DW dynamics in a ferromagnetic system with perpendicular
magnetic anisotropy [34], when DW dynamics after Walker
breakdown vanished in the case of planar spin polarization.

Now let us discuss a more difficult situation in which σ is
parallel to the z axis n = (0, 0, 1) and n⊥ = 1. Actually, if we
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FIG. 3. (a) Dependence of the DW velocity on temperature at
different current densities. (b) Dependence of the DW velocity on
electrical current density at different temperatures. (c) Precession
rate as a function of temperature at different current densities. All
curves are plotted for the out-of-plane spin current polarization.

assume that K⊥ = 0, χ⊥ � 1 and consider the temperatures
in the vicinity of the angular momentum compensation point
TA, the system (4) describes the steady motion of the DW with
velocity q̇ and precession rate ϕ̇:

q̇


0
= − γ

2Mα

Aν/2αeff

1 + (ν/2αeff )2
, (6)

ϕ̇ = γ

2Mα

A

1 + (ν/2αeff )2
. (7)

By using Eq. (5) we can rewrite (6) and (7) in terms of
temperature T and study the dependence of the DW veloc-
ity and precession rate on temperature and current density.
Figure 3(a) demonstrates that the DW velocity has two maxi-
mum values near the angular momentum compensation point
and these values increase with the growth in current density.
These curves are asymmetric with respect to TA. Thus, the
velocity of the DW changes its sign passing through the an-
gular momentum compensation point. This situation is also
realized in Fig. 3(b), where the dependence of the DW ve-
locity on electric current density at different temperatures is
given. As seen from Eq. (6) DW velocity linearly depends on
the electrical current density. The blue and green lines [see
Fig. 3(b)] lie below TA, and the slopes of these curves (DW
mobility q̇/J) decrease. The DW velocity changes direction
above the angular momentum compensation point [red curve
in Fig. 3(b)].

Note that the DW velocity reaches 260 m/s at current
densities of about 3×107 A/cm2. The precession rate is not
zero ϕ̇ 
= 0 in the vicinity of the angular momentum compen-
sation temperature compared with field-driving DW motion
[35] (where magnetic field is applied along the easy magneti-
zation axis). Equation (7) shows that ϕ̇ reaches its maximum
by about 17 GHz at low current density (∼3×107 A/cm2)
near TA [see in Fig. 3(c)]. Following from Eqs. (6) and (7),
in the case of the considered polarization direction both the
oscillation of the ϕ angle and DW motion are triggered by

A

B

Stationary mode
 J<J*

Non-stationary mode
 J>J*

Out-of-plane spin current polarization (n
⟂
=1) 

J

TM TA

FIG. 4. J-T diagram which describes the ranges of steady and
nonsteady motions of the DW. The green curve shows the tempera-
ture dependence of the critical current J∗; the ranges above (J > J∗)
and below (J < J∗) the green curve correspond to nonstationary
(post-Walker) and stationary (Walker) modes of the DW, respec-
tively. Insets show the time dependence of DW displacement in the
nonstationary range for point A (T = 320 K and J = 2×107 A/cm2)
and the stationary range for point B (T = 280 K and J = 0.3×107

A/cm2) of the diagram. All curves are plotted for the out-of-plane
spin current polarization.

the damping (or antidamping) spin transfer torque component
with magnitude A; hence, the DW dynamic and oscillation
freeze without spin current. The fieldlike spin transfer torque
is neglected in the out-of-plane spin current polarization case
due to decomposition of the Lagrangian of the two-sublattice
ferrimagnet as a next-order small parameter (see [32] for the
spin transfer torque power density in a ferrimagnet).

Let us analyze the DW dynamic in the presence of in-plane
magnetic anisotropy K⊥ 
= 0 and n = (0, 0, 1). We find out
that there are two different regimes of the DW motion: steady
(ϕ̇ = 0) and nonsteady (ϕ̇ 
= 0). Let us discuss the nonsteady
one. An analytical solution to the system of differential equa-
tions (4) can be written as

tan ϕ = J∗

J
+

√[
1 −

(
J∗

J

)2]
tan(ω0t + ϕ0), (8)

where J∗ = 4πM2ν2el
h̄PDL

is the critical current density, ω0 =
γ

α

πν2M
√

1−(J∗/J )2

1+(ν/2αeff )2 , ϕ0 = arctan J∗/J√
1−(J∗/J )2

. The nonstationary

regime is realized when the current density J is higher
than the critical current J∗ (J > J∗). This situation is rep-
resented by the J-T diagram in Fig. 4, where the green
curve is the temperature dependence of the critical cur-
rent density J∗. Equation (8) describes the oscillation of
the angle ϕ in the nonstationary range of the J-T dia-
gram (J > J∗), and the inset for point A in Fig. 4 shows
the time dependence of the DW displacement in this range
at fixed temperature T = 320 K and current density J =
2×107 A/cm2. The stationary regime of the DW is real-
ized when the current density J is lower than the critical
current J∗. The inset in Fig. 4 for point B (T = 280 K
and J = 0.3×107 A/cm2) shows that after a small period of
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J

T=290 K

T=TA

T=330 K
J*

1 J*
2

Out-of-plane spin current polarization (n
⟂
=1)

FIG. 5. Average DW velocity in the stationary and nonstationary
modes as a function of the electrical current density J . Blue, green,
and red curves correspond to temperatures T = 290 K, T = TA, and
T = 330 K, respectively; J∗

1,2 are critical current densities which
correspond to T = 290 K and T = 330 K, respectively. All curves
are plotted for the out-of-plane spin current polarization.

time, ∼0.15 ns, the DW displacement stops changing in time.
Therefore, the precession rate ϕ̇ = 0, the velocity of the DW
tends to zero, and the magnetization freezes in the stable state,
which corresponds to the equation sin 2ϕ = J/J∗ following
(3). Hence, the stationary (Walker) mode in the considered
case corresponds to the absence of DW motion, while the
nonstationary mode is responsible for DW motion.

The dependence of the average DW velocity on the electri-
cal current density in the stationary and nonstationary regimes
is shown in Fig. 5. In the stationary mode the DW velocity is
zero. Near the critical current J∗ an increase in the value of
velocity occurs. However, in the nonstationary mode (J > J∗)
the average DW velocity linearly increases. Note that in the
angular momentum compensation point the average velocity
is equal to zero (green curve in Fig. 5). In addition Fig. 5
shows that velocity changes sign when passing through TA,
which is demonstrated by the blue (T = 280 K < TA) and red
(T = 330 K < TA) curves in Fig. 5. These results are consis-
tent with the J-T diagram in Fig. 4. It is important to note that
in the nonstationary mode nonlinear spin waves can be excited
and affect the dynamics of the DW. However, frequencies of
the spin wave in ferrimagnetic or antiferromagnetic materials
lie in the terahertz range [27,36,37]. In contrast the precession
rate of the quasiantiferromagnetic vector lies in the gigahertz
range, and we suppose that nonlinear spin waves have a weak
effect on the DW dynamics. Moreover, our model itself has
a limitation (see [32] for limits of the applicability of the
presented model) in the precession rate which coincides with
the frequencies of spin waves.

Now, let us discuss the directions of the spin current polar-
ization σ and type of torques, which can lead to the effects
mentioned above, and the possibility of their experimental
realization. Following the reported results, the damping (or
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FIG. 6. Examples of (a) the MTJ base and (b) and (c) spin Hall
based structures, which can be used to observe reported DW motion
and oscillation regimes in a FIM film or nanostripe. (b) corresponds
to the perpendicular direction of spin current polarization σ, and
(c) corresponds to the planar direction.

antidamping) spin transfer torque is responsible for the con-
sidered motion and oscillation regimes for both planar and
perpendicular spin current polarizations σ.

The first possible way to create a damping (or antidamping)
torque is to use the magnetic tunnel junction (MTJ) structure.
It consists of a free magnetic layer and a polarizer, which
are separated by a thin insulating material (usually MgO).
In such a structure electric current flows perpendicularly to
the plane and creates Slonczewski torque in the free layer,
while the spin current polarization σ direction is determined
by the magnetization direction of the polarizer. An example
of the MTJ structure is presented in Fig. 6(a). The typical
polarization value PDL in the MTJ with ferromagnets is about
0.2–0.4. Hence, one can add a thin FM layer between MgO
and FIMs, which is usually done even in the classic MTJ
to improve Tunnel magnetoresistance and polarization values
[10] to achieve the level of PDL = 0.3 used in our simulations.

Another way to create a damping (or antidamping) torque
is to use a heavy metal/FIM heterostructure. In such a struc-
ture electric current flows through a heavy metal (like Ta,
W, Pt, Au, etc.) in the film plane, and due to the spin Hall
effect it creates a perpendicular spin current with polarization
σ, which is perpendicular to both electric and spin currents.
This spin current can create an antidamping torque in the FIM.
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Examples of spin Hall geometry in the case of perpendicular
and planar polarizations σ are shown in Figs. 6(b) and 6(c),
respectively. The value of polarization in these cases is equal
to the spin Hall angle. This angle can be as high as 0.3 [38,39],
which again makes our PDL = 0.3 reasonable. Moreover, it
is possible to use a topological insulator instead of a heavy
metal to achieve spin Hall angles greater than 1 [40], which
significantly reduces the required current density.

IV. DISCUSSION AND CONCLUSION

A theoretical study of the DW dynamics caused by the spin
current near the angular momentum compensation point was
carried out using the Lagrangian formalism. The nonlinear
dynamic equations describing the DW motion are derived
from the effective Lagrangian of two sublattice ferrimagnets.
We analyze the DW motion for different directions of the spin
current polarizations and show different types of magnetic
heterostructures for which such a spin current polarization
can be realized. In the case of an out-of-plane polarizer
[n = (0, 0, 1)] we analyzed the dependence of DW veloc-
ity and precession rate on temperature and current density.
We foresee the possibility of generating oscillations of the
quasiantiferromagnetic vector L with frequencies of about
17 GHz at low current densities in the vicinity of the angular
momentum compensation temperature. These oscillations are
initiated by the spin-transfer torque. Precessional motion may

be associated with a recent micromagnetic modeling of tera-
hertz oscillation caused by spin current in antiferromagnetic
materials [41] at high current densities. Furthermore, the DW
velocity changes direction when passing through this tempera-
ture, and this effect is observed experimentally in the GdFeCo
ferrimagnet due to the spin current [42]. We explored the DW
motion in the stationary (Walker) and nonstationary (post-
Walker) modes and constructed a diagram that provides the
values of current densities and temperatures for which these
modes are realized. The model showed that in the Walker
regime no DW motion occurs, while in the post-Walker range
DW velocity increases linearly with the current. Note that a
similar dependence of the DW velocity was observed due to
the spin Hall effect [26] in the TbCo ferrimagnet sample in the
presence of an external magnetic field. We also analyzed the
DW dynamics for the in-plane spin current polarization and
obtained the dependence of the DW velocity on the current
in the Walker and post-Walker modes. Finally, we determined
the directions of the spin current polarization σ and the types
of torques which lead to the above effects and the possibility
of their experimental implementation. These results can be
useful for the experimental study of domain wall dynamics
in ferrimagnets.
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