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Neutron scattering study of magnetic anisotropy in the tetragonal antiferromagnet Bi2CuO4
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We present a comprehensive study of magnon excitations in the tetragonal easy-plane antiferromagnet
Bi2CuO4 using inelastic neutron scattering and spin-wave analyses. The nature of low-energy magnons, and
hence the anisotropy in this material, has been controversial. We show unambiguously that the low-energy
magnon spectrum consists of a gapped and a gapless mode, which we attribute to out-of-plane and in-plane
spin fluctuations, respectively. We modeled the observed magnon spectrum using linear spin-wave analysis of a
minimal anisotropic spin model motivated by the lattice symmetry. By studying the magnetic field dependence
of the (1,0,0) Bragg peak intensity and the in-plane magnon intensity, we observed a spin-flop transition in the ab
plane at ∼0.4 T, which directly indicates the existence of a small in-plane anisotropy that is classically forbidden.
It is only by taking into account magnon zero-point fluctuations beyond the linear spin-wave approximation that
we could explain this in-plane anisotropy and its magnitude, the latter of which is deduced from the critical field
of the spin-flop transition. The microscopic origins of the observed anisotropic interactions are also discussed.
We found that our data are inconsistent with a large Dzyaloshinskii-Moriya interaction, which suggests a
potential departure of Bi2CuO4 from the conventional theories of magnetic anisotropy for other cuprates.
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I. INTRODUCTION

One of the central topics in magnetism research is the
understanding of anisotropic interactions between spins on
a microscopic level. Since the full spin rotational symmetry
of the magnetic Hamiltonian is broken by these interactions,
their elucidation is essential for the description of a material’s
ground state and its low-energy excitations. For example, de-
spite having much smaller magnitudes than the isotropic or
Heisenberg interactions, these anisotropic interactions are re-
sponsible for giving rise to a bulk magnetic anisotropy energy
(MAE), which determines the ordering direction in an or-
dered magnet, and providing magnetoelastic/magnetoelectric
coupling in certain multiferroics [1]. In recent years, ma-
terials with anisotropic interactions comparable to or even
larger than the Heisenberg interactions are beginning to attract
much attention [2]. Dominant anisotropic terms have been
shown to modify the magnetism dramatically and give rise
to many exotic phenomena in these materials, such as a spin
liquid phase with topological order [3–5], and topological
excitations [6–8]. These new discoveries provide an addi-
tional impetus to study the anisotropic interactions in different
materials.

In general, the anisotropic interactions arise from the spin-
orbit coupling (SOC), and their strength scales with that of
the SOC. Although they can be understood qualitatively by
examining the local symmetry of the interacting magnetic
ions, the magnitude of each symmetry-allowed term can only
be obtained through the full electronic Hamiltonian including
SOC, a crystal electric field (CEF), Coulomb interaction (U0),
and hopping (t). Up to now, the anisotropic interactions have

been best understood in 3d transition-metal materials, where
SOC is much smaller than the other energy scales, and it
can therefore be treated perturbatively. In particular, systems
in which the magnetic ion contains only a single hole in a
nondegenerate orbital have been studied most intensively due
to its simplicity and direct applicability to high-Tc cuprates.
The anisotropic interactions in such systems take the form of
an exchange anisotropy between two S = 1

2 spins (as opposed
to single-ion anisotropy, which depends on individual spins),
which can be written as a sum of an antisymmetric and a
symmetric part:

�A · (�S1 × �S2) + �ST
1 M�S2, (1)

where �A and M are a vector and a symmetric matrix, re-
spectively. First shown by Moriya [9], and later confirmed by
Shekhtman and co-workers [10,11], Eq. (1), when expanded
up to second order in SOC, takes the following specific form:

�D · (�S1 × �S2) + | �D|2
4J

[(d̂ · �S1)(d̂ · �S2) − �S1 · �S2]. (2)

In Eq. (2), the magnitude of �D is given approximately by
| �D| ∼ λ

ε
J , where λ, ε, and J denote the SOC, CEF, and

Heisenberg superexchange interaction, respectively. The two
terms of Eq. (2), linear and quadratic in SOC, are often re-
ferred to as the Dzyaloshinskii-Moriya (DM) and symmetric
anisotropic (SA) interactions. Corrections to Eq. (2) have been
investigated by Yildirim et al. in a realistic model [12], where
they showed that Eq. (2) is actually valid up to all orders
of SOC as long as the Coulomb exchange is zero, and the
Coulomb interaction is independent of orbitals. The Coulomb
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exchange, K , and parts of the Coulomb interaction depending
on orbital occupancy, �U , generate corrections to both the
DM and SA interactions in Eq. (2) that are an order ∼O( K

U0
)

and ∼O( �U
U0

) smaller than the leading terms in Eq. (2). Such
corrections become important when �D vanishes due to inver-
sion symmetry. The general theory, including both Eq. (2) and
the corrections due to K and �U , microscopically explains the
magnetic anisotropy in a wide range of tetragonal [13–18] and
orthorhombic [19,20] Cu2+ oxides with a simple Cu-O-Cu
bond geometry.

A natural next question involves the form of the anisotropic
interaction when the geometry of the exchange path is more
complex. In particular, it is unclear whether the general theory
with a dominant anisotropic term given by Eq. (2) still holds
when the exchange route is more complicated than a simple
Cu-O-Cu bond geometry. One example studied is Bi2CuO4,
with a tetragonal lattice structure shown in Fig. 1. The mag-
netic sublattice consists of chains of Cu2+ ions arranged in
a square lattice. Below TN ∼ 50 K, the Cu-moments acquire
a C-type antiferromagnetic order consisting of ferromagnetic
chains that are antiferromagnetically arranged [21–24]. The
ordered moments lie in the ab plane [25], suggesting the
existence of easy-plane anisotropy similar to other tetragonal
cuprates with simpler structure. As shown in Fig. 1, the geom-
etry of the superexchange path between any two Cu2+ ions in
Bi2CuO4 is very complex. An example is the Cu-O-Bi-O-Cu
path indicated by a yellow dotted line in Fig. 1(a), where the
Cu-O-Bi and O-Bi-O angles are 109◦ and 88◦, respectively.
This makes it difficult to theoretically determine the magnetic
anisotropy. Experimentally, many studies have been carried
out to elucidate the form and size of the anisotropy terms in
this material by examining its magnetic excitations. However,
the results obtained so far have been inconclusive. Although
early inelastic neutron scattering (INS) studies agree on the
overall magnon dispersion in Bi2CuO4, they disagree on the
nature of the low-energy magnons. The first INS study carried
out by Ain et al. observed only one low-energy magnon mode
with a gap of ∼2 meV [26]. This is in apparent contradic-
tion with the observation of an in-plane ordered moment,
which should give two distinct magnon modes polarized in
and out of the easy plane. We will henceforth refer to the
two modes as “in-plane” and “out-of-plane” magnons. (Note
that “in-plane” and “out-of-plane” refer to the polarizations
of spin fluctuations, not propagation wave vectors.) Subse-
quent INS by Roessli et al. found two modes, with a gap
of ∼4 and ∼2 meV [27]. Later polarized INS experiment
by the same authors reported different gap sizes of ∼0.5
and ∼2 meV, which they attributed to in-plane and out-of-
plane spin fluctuations [28], respectively. Observation of such
a large in-plane magnon gap in an easy-plane magnet with
tetragonal lattice symmetry is entirely unexpected by symme-
try (see Sec. IV C 1), which motivated early theoretical work
that introduced a highly unconventional four-spin interac-
tion [27,29]. Lastly, all the INS results to date contradicted the
antiferromagnetic resonance (AFMR) results [30,31], which
reported a gapped and a gapless magnon mode.

To reconcile the controversies in earlier studies, and further
the understanding of anisotropic interactions in Bi2CuO4, we
carried out new high-resolution INS studies of magnetic exci-
tations in a Bi2CuO4 single crystal. Using a thermal neutron

FIG. 1. (a) Crystal structure of Bi2CuO4. Oxygen, bismuth, and
copper ions are shown as red, purple, and blue spheres. (b),(c) Projec-
tion of the Bi2CuO4 structure along the (b) [1, −1, 0] and (c) [0, 0, 1]
directions. Oxygen atoms have been omitted in (b) and (c). The local
spin axes, x̂ and ŷ defined in Sec. IV, are shown in (c). Cu spins
are denoted by green arrows, which make an angle φ with respect
to x̂. The two sublattice magnetizations are indicated by �M1 and �M2.
Dashed and solid line boxes denote the structural and magnetic unit
cell, respectively. J1, J2, J3, and J4 are the superexchange interactions
used in the spin-wave calculation. In (b), the twofold rotation and
inversion symmetries are denoted by yellow ovals and red stars,
respectively. In (c), yellow squares denote fourfold rotational sym-
metry around the chains of Cu ions.

with an intermediate energy resolution, we mapped out the
full magnon spectrum. The overall magnon dispersion relation
observed in our study is qualitatively consistent with earlier
results [26,27]. However, using a cold neutron with much
higher resolution than all previous INS studies, we show that
the low-energy spectra consist of two modes—one that is gap-
less and one that has a ∼2 meV gap—that can be attributed to
in-plane and out-of-plane magnons, respectively. Our results,
therefore, confirm the AFMR results and resolve the contro-
versies regarding the nature of the low-energy excitations. We
also carried out INS in the presence of a magnetic field applied
along the (0,1,0) direction. By studying the field dependence
of the (1,0,0) magnetic Bragg peak intensity, and that of the
gapless mode, we show that there is a spin-flop transition
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within the ab plane at ∼0.4 T, which directly indicates the
existence of an in-plane MAE that selects the direction of
ordered moments in the ab plane. Using a symmetry argu-
ment, we show that such an MAE is forbidden on a mean-field
level in Bi2CuO4, and therefore it could only be explained
by considering corrections to the ground-state energy due to
quantum fluctuations, a phenomena known as quantum order
by disorder [32]. We could explain the observed magnon dis-
persion by carrying out linear spin-wave analysis on a model
containing Heisenberg interaction and a symmetry-allowed
exchange anisotropy of the form α‖S1,xS2,x − α‖S1,yS2,y +
α⊥S1,zS2,z, where 2α‖ ∼ α⊥ ∼ 0.01. Beyond the linear
spin-wave approximation, we considered corrections to the
ground-state energy due to magnon zero-point fluctuations.
This predicts an in-plane MAE that quantitatively explains the
critical field of the spin-flop transition.

II. EXPERIMENTAL DETAILS

Bi2CuO4 single crystal (4.35 g) used for neutron scat-
tering measurements was grown using the floating zone
technique [25]. The full magnon spectrum of Bi2CuO4 was
mapped out using the HYSPEC time-of-flight (TOF) spec-
trometer at the Spallation Neutron Source (SNS) at Oak Ridge
National Laboratory. An incident energy of Ei = 25 meV was
used to give an energy resolution of ∼1 meV at zero-energy
transfer. The field dependence of magnon below ∼4 meV
was studied using the Disk Chopper Spectrometer (DCS) and
Spin Polarized Inelastic Neutron Spectrometer (SPINS) at the
NIST Center for Neutron Research (NCNR). Two incident
energies of Ei = 4.9 and 2.3 meV were used for TOF mea-
surement at DCS, which gave an energy resolution of ∼0.18
and ∼0.06 meV at the elastic line, respectively. The triple-axis
measurement at SPINS was performed using a fixed final
energy E f = 5 meV. A vertically focusing pyrolitic graphite
(PG) monochromator, a flat PG analyzer, and a Be filter were
used to select incident and final energies at SPINS. A colli-
mation setting of guide-open-80′-open was used to achieve
an energy resolution of ∼0.2 meV at the elastic line. For
all measurements, the crystal was aligned with (H, 0, L) in
the scattering plane. The alignment was carried out at the
McMaster Alignment Diffractometer (MAD) prior to the INS
experiments. A 10 T vertical field superconducting magnet
was used for measurements at DCS and SPINS to apply a field
along the (0,1,0) direction. The sample temperature was kept
at ∼1.5 K for all measurements.

III. EXPERIMENTAL RESULTS

Full magnon dispersion in Bi2CuO4 mapped out using the
HYSPEC TOF spectrometer is shown in Figs. 2(a) and 2(b).
As shown in Fig. 2(a), the energy of the magnon increases
monotonically along H, reaching an energy of ω = 12.6 meV
at the magnetic zone boundary at Q = (1.5, 0, 0). On the other
hand, the magnon along L first disperses upward, reaching a
maximum energy of ω = 9.2 meV at Q = (1, 0,±0.7) [de-
noted by vertical arrows in Fig. 2(b)], before curving down
to an energy of ω = 8.6 meV at the zone boundary with Q =
(1, 0,±1). These features are in qualitative agreement with
early INS results reported by other authors [26,27]. Results

FIG. 2. (a),(b) INS spectra as a function of energy, ω (y-axis),
and momentum transfer (x-axis) along (a) (H, 0, 0) and (b) (1, 0, L).
We set h̄ = 1 throughout the paper. The data are obtained at
HYSPEC using an incident energy of Ei = 25 meV. Vertical ar-
rows in (b) denote the positions of local maxima in the dispersion
along L. (c),(d) High-resolution INS spectra along (c) (H, 0, 0) and
(d) (1, 0, L) obtained at DCS using an Ei = 4.7 meV. The intensity
scales used to plot the HYSPEC and DCS data are shown to the right
of (b) and (d). Red solid lines in all plots are calculated dispersion
relations within the XY Z model, as described in the text.

of high-resolution measurement of magnon excitations below
∼4 meV from the DCS experiment are shown in Figs. 2(c)
and 2(d) for momentum transfer along H and L, respectively.
Clearly, a magnon gap of ∼2 meV can be resolved with the
high-resolution data, consistent with Refs. [26–28].

However, even at zero field, there seems to be a small
but nonzero intensity below the gapped mode in Figs. 2(c)
and 2(d). As shown in Fig. 3(a), the intensity below the
∼2 meV gap can be enhanced by applying a small magnetic
field (1 T) along the (0, 1, 0) direction. The shape of its
dispersion clearly shows that it originates from another mode
with an acoustic-like dispersion. The acoustic mode merges
with the gapped mode away from the magnetic zone center,
making them indistinguishable at energy transfer larger than
∼2 meV. To determine the presence of any small gap in this
acoustic-like mode, we carried out measurements using an
Ei = 2.3 meV with higher resolution. The results in Fig. 3(d)
clearly show that this mode is gapless within an experimental
resolution of ∼0.06 meV.

Given the highly symmetric crystal structure of Bi2CuO4,
one expects the ordered moments to be able to rotate freely
within the ab plane, giving rise to a gapless magnon mode
due to the in-plane spin fluctuation. On the other hand, an
easy-plane anisotropy is expected from the observation that
the ordered moments lie in the ab plane, implying that the
magnon mode due to out-of-plane spin fluctuation must be
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FIG. 3. (a)–(c) INS spectra along (1, 0, L) obtained at DCS using Ei = 4.7 meV for different fields along (0, 1, 0). The magnitude of the
field is given on top of each figure. (d)–(f) Same as (a)–(c) but obtained using Ei = 2.3 meV, which gives higher energy resolution. Intensity
scales used for the two Ei’s are shown on the right.

gapped. These arguments allow us to assign the acoustic and
gapped magnon mode observed in our data to in-plane and
out-of-plane spin fluctuations, respectively.

As shown in Figs. 3(e) and 3(f) and Figs. 3(b) and 3(c),
applying higher fields gaps out the acoustic mode while
leaving the gapped mode unchanged. Since a magnetic field
along (0, 1, 0) breaks the spin rotational symmetry within the
easy plane, in-plane spin fluctuation should acquire a gap
roughly equal to the Zeeman energy, or gμBH . Using g ≈ 2
for Cu2+ [31], we estimate the in-plane magnon gap to be
∼0.5 and ∼0.8 meV at 4 and 7 T, in quantitative agreement
with our data in Figs. 3(e) and 3(f). On the other hand, the
out-of-plane magnon gap is unaffected by the field as it is
much larger than the Zeeman energy for the range of fields
used in our experiment.

To study the intensity change of the two modes at H � 1 T
in greater detail, an energy scan at constant Q = (1, 0, 0)
was carried out for different fields below 1.2 T as shown in
Fig. 4(a). The peak at ∼2 meV in all energy scans corresponds
to the gapped out-of-plane magnon mode shown in Figs. 3(a)–
3(c). Clearly, the intensity of this mode is almost independent
of applied field. We also plot the energy scan at Q =
(1.1, 0, 0) obtained at zero field in Fig. 4(a) with open circles.
Since the magnon has a fairly steep dispersion, it has dispersed
to higher energy (ω > 3 meV) at this Q, and the small residual
intensity for energy transfers 0.5 � ω � 3 meV can be taken
as the background. Compared to the Q = (1.1, 0, 0) data, the
scan at Q = (1, 0, 0) at zero field clearly shows additional

inelastic intensity below the ∼2 meV peak that extends down
to the elastic region. This intensity comes from the gapless
mode identified from our DCS data [Fig. 3(d)]. As shown
in Fig. 4(a), this intensity increases with field. To obtain a
quantitative measure of the in-plane magnon mode intensity,
the background at Q = (1.1, 0, 0) was first subtracted from
the energy scan at Q = (1, 0, 0), and then the intensity from
0.5 to 1.5 meV [shaded region in Fig. 4(a)] was integrated.
The integrated intensity is plotted as a function of applied field
strength in Fig. 4(b) (solid circle). One can observe that the
in-plane mode intensity in this energy range almost doubles
from 0 to ∼0.4 T and then stays the same beyond this field.
Also shown in Fig. 4(b) is the intensity of the magnetic Bragg
peak at Q = (1, 0, 0) represented by open circles, which is
completely suppressed as the intensity of the in-plane mode
reaches its maximum. Both the intensity of the in-plane mode
and the (1, 0, 0) magnetic Bragg peak intensity change at
∼0.4 T. This coincides with the metamagnetic transition ob-
served in bulk magnetization studies, which was attributed to
a spin-flop transition [24]. As we will explain in Sec. IV, the
intensity change is quantitatively consistent with reorientation
of spins due to a spin-flop transition within the ab plane.

In the absence of any magnetic anisotropy in the ab plane,
spins can rotate freely and respond to even an infinitesimal
field. Observation of a spin-flop transition at a finite field
therefore directly indicates that in addition to the easy-plane
anisotropy, there exists a finite in-plane magnetic anisotropy
energy (MAE).

134436-4



NEUTRON SCATTERING STUDY OF MAGNETIC … PHYSICAL REVIEW B 103, 134436 (2021)

FIG. 4. (a) Energy scan at constant Q = (1, 0, 0) for different
fields (0–1.2 T) applied along (0, 1, 0). Data shown in the open circle
are an energy scan at Q = (1.1, 0, 0) at zero field, which is used as
a nonmagnetic background for energy transfer 0.5 � ω � 2.5 meV.
The data are obtained at SPINS with a fixed energy Ef = 5 meV.
(b) Field dependence of the (1, 0, 0) magnetic Bragg peak intensity
(open circle) and intensity of the gapless mode (solid circle). The
intensity of the gapless mode is obtained by integrating the constant
Q scan at (1, 0, 0) from 0.5 to 1.5 meV [shaded region in (a)] after
subtracting the background at (1.1, 0, 0) within the same energy
range. The intensities of the magnetic Bragg peak and the gapless
mode have been normalized with respect to the values at 0 and 1.2 T,
respectively. The solid line is the calculated (1, 0, 0) Bragg peak
intensity as described in Sec. IV C 3.

IV. SPIN-WAVE ANALYSIS

A. Heisenberg model

In this subsection, we provide a quantitative description
of our data within linear spin-wave theory (see Appendix
A for details). The dominant superexchange interactions in
Bi2CuO4, labeled by J1, J2, J3, and J4 in Fig. 1(b), were
proposed in previous studies, and corroborated by an ab initio
calculation [33]. Since the exchange anisotropy in each bond
is expected to be much smaller than the isotropic part, we first
determine the magnitude of the latter by comparing our data to
a Heisenberg model, which greatly simplifies the calculation.

FIG. 5. Allowed J2, J3, and J4 for a given J1. The thickness of
the lines denotes the range of allowed values for each parameter,
which reflects uncertainties in the constraints used to determine these
parameters. The values of J1–J4 used in our spin-wave calculation are
indicated by a dashed line.

As we show by symmetry analysis in Appendix A, all interac-
tions centered at Cu3 can be obtained from those centered at
Cu1 by a combination of inversion and twofold rotation (these
symmetry operations have been indicated in Fig. 1). Since
a Heisenberg interaction of the form J �Si · �S j is left invariant
by these symmetry operations, interactions centered at Cu3

and Cu1 are therefore identical within the Heisenberg model,
making it invariant under a translation by half of the structural
unit cell along the c direction. The primitive magnetic unit cell
within the Heisenberg model [solid line in Fig. 1(b)] is there-
fore half of the structural unit cell [dashed line in Fig. 1(b)],
and it consists of only two Cu ions. Linear spin-wave analysis
therefore predicts two magnon modes, whose energies are
degenerate and are given by the following simple analytic
expression:

ω(Q) = {{J4[cos(πL) − 1] + 2J1 + 2J2 + 2J3}2

− ∣∣ 1
2 [A−Q + B−Q][J1 + J2e−iπL + J3e−i2πL]

∣∣2} 1
2 ,

(3)

where AQ = 1 + ei2π (H+K ), BQ = ei2πH + ei2πK , and Q is
given in the reciprocal-lattice unit of the structural unit cell.
Rather than fitting to the full magnon spectrum as done pre-
viously by other authors [26,27], we note that the exchange
parameters can already be determined by three indepen-
dent quantities: magnon energies at Q = (1.5, 0, 0) and Q =
(1, 0, 1), as well as energy and Q of the local maximum in
the L-dispersion shown in 2(b). The magnon zone boundary
energies in Figs. 2(a) and Fig. 2(b) are determined to be ω =
12.6(2) and 8.6(3) meV, respectively. However, location of the
local maximum in Fig. 2(b) can only be roughly determined to
be at ω = 9–9.5 meV and L = 0.65–0.75. In Fig. 5, we show
the allowed parameters obtained from these constraints. For
a given J1, J2–J4 are more or less fixed. However, J1 itself
can vary from ∼0.5 to ∼5 meV, implying that there is no
unique set of “best-fit” parameters as suggested by previous
INS studies. We have checked that all these parameters give
almost identical magnon dispersions that describe our data
equally well. Motivated by results from the ab initio calcula-
tions showing J1 	 J2, J3, J4, we use the representative set of
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parameters: J1 = 4.7 meV, J2 = 1.1 meV, J3 = 0.5 meV, and
J4 = 0.36 meV, where we have fixed the value of J1 to that
estimated from the tight-binding and LSDA + U calculation
in Ref. [33]. These values are indicated by the dashed line in
Fig. 5.

B. Exchange anisotropy

To capture the magnetic anisotropy in Bi2CuO4, we have
to go beyond the simple Heisenberg model and include
anisotropic terms. For a given bond, the exchange anisotropy
should roughly scale with the isotropic part, both of which
are proportional to t2

U0
in the large U0 limit. We will therefore

only consider the exchange anisotropy for the dominant ex-
change path, J1. The simplest symmetry-allowed anisotropic
exchange beyond the Heisenberg model (see Appendix A)
is given by J1

xxSx,1Sx,2 + J1
yySy,1Sy,2 + J1

zzSz,1Sz,2. We will call
this an XY Z model. Taking this to be the interaction between
Cu1 and Cu2, fourfold symmetry implies that the interaction
between Cu1′ and Cu2 [Fig. 1(c)] is J1

yySx,1′Sx,2 + J1
xxSy,1′Sy,2 +

J1
zzSz,1′Sz,2. In these expressions, we have defined a new co-

ordinate system xyz, where x̂ and ŷ are rotated by 45◦ with
respect to the crystallographic â and b̂ directions, and ẑ ‖ ĉ.
These definitions are motivated by the observation that ŷ (x̂)
is the local twofold axis for a bond directed along x̂ (ŷ). We
emphasize that an XY Z model is a minimal model that can
quantitatively account for all the observations in our data,
notably the existence of both an out-of-plane magnon gap and
an in-plane MAE revealed by a spin-flop transition. As we
show by symmetry analysis (see Appendix A), other exchange
anisotropy, such as off-diagonal SA and DM interactions, is
also allowed for the Cu1 − Cu2 bond. Although we cannot
rule out the former in Bi2CuO4, we will show later that a large
DM interaction is inconsistent with the observed magnon
spectrum.

A magnetic unit cell that is half of the structural unit cell
can still be used for a spin-wave calculation within the XY Z
model (see Appendix A). The angle between the sublattice
magnetization, �M1 (or equivalently the staggered moment,
�n = �M1 − �M2), and the x̂-axis is given by φ as shown in
Fig. 1(c) [also in Fig. 7(c)]. Since Jxx 
= Jyy breaks the in-plane
spin rotational symmetry of the Hamiltonian, the resulting
magnon spectrum is expected to have an explicit φ depen-
dence. Within linear spin-wave theory, the energies of the two
magnon modes are given by

ω± =(
C2

Q+|EQ|2 − |FQ|2±
√

4|CQEQ|2−|ĒQFQ−EQF̄Q|2) 1
2 ,

(4)

where

CQ = J4 cos(πL) − J4 + (
J1

xx + J1
yy

) + 2J2 + 2J3,

EQ = 1
4

{−J1
xx[sin2(φ)A−Q + cos2(φ)B−Q]

− J1
yy[sin2(φ)B−Q + cos2(φ)A−Q] + J1

zz(A−Q + B−Q)
}

FQ = 1
4

{
J1

xx[sin2(φ)A−Q + cos2(φ)B−Q]

+ J1
yy[sin2(φ)B−Q + cos2(φ)A−Q] + J1

zz(A−Q + B−Q)
}

+ 1
2 (A−Q + B−Q)[J2e−iπL + J3e−i2πL], (5)

FIG. 6. Energy scan at Q = (1, 0, 0) at 0 T fit to a sum of
in-plane and out-of-plane magnon mode as described in the text.
Contributions of the two modes are shaded in blue and pink,
respectively.

and ĒQ and F̄Q denote their complex conjugates. In the above
expressions, J2, J3, and J4 are set to be the values determined
in the preceding subsection. Different components of J1

ζ ζ are
parametrized by the following: J1

yy/xx = J1(1 ± α‖) and J1
zz =

J1(1 − α⊥), where the isotropic part, J1, is fixed to be 4.7 meV,
and α‖ and α⊥ are to be determined.

At the magnetic zone center, Q = (1, 0, 0), the
energies of the two modes are ω− = 0 and ω+ =
2
√

(2J1 + 2J2 + 2J3)J1α⊥, respectively, corresponding to
in-plane and out-of-plane spin fluctuations observed in our
data. Note that the in-plane gap remains zero within the linear
spin-wave approximation despite a nonzero in-plane exchange
anisotropy, α‖. To determine α⊥, we fit the zero-field energy
scan data shown in Fig. 4(a) to the following form of the
dynamical structure factor convolved with the instrumental
resolution:

S(ω) = 1

1 − exp(−ω/kBT )

(
1

2

δ(ω − ω−)

ω−
+ δ(ω − ω+)

ω+

)
,

(6)

plus a constant background. In Eq. (6), kB is the Boltzmann
constant, and the first and second terms are contributions
by the in-plane and out-of-plane spin fluctuations, respec-
tively. The factor of 1/2 for the in-plane spin fluctuation will
be explained in Sec. IV C 3. As shown in Fig. 6, a gap of
1.7(2) meV or α⊥ = 0.013(2) gives a good description of the
data: a peak at ∼2 meV followed by a long tail extending up
to ∼5 meV that results from convolving the steep magnon
dispersion with the instrumental resolution. The slight dis-
crepancy between the relative intensities of the two modes
in our data and the calculation might be due to additional
momentum-dependent factors in the scattering intensity not
captured by Eq. (6).
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C. Quantum order by disorder

1. Symmetry argument for accidental degeneracy

Since the in-plane spin rotational symmetry is absent in the
XY Z model, the magnon dispersions given by Eqs. (4) and (5)
are expected to depend explicitly on the ordering direction, φ.
However, the in-plane magnon gap, ω−, predicted by linear
spin-wave theory is exactly 0, independent of φ. We now
argue that this somewhat surprising finding is a consequence
of the unique crystal symmetry of Bi2CuO4, independent of
the underlying microscopic magnetic Hamiltonian.

We consider a generic ordered state where the magnetic
unit cell is the same as the structural unit cell (the magnetic
order observed in Bi2CuO4 is a special case in which the
unit cell of the ordered structure is half of the structural unit
cell). Ordered magnetic moments on Cu1–Cu4 are given by
�M1– �M4. If we consider only interactions quadratic in spin op-

erators, the mean-field energy of the system is given by EMF =∑ζη
i, j Mζ

i �
ζη
i, j M

η
j , where i, j = 1–4 denotes the spin index, and

ζ , η = x, y, z denotes the spin component. The matrix �
ζη
i, j is

obtained by summing all exchange interactions.
Next we note that the lattice is invariant under a rotation by

90◦ about the c axis passing through the chain of Cu atoms.
This operation both moves the atoms as well as rotates their
spins. However, given the lattice structure of Bi2CuO4, this
operation only moves atoms within its own sublattice. In other
words, Cui in one unit cell is moved to the same position in
another unit cell. It is therefore equivalent to rigidly rotating
the �Mi by 90◦, which maps Mi,x → Mi,y, Mi,y → −Mi,x, and
Mi,z → Mi,z for i = 1–4. This constrains the mean-field en-
ergy to be

EMF = �xx
i, j (Mi,xMj,x + Mi,yMj,y) + �zz

i, jMi,zMj,z

+ �
xy
i, j (Mi,xMj,y − Mi,yMj,x ). (7)

Clearly, EMF acquires an accidental in-plane spin rotational
symmetry. This implies that all ordering directions within
the ab plane are classically degenerate. Moreover, since the
in-plane magnon at the zone center corresponds to a rigid ro-
tation of all spins that costs zero energy on a mean-field level,
it must remain gapless within linear spin-wave approximation.
Note that this argument only works because of the simple fer-
romagnetic chain arrangement of Cu ions in Bi2CuO4, which
is unique among the tetragonal cuprates. Similar arguments
fail, for example, in Sr2CuO2Cl2, where the adjacent Cu ions
along the c direction are displaced diagonally by half of the
unit cell, in which case an anisotropic term is allowed in the
mean-field energy due to interlayer coupling [18].

2. Magnon zero-point fluctuations

Although no magnetic anisotropy within the ab plane is
expected on a classical level, summing magnon zero-point
fluctuations (ZPFs) at all Q’s generates a correction to the
ground-state energy that is explicitly φ-dependent, which con-
tributes to the bulk magnetic anisotropy energy (MAE) of
Bi2CuO4. Quantitatively, this correction is given (up to a
constant) by [32]

EZPF(φ) = 1

2

∑
Q

[ω+(φ) + ω−(φ)]. (8)

FIG. 7. (a) Correction to the ground-state energy obtained by
summing magnon zero-point fluctuations for a different direction
of ordered moment, φ. An α‖ = 0.0074 has been used. The peak
height, 
, is equal to the energy difference between φ = 0 (ordered
moment along x̂) and φ = 45◦ (ordered moment along a). (b) 
 as
a function of the exchange anisotropy, α‖. (c) Configurations of the
two sublattice magnetizations, �M1 and �M2, at H = 0, H < Hc, and
H > Hc, where Hc is the critical field of the spin-flop transition. The
canting between �M1 and �M2 is given by θ . The angle between the
staggered magnetization, �n = �M1 − �M2, and the x̂ axis is denoted
by φ.

Carrying out the sum numerically gives an EZPF(φ) shown
in Fig. 7(a) that is minimum at φ = 0 and maximum at φ =
45◦. The ordered moments, therefore, lie along the Cu-Cu
bond directions (x̂ or ŷ) at zero field. EZPF(φ) can be fit very
well by EZPF(φ) = 
 sin(2φ)2, where 
 gives the difference
EZPF(45◦) − EZPF(0◦). 
 as a function of α‖ is shown in
Fig. 7(b), which is described very well by a quadratic function.
The fact that EZPF is an even function of α‖ can be understood
by noting that a sign change of α‖ is equivalent to interchang-
ing Sx and Sy in the XY Z model, which does not matter for
tetragonal lattice symmetry.

3. Spin-flop transition

We now show that a bulk MAE given by Eq. (8) provides
a natural explanation for the observed spin-flop transition.
At zero field, the sublattice magnetizations, �M1 and �M2, are
antiparallel and lie along x̂ or ŷ preferred by EZPF(φ). When
a sufficiently large magnetic field is applied along (0, 1, 0),
�M1 and �M2 are reoriented almost perpendicular to the field

if the Zeeman energy gain by canting �M1 and �M2 toward the
field [denoted by θ in Fig. 7(c)] is sufficient to overcome the
MAE generated by zero-point fluctuations. This leads to a
spin-flop transition at a finite critical magnetic field, Hc, where
gμBHc cos(θ ) ∼ 
.

A spin-flop transition within the ab plane explains the
observed change in (1, 0, 0) magnetic Bragg peak intensity as
well as the intensity of the in-plane mode shown in Fig. 4. For
a domain where the ordered moment lies along x̂ at zero field,
its in-plane fluctuation is polarized along ŷ [the ordered mo-
ment and the in-plane spin fluctuation are denoted by the solid
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arrow and the dotted line in Fig. 7(c)]. Neutron scattering is
only sensitive to the spin component along (0, 1, 0), which is
45◦ from x̂ and ŷ, for scattering near Q = (1, 0, 0). Therefore,
only half of the Bragg peak and the in-plane magnon mode
intensity at (1, 0, 0) are detected at zero field. When the field
along (0, 1, 0) is greater than Hc of the spin-flop transition, all
spins are reoriented perpendicular to the field. The ordered
moments are now almost parallel to (1, 0, 0) as shown in
Fig. 7(c) and hence do not contribute to Bragg peak intensity
at (1, 0, 0). On the other hand, the in-plane spin fluctuation
is now entirely along the (0, 1, 0) direction. This maximizes
the intensity of the in-plane mode. The intensity of the in-
plane mode for H > Hc should be twice the intensity at zero
field, in agreement with the integrated intensity at H = 0 and
1.2 T shown in Fig. 4(b). Lastly, since spin fluctuation along
c is independent of spin orientations within the ab plane, the
out-of-plane mode should be unchanged across the spin-flop
transition. This is also consistent with our results in Fig. 4(a).

Quantitatively, the spin-flop transition happens as a result
of the competition between the exchange energy, the MAE
generated by zero-point fluctuation [Eq. (8)], and Zeeman
energy due to the canting of the magnetic moments. Summing
the three contributions gives the following form for the total
energy (per magnetic unit cell):

Etot = − 4S2

(
J1 + J2 + J3 − 1

2
J4

)
cos(2θ )

− 2HS sin(θ ) cos

(
φ + π

4

)
+ EZPF(φ), (9)

where EZPF(φ) is given by Eq. (8), and it can be approximated
as 
 sin(2φ)2. Assuming that �M1 and �M2 initially lie along x̂
(the same results hold if they lie along ŷ), Eq. (9) is minimized
with respect to θ and φ to find the orientations of �M1 and �M2 at
a finite field. To directly compare with our data, the intensity
of the (1, 0, 0) magnetic Bragg peak is computed from the
square of the projection of �n along (0, 1, 0), or cos2( π

4 − φ).
As shown by the solid line in Fig. 4(b), 
 = 0.014(2) μeV,
or equivalently, α‖ = 0.0074(4) describes the observed field
dependence of the Bragg peak intensity reasonably well.
Spin-wave dispersion determined using the complete set of
parameters, α‖ = 0.0074, α⊥ = 0.013, J1 = 4.7 meV, J2 =
1.1 meV, J3 = 0.5 meV, and J4 = 0.36 meV, is shown in
Fig. 2.

To summarize, we have demonstrated the existence of a
bulk MAE in the ab plane due to magnon zero-point fluctua-
tions through the observation of a spin-flop transition in the ab
plane. This anisotropy also implies that the in-plane magnon
mode must acquire a small gap when corrections beyond the
linear spin-wave approximation are considered. This gap is
estimated from the curvature of the semiclassical energy [32]
[EMF + EZPF(φ)] to be 4

√

J1α⊥ ≈ 3.5 μeV. Although it is

too small to be observed in our experiment or AFMR, the
gap may be directly observed in future neutron spin-echo or
backscattering experiments. Another check of our model is
the direction of ordered moments, which we predict to be
45◦ from a and b. Although this cannot be unambiguously
determined from neutron diffraction due to domain averaging,
future torque magnetometry [34] or angle-dependent suscep-

tibility measurement on a well-oriented crystal might be able
to provide direct confirmation for our model.

V. DISCUSSIONS

In the preceding section, we showed that an XY Z
model with an exchange anisotropy of the form α‖Sx,1Sx,2 −
α‖Sy,1Sy,2 − α⊥Sz,1Sz,2 is a minimal model that explains the
magnitude of both the easy-plane anisotropy and the small
(classically forbidden) in-plane anisotropy, determined exper-
imentally from the out-of-plane magnon gap and the critical
field of an in-plane spin-flop transition, respectively. A natural
question involves the microscopic origin of this exchange
anisotropy, particularly whether it is consistent with the gen-
eral theory given by Eq. (2). In this section, we address this
question by considering an alternative model where the ex-
change anisotropy is given by Eq. (2).

The symmetry analyses in Appendix A show that Eq. (2)
takes a form of

D1
(
S1

y S2
z − S1

z S2
y

) + D2
1

4J1

(
S1

x S2
x − S1

y S2
y − S1

z S2
z

)
(10)

for the dominant superexchange between Cu1 and Cu2 in
Bi2CuO4. The second symmetric anisotropic (SA) term alone
gives rise to the magnon gap at the magnetic zone center,
which allows the only parameter in this model, D1, to be de-
termined. Notably, the SA term in Eq. (10) takes a form quite
similar to the exchange anisotropy in our XY Z model given by
α‖S1,xS2,x − α‖S1,yS2,y + α⊥S1,zS2,z (the two are of the same
form when α‖ = α⊥). Using the value of D1 determined from
the out-of-plane magnon gap, the magnitude of the SA term

relative to J1 is estimated to be D2
1

4J2
1

∼ 0.01. Incidentally, this is
also on the same order of magnitude as α‖ and α⊥ estimated in
the preceding section. It is therefore tempting to conclude that
the exchange anisotropy in our XY Z model originates from
the SA term in Eq. (10). On the other hand, the only difference
between Eq. (10) and the XY Z model is the existence of
an accompanying DM term in Eq. (10) that is an order of
magnitude larger. However, as we show below, such a large
DM term is inconsistent with the observed magnon spectrum.

In Fig. 8, we compare the measured magnon dispersion
along H [Figs. 8(a) and 8(d)] to predictions by the XY Z
model [Figs. 8(b) and 8(e)] and the model with DM and SA
terms given by Eq. (10) [or the “DM + SA” model, Figs. 8(c)
and 8(f)]. Clearly, our data are well reproduced by the XY Z
model. Although the magnon spectrum within the DM + SA
model has an overall shape and intensity similar to the XY Z
model, it predicts an anticrossing close to the zone boundary
at around (1.35, 0, 0) and an energy transfer of ω ∼ 11 meV.
This is emphasized in Fig. 8(f), where we zoom into the region
close to the anticrossing. The existence of an anticrossing in
the magnon spectrum can be understood as follows. As we
show in Appendix A, although XY Z interaction [and hence
the SA term in Eq. (10)] between Cu1 and Cu2 is identical
to that between Cu3 and Cu4, the sign of the DM interaction
is reversed for the two bonds. The translational symmetry by
half of the structural unit cell present in the XY Z model is
therefore removed by including the DM interaction. In other
words, the magnetic unit cell is now the same size as the struc-
tural unit cell, and it consists of four rather than two Cu2+ ions.
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FIG. 8. (a)–(c) Comparison between the (a) measured INS spec-
trum along (0, 0, H ) [same figure as Fig. 2(a)] and the calculated
magnon spectrum for (b) the XY Z model and (c) the DM + SA
model. The parameters used in (b) are α‖ = 0.0074, α⊥ = 0.013,
J1 = 4.7 meV, J2 = 1.1 meV, J3 = 0.5 meV, and J4 = 0.36 meV. Part
(c) uses the same parameters for the Heisenberg interactions, J1–J4,
and D1 = 0.22J1 for DM + SA interactions between Cu1 and Cu2.
The calculation is performed using the SPINW package [38] taking
into account both a Q resolution of dQ = 0.05 Å−1 estimated from
the width of the (1, 0, 0) Bragg peak, and an energy resolution of the
form dE = (7.2 × 10−4E 2 − 5.4 × 10−2E + 0.97) meV calculated
for Ei = 25 meV at HYSPEC. The white solid lines in (b) and (c) are
calculated magnon dispersions. The inset of (c) shows the magnon
dispersion of the DM + SA model close to the anticrossing. The
dashed lines are calculated by setting the DM interaction to 0 while
keeping the SA term, which removes the anticrossing. (d)–(f) same
as (a)–(c) but zoomed into the region close to the anticrossing.

Consequently, in addition to the two magnon modes already
present when a smaller unit cell is used [blue dashed line in
the inset of Fig. 8(c)], one expects two additional magnon
modes obtained by folding the zone boundary magnon along
(H, 0, 1) to (H, 0, 0) (red dashed line). The DM interaction
couples these two sets of magnon modes, and it gives rise to
an anticrossing between them that scales with D1. Although
we have used a model where J1 is dominant, and therefore
we only considered its exchange anisotropy, we emphasize
that the above argument is based on symmetry and should
be applicable if Eq. (10) is considered for other bonds. For
example, since the exchange paths for J1 and J3 have the
same symmetries, a large DM interaction along either or both
exchange paths is expected to produce an anticrossing similar
to that shown in Figs. 8(c) and 8(f).

As shown in Fig. 8(f), the predicted anticrossing should
show up as a small splitting in the magnon dispersion. To

detect this subtle feature in our experiment, we used a rel-
atively small Ei = 25 meV, which offers a good resolution
(∼0.5 meV) at the energy transfer of the predicted splitting,
but partially obscures the top of the magnon dispersion due to
kinematic constraint. Even with this limitation, after closely
examining our data in Figs. 8(a) and 8(d), we could not find
any sign of splitting in the magnon dispersion. Therefore, even
though it is tempting to associate the exchange anisotropy in
our XY Z model with the SA term in Eq. (10) as discussed
at the beginning of this section, our data do not support
the existence of an accompanying DM term that is an order
of magnitude larger. This suggests that the spin interactions
in Bi2CuO4 might deviate from the general form given by
Eq. (2) with a dominant DM term. Deviation from the general
theory might be a consequence of the complex geometry of
the exchange path in Bi2CuO4. Alternatively, this deviation
might be explained by participation of the heavy bismuth ion
in mediating the superexchange interaction in Bi2CuO4 as
shown by nuclear resonance measurement [35]. Inclusion of
nonmagnetic ions with strong SOC has been shown to dramat-
ically modify the exchange anisotropy in 3d transition-metal
magnets [36,37]. Understanding the effects of bismuth ions
on the exchange anisotropy in Bi2CuO4 from first principles
should be a focus of future theoretical work.

VI. CONCLUSIONS

We have carried out inelastic neutron scattering to study
the low-energy magnetic excitations in the tetragonal antifer-
romagnet Bi2CuO4. We found a gapless and a gapped magnon
mode at low energy that are attributed to spin fluctuations
in and out of the easy plane. Our results resolve the long-
standing controversies between early INS and AFMR results
regarding the low-energy excitations in this material, and they
confirm the latter. By studying the field dependence of the
(1, 0, 0) magnetic Bragg peak intensity and that of the in-
plane mode, we directly observed a spin-flop transition in
the ab plane at ∼0.4 T that was only inferred from previous
bulk magnetizations measurements. This indicates the exis-
tence of a bulk magnetic anisotropy energy (MAE) in the ab
plane, which is classically forbidden. We explained all our
observations by carrying out spin-wave analysis of a minimal
anisotropic spin model motivated by the lattice symmetry
(which we refer to as an XY Z model). In addition to reproduc-
ing the observed magnon dispersion, our model quantitatively
explains the critical field of the spin-flop transition, and hence
the classically forbidden in-plane MAE through a quantum
order-by-disorder mechanism. In addition to the XY Z model,
we also considered an alternative model with a dominant
antisymmetric DM interaction, motivated by the conventional
theory of exchange anisotropy in cuprates. We found that our
data are inconsistent with the presence of a large DM interac-
tion, suggesting a departure from the conventional theory in
Bi2CuO4 with a complex exchange route.
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APPENDIX

In this Appendix, we present a symmetry analysis of the
general magnetic Hamiltonian in Bi2CuO4,

H = 1

2

∑
i j

Hi, j, (A1)

and we determine its magnon dispersion in the magnetically
ordered state using linear spin-wave theory. As discussed in
the Introduction, the most general pairwise interaction be-
tween sites i and j, Hi, j , is given by

Hi, j = Ji, j �Si · �S j + �Ai, j · (�Si × �S j ) + �ST
i Mi, j �S j . (A2)

The three terms proportional to Ji, j , the vector �Ai, j , and the
symmetric matrix Mi, j denote the isotropic Heisenberg in-
teraction and the antisymmetric and symmetric anisotropic
exchange interactions, respectively.

1. Symmetry analysis

In this subsection, we present a symmetry analysis of the
exchange anisotropy parametrized by the vector �A and the
symmetric matrix M of Eq. (A2) for the dominant superex-
change paths, J1–J4, as well as the bonds related to them
by symmetry. Although we only considered the exchange
anisotropy for the dominant exchange path, J1, in our spin-
wave analysis, the symmetry analysis below is provided for all
exchange paths for completeness. Figures 1(b) and 1(c) show
examples of relevant local symmetry operations, including
centers of inversion at [ 1

2 , 1
2 , n

2 ] [red stars in Fig. 1(b)], twofold
rotations around ŷ axes through [ 1

2 , 1
2 , 1

4 + n
2 ] [yellow ovals

in Fig. 1(b)], and fourfold rotations around c axes passing
through the chains of Cu atoms [yellow squares in Fig. 1(c)].

a. J1 and J3

J1 and J3 in Fig. 1(b) have the same local symmetry char-
acterized by a twofold axis along ŷ through the center of
the bond (shown by yellow ovals). Focusing on J1 between
Cu1 and Cu2, the twofold rotation around ŷ maps S1,x ↔
−S2,x, S1,y ↔ S2,y, S1,z ↔ −S2,z. This constrains the vector,
�A, to lie perpendicular to ŷ, and therefore takes a form of
(A1,x, 0, A1,z ). Within linear spin-wave theory, one only needs
to consider the component of �A parallel to the ordered mo-
ment. For an ordered moment perpendicular to c, �A can be
taken as (A1,x, 0, 0) without loss of generality, which justifies
the form of Eq. (10) used in the DM + SA model.

Similarly, the symmetric matrix, M, takes a form of⎛
⎜⎝

J1
xx 0 J1

xz

0 J1
yy 0

J1
xz 0 J1

zz

⎞
⎟⎠, (A3)

where the superscript indicates that the parameters are for the
superexchange path, J1.

Interactions along other symmetry equivalent bonds, such
as Cu′

1 − Cu2, in the ab plane can be generated by a fourfold
rotation around the vertical axis through Cu2, which maps
S1,x ↔ −S1′,y, S1,y ↔ S1′,x, S1,z ↔ S1′,z and S2,x ↔ −S2,y,
S2,y ↔ S2,x, S2,z ↔ S2,z. Consequently, the vector �A along this
bond is given by (0,−A1,x, 0), and the matrix M is given by⎛

⎜⎝
J1

yy 0 0

0 J1
xx −J1

xz

0 −J1
xz J1

zz

⎞
⎟⎠. (A4)

Symmetry equivalent interactions along the c axis, such
as that between Cu3 and Cu4, can be generated by inversion
about the point [ 1

2 , 1
2 , 1

2 ]. This maps �S1 ↔ �S4 and �S2 ↔ �S3.
An antisymmetric term, �A · (�S1 × �S2), between Cu1 and Cu2

gives �A · (�S4 × �S3) = − �A · (�S3 × �S4) between Cu3 and Cu4.
In other words, the antisymmetric interaction changes sign
when translated by half of the structural unit cell along the
c direction. However, the symmetric interaction characterized
by M is left invariant by inversion. We therefore arrive at
the following observations. If only the symmetric term (e.g.,
the XY Z model considered in the main text) is present, the
primitive unit cell of the magnetic Hamiltonian is half of the
structural unit cell. On the other hand, the full structural unit
cell has to be used if one also considers the antisymmetric
term.

b. J2

The center of inversion between Cu1 and Cu′
4 [red star

in Fig. 1(b)] implies that �A = 0 between them. However, all
terms in the symmetric matrix, M, are allowed by symmetry,⎛

⎜⎝
J2

yy J2
xy J2

xz

J2
xy J2

xx J2
yz

J2
xz J2

yz J2
zz

⎞
⎟⎠. (A5)

As in the case of J1, other symmetry equivalent interactions
in the ab plane are generated by fourfold rotation. Those
along the c direction are generated by twofold rotations. For
example, twofold rotation around the ŷ axis through [ 1

2 , 1
2 , 1

4 ]
maps Cu1 → Cu2, Cu′

4 → Cu3, and simultaneously changing
the sign of Sx and Sz, while leaving that of Sy unchanged. The
matrix M for the bond Cu3 − Cu2 is therefore⎛

⎜⎝
J2

yy −J2
xy J2

xz

−J2
xy J2

xx −J2
yz

J2
xz −J1

yz J2
zz

⎞
⎟⎠. (A6)

The above analysis shows that certain entries of M for
the superexchange pathway J2 change sign when translated
by half of the structural unit cell along c, indicating that the
structural unit cell must be used when carrying out spin-wave
analysis including the full symmetric anisotropy for J2.

c. J4

The anisotropic term between Cu1 and Cu3 is constrained
by the fourfold rotation about the axis passing through them
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[yellow square in Fig. 1(c)], which maps S1,x ↔ −S1,y, S1,y ↔
S1,x, S1,z ↔ S1,z (similar relations hold for �S3). This constrains
the vector, �A, to be (0, 0, A4), and the matrix, M, to be⎛

⎜⎝
J4

xx 0 0

0 J4
xx 0

0 0 J4
zz

⎞
⎟⎠. (A7)

Note that the general symmetry-allowed anisotropic terms
along this bond do not break the in-plane spin rotational
symmetry. The bond Cu′

3 − Cu1 is related to Cu1 − Cu3 by
a twofold rotation about the ŷ-axis through [ 1

2 , 1
2 , 1

4 ] fol-
lowed by an inversion about [ 1

2 , 1
2 , 0], which maps S3,x ↔

−S1,x, S3,y ↔ S1,y, S3,z ↔ −S1,z and S1,x ↔ −S3′,x, S1,y ↔
S3′,y, S1,z ↔ −S3′,z. This operation changes the sign of �A while
leaving M unchanged.

2. Spin-wave calculation

We first define a locally rotated coordinate system (x′y′z′),
where ẑ′ is along the direction of ordered moment. For Cu2+

in the first sublattice [ �M1 in Fig. 1(c)], the transformation to
the new coordinate system is defined by

Sx = − sin(φ)Sy′ + cos(φ)Sz′ ,

Sy = cos(φ)Sy′ + sin(φ)Sz′ ,

Sz = −Sx′ . (A8)

Coordinate transformation for the other sublattice ( �M2) is
obtained by replacing φ → π + φ in Eq. (A8). Spin com-
ponents in this new coordinate system are then expressed
as boson creation/annihilation operators via the Holstein-
Primakoff transformation as

Sz′ = 1
2 − a†a, S+′ = a, S−′ = a†. (A9)

After a Fourier transformation, the magnetic Hamiltonian
given by Eq. (A1) can be written as a quadratic boson Hamil-
tonian in the momentum space,

H = 1

2

∑
Q

ψ†HQψ. (A10)

For a primitive unit cell with n magnetic ions, ψ =
(a1,Q, . . . , a1,Q, a†

n,−Q, . . . , a†
n,−Q)T, and HQ is a 2n × 2n ma-

trix given by [38]

HQ =
(

AQ BQ

B†
Q Ā−Q

)
, (A11)

where A and B are n × n submatrices. The eigenvalues can
be found by diagonalizing the non-Hermitian matrix, GHQ,
where G is a diagonal matrix with the first and last n entries
given by 1 and −1, respectively.

a. XYZ model

A primitive unit cell with two Cu ions can be used for the
XY Z model. The 2 × 2 submatrices A and B from Eq. (A11)
are given by

AQ =
(

CQ EQ

ĒQ CQ

)
(A12)

and

BQ =
(

0 FQ

F̄Q 0

)
, (A13)

respectively. The parameters CQ, EQ, FQ have been defined
in Eq. (5). The eigenvalues can be found analytically in this
case [39], and the results are given by Eq. (4).

b. DM + SA model

As discussed in the preceding subsection, a primitive mag-
netic unit cell that is the same as the structural unit cell
has to be used when DM interaction is included for J1. The
submatrices A and B in this case are given by

AQ =

⎛
⎜⎜⎜⎜⎝
CQ AQ BQ 0

ĀQ CQ 0 BQ

B̄Q 0 CQ AQ

0 B̄Q ĀQ CQ

⎞
⎟⎟⎟⎟⎠ (A14)

and

BQ =

⎛
⎜⎜⎜⎜⎜⎝

0 D+
Q + D−

Q 0 E−Qe−i2πL

D+
−Q + D−

−Q 0 EQ 0

0 E−Q 0 D+
Q − D−

Q

EQei2πL 0 D+
−Q − D−

−Q 0

⎞
⎟⎟⎟⎟⎟⎠. (A15)

In Eqs. (A14) and (A15),

AQ = δ1

4
[cos(2φ)(A−Q − B−Q) − (A−Q + B−Q)], BQ = 1

2
J4(1 + e−i2πL ),

CQ = J4 cos(πL) − J4 + 2J1 + 2J2 + 2J3,

D+
Q = 1

2

[
J1 − δ1

2
+ J3e−i2πL

]
(A−Q + B−Q) − δ1

4
cos(2φ)(A−Q − B−Q), D−

Q = iD1

2
[sin(φ)F−Q − cos(φ)E−Q],

EQ = 1

2
J2(AQ + BQ), (A16)
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where δ1 = D2
1

4J1
, EQ = 1 − ei2π (H+K ), and FQ = ei2πH − ei2πK .

Numerical diagonalization using the procedure outlined at the
beginning of this subsection gives the dispersion shown in
Fig. 8(c).
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