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Fractional corner magnetization of collinear antiferromagnets
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Recent studies revealed that the electric multipole moments of insulators result in fractional electric charges
localized to the hinges and corners of the sample. We here explore the magnetic analog of this relation. We
show that a collinear antiferromagnet with spin S defined on a d-dimensional cubic lattice features fractionally
quantized magnetization Mz

c = S/2d at the corners. We find that the quantization is robust even in the presence of
gapless excitations originating from the spontaneous formation of the Néel order, although the localization length
diverges, suggesting a power-law localization of the corner magnetization. When the spin rotational symmetry
about the z axis is explicitly broken, the corner magnetization is no longer sharply quantized. Even in this case,
we numerically find that the deviation from the quantized value is negligibly small based on quantum Monte
Carlo simulations.
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I. INTRODUCTION

Multipole insulators feature fractional electric charges
bound to hinges and corners of the system [1,2]. Previous
studies clarified the relation between the electric multiple
moments of insulators and the boundary charges [2–5]. Frac-
tional quantization of corner charges is protected by two key
symmetries: the U(1) symmetry for the charge conservation
and a point group symmetry that quantizes bulk multipole
moments [2,4], although the point group symmetry may not
be perfect and is allowed to be weakly broken [6,7]. It was
recently shown that ionic crystals may exhibit a fractional
corner charge reflecting their octupole moment, despite the
fact that they are trivial in that they do not feature protected
ground-state quantum entanglement [7].

Given that fractional corner charges can appear in ionic
crystals, it is natural to expect fractional “corner magnetiza-
tions” in the magnetic analog of ionic crystals. In collinear
antiferromagnets, up and down spins can be regarded as
positively and negatively charged ions, respectively (of the
charge associated with the conserved spin rotation symmetry).
Indeed, recent works discussed fractional corner charges in
aBose-Hubbard model [8] and in the magnetic analog of the
Benalcazar-Bernevig-Hughes model [9]. However, two fun-
damental problems inherent to spin systems that are absent in
the electric counterparts have not been addressed in the earlier
works. (i) The U(1) symmetry underlying the charge conser-
vation (i.e., the spin rotational symmetry about the z axis)
may be explicitly broken because of the crystal anisotropy
and spin-orbit coupling and (ii) excitation may not be gapped
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because the spontaneous formation of the Néel order results
in gapless Nambu-Goldstone excitations. For these reasons,
the results for electric multiple moments established in the
previous works [2–5,7,10] cannot be directly applied to spin
systems.

In this work, we address these problems by numerically
studying the antiferromagnetic Heisenberg model. We find
that, despite the above two issues, the fractional corner mag-
netizations indeed appear in the collinear antiferromagnets.
When the spin U(1) symmetry is exact, the corner magneti-
zation is quantized to S/2d in the antiferromagnetic ground
state of spin-S models defined on a d-dimensional cubic lat-
tice, even when the bulk Néel order is not fully saturated
due to quantum fluctuations. In contrast to electric multipole
insulators where corner charges are exponentially localized,
the localization length of the corner magnetization diverges
in the gapless limit of the isotropic Heisenberg model due
to the gapless spin-wave excitations. As expected, the corner
spin quantization is lost when the U(1) symmetry is not exact.
Yet, for the symmetry broken cases by the bond anisotropy
we studied, we find the deviation from the ideal value to be
negligibly small as compared to S/2d . This finding is com-
plementary to the study of the effect of crystalline symmetry
breaking in the electronic problems [6,7].

This work is organized as follows. As a warm-up, we first
study the edge magnetization of one-dimensional Heisenberg
models and discuss its relation to the bulk polarization in
Sec. II. We then move on to the corner magnetization of two-
and three-dimensional Heisenberg models in Sec. III. Finally,
we discuss material candidates and conclude in Sec. IV.

II. ONE DIMENSION

Let us first discuss the Heisenberg spin chain as a canonical
example of spin models featuring the edge magnetization.
The Hamiltonian under the open boundary condition (OBC)
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FIG. 1. Exact diagonalization of the S = 1 Heisenberg chain. (a) The excitation gap � and the staggered magnetization M under the PBC
as functions of the staggered magnetic field h. The L = ∞ values are extrapolated using the data for L = 8, 10, 12, 14, and 16. The insets
shows the schematic figures of the ground state for h = 0 (the gapped Haldane state) and h = ∞ (classical Néel ordered state); the arrows and
the small circles connected by the lines represent the S = 1/2 degrees of freedom decomposed from the original S = 1 and the singlet pairs,
respectively. (b) The expectation value of the z-spin component at site r, 〈ŝz

r〉, and the coarse-grained magnetization mz(r) [Eq. (2)] under the
OBC for L = 16 and h = 1. (c) The edge magnetization Mz

c [Eq. (3)] under the OBC as a function of h. The extrapolation to L → ∞ fails for
h < 0.04. (d) The classical polarization P0 [Eq. (6)], the Berry phase correction P̃ [Eq. (7)], and the sum P = P̃ + P0 for L = 12.

reads

Ĥ = J
L−1∑
r=1

ŝr · ŝr+1 + h
L∑

r=1

(−1)r ŝz
r, (1)

where ŝr = (ŝx
r , ŝy

r , ŝz
r ) is the spin-S operator at site r. The

first term describes the nearest-neighbor antiferromagnetic
interaction and the second term is the Zeeman coupling to a
staggered magnetic field along the z direction. We introduce
the staggered field to realize a magnetic analog of the ionic
crystals; note that the Néel order is absent when h = 0 since
continuous symmetries cannot be broken spontaneously in
one dimension. We also consider this model under the periodic
boundary condition (PBC) by adding the term J ŝL · ŝ1 to Ĥ .
In this section, the system size L is assumed to be an even
integer to match the number of two sublattices. For brevity,
the coupling constant J and the lattice constant are set to be
unity.

A. Spin-1 model

We start with the S = 1 model. When h = 0, the sys-
tem is in the Haldane phase, which is a symmetry-protected
topological phase (with the bulk excitation gap � � 0.4105
[11]) protected by either one of the following three symme-
tries: the time-reversal symmetry; the Z2 × Z2 spin rotational

symmetry; or the spatial inversion symmetry about the bond
center [12]. Under the OBC, each edge supports an emergent
S = 1/2 degrees of freedom and the ground state is fourfold
degenerate in the thermodynamic limit of large L [see the left
inset of Fig. 1(a)].

The staggered field h > 0 breaks all the protecting sym-
metries of the Haldane phase and trivializes the system. As h
is increased from 0 to +∞, the system develops the forced
Néel order and the ground state is smoothly connected to the
product state limit 〈ŝz

r〉 = (−1)r−1 [the right inset of Fig. 1(a)]
without closing the bulk gap � [13], as demonstrated by the
exact diagonalization up to L = 16 in Fig. 1(a). The L = ∞
value �(∞) is obtained by the system-size extrapolation by
using the data for L = 8, 10, 12, 14, and 16 with the linear
fitting of log[�(L) − �(∞)]. The L = ∞ values of other
quantities (e.g., M and Mz

c introduced below) are determined
in the same way.

To study the edge magnetization of a finite-L sample, we
compute the local magnetization 〈ŝz

r〉 on each site using the
unique ground state under the OBC selected by h > 0. We
then derive the coarse-grained magnetization mz(r) defined by
the convolution integral [14]

mz(r) ≡
L∑

r′=1

g(r − r′)
〈
ŝz

r′
〉

(2)
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with the Gaussian g(r) = (2πλ2)−1/2e−r2/(2λ2 ). This smoothed
magnetization has a maximum and a minimum near the edges
and vanishes deep inside the bulk as far as λ is chosen suf-
ficiently large. In this work, we set λ = 2 in all calculations
(Appendix B). The results are plotted by the red curve in
Fig. 1(b) together with 〈ŝz

r〉 for L = 16 and h = 1. We define
the magnetization localized to the left edge by

Mz
c ≡

∫ (L+1)/2

−∞
dr mz(r). (3)

The results while varying h are shown in Fig. 1(c), suggesting
that the edge magnetization Mz

c is quantized to +1/2 in the
limit of large L for any h > 0. This is in sharp contrast to the
bulk Néel order parameter

M ≡ 1

L

L∑
r=1

(−1)r−1
〈
ŝz

r

〉
(4)

that does not reach the saturation value M = 1 for any finite h
[see Fig. 1(a)]. The fractional edge magnetization is reminis-
cent of the S = 1/2 edge mode at h = 0: the Sz = ±1/2 levels
of the edge spin split as a result of the applied staggered field
and give the saturation magnetization in the ground state.

This result has a simple interpretation in terms of the bulk
polarization. When the spin rotational symmetry about the z
axis is exact, one can define the bulk polarization P with
respect to the conserved U(1) charge Ŝz = ∑L

r=1 ŝz
r , which

implies the appearance of the “surface charge” (i.e., the edge
magnetization) Mz

c = P (mod 1) when the OBC is imposed.
The polarization P is given by

P = P0 + P̃, (5)

where

P0 = 1

L

L∑
r=1

r
〈
ŝz

r

〉 (
= −1

2
M

)
(6)

is the classical contribution evaluated under the PBC and

P̃ =
∫ 2π

0

dθ

2π
i〈θ |∂θ |θ〉 mod 1, (7)

is the Berry phase correction [15–17]. The state |θ〉 in Eq. (7)
is the ground state under the twisted boundary condition,
under which the term J (e−iθ ŝ+

L ŝ−
1 + H.c.)/2 + ŝz

Lŝz
1 is added

to Ĥ in Eq. (1) [18]. The spatial inversion symmetry about a
site (which remains a symmetry even under h > 0) quantizes
the polarization P to either 0 or 1/2 (mod 1) regardless of the
value of h. Figure 1(d) numerically confirms the quantization
of P to 1/2 in our present model and supports the fractional
edge magnetization Mz

c = 1/2 shown in Fig. 1(c) [19].

B. Spin-1/2 model

The edge magnetization Mz
c = ±1/2 in the S = 1 model

may not be surprising because it can be understood simply by
the emergent S = 1/2 edge degrees of freedom in the Haldane
phase, which polarizes readily for any staggered field h > 0.
Here we instead discuss the S = 1/2 Heisenberg model and
show that the edge magnetization is Mz

c = ±1/4 in this case.

This example clarifies that the existence of a topological coun-
terpart is not a prerequisite for the emergence of fractional
edge magnetizations.

To this end, we perform exactly the same calculations
for the S = 1/2 model as in Sec. II A. We used L =
16, 18, 20, 22, and 24 for the extrapolation to L → ∞ for the
S = 1/2 case. Our results, summarized in Fig. 2, are qualita-
tively the same as the S = 1 case, although the values of the
bulk polarization P and the edge magnetization Mz

c are halved
as compared to the S = 1 case because the effective charge
unit becomes 1/2. Note that the apparent nonzero gap � for
h = 0 in Fig. 2(a) is an artifact of the current extrapolation
scheme that assumes an exponential decay as a function of the
system size L. If we fit the gap assuming a power-law decay
instead, the extrapolated value becomes negligibly small.

C. Effect of anisotropy

Now let us discuss the effect of the U(1) symmetry break-
ing. As an example, here we consider an additional term to
Eq. (1) given by

Ĥ ′ = −δ

L∑
r=1

(
2ŝx

r ŝx
r+1 + ŝy

r ŝy
r+1

)
, (8)

with 0 � δ < 1. The spin rotational symmetry about the z
axis is explicitly broken when δ 	= 0 or 2/3. When δ = 2/3,
Jx = −Jy (= −1/3) and the U(1) symmetry can be restored by
applying the π -rotation about the x axis for spins on only one
of the two sublattices. In this case, the ground state is given by
the ferromagnetic state in the rotated basis, which corresponds
to the classical Néel state [i.e., 〈ŝz

r〉 = (−1)r−1] in the original
basis.

Since the exact U(1) symmetry was the key for the ar-
gument supporting the quantized edge magnetization based
on the bulk polarization, the explicit breaking of the U(1)
symmetry may, in principle, completely destroy the edge mag-
netization. To see if this is the case, we compute the deviation
of the edge magnetization from S/2 as a function of δ. The
result for h = 0.25 is shown in Fig. 3(a) for the S = 1 model
and Fig. 3(c) for the S = 1/2 model. The L = ∞ values are
determined by the same extrapolation procedure as discussed
above. Although the edge magnetization is no longer quan-
tized to S/2 except for δ = 0 and 2/3, the deviation of Mz

c
turns out to be about 1% even for a fairly large δ ∼ 1. As
expected, δMz

c vanishes in the L = ∞ limit at the U(1) sym-
metric points δ = 0 and 2/3. For a finite L, δMz

c at δ = 2/3 are
generally smaller than δMz

c at δ = 0. This is because nonzero
δ tends to increase the bulk excitation gap.

We also perform the linear spin-wave calculation. We first
represent the spin operators using creation/annihilation op-
erators of bosons assuming the classical Néel order, then
linearize the Hamiltonian by dropping all interacting terms,
and diagonalize the Hamiltonian following the algorithm sum-
marized in Ref. [20]. The results for L = 100 are plotted in
Figs. 3(b) and 3(d) for the S = 1 and 1/2 cases, respectively.
The spin-wave results qualitatively agree with those by the
exact diagonalization, although the absolute values are much
smaller in the spin-wave approach, which tends to underesti-
mate quantum fluctuations.
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FIG. 2. The same as Fig. 1 but for the S = 1/2 model. (a) The excitation gap � and the staggered magnetization M under the PBC
as functions of the staggered magnetic field h. The L = ∞ values are extrapolated using the data for L = 16, 18, 20, 22, and 24. (b) The
expectation value 〈ŝz

r〉 and the coarse-grained magnetization mz(r) [Eq. (2)] under the OBC for L = 24 and h = 1. (c) The edge magnetization
Mz

c [Eq. (3)] under the OBC as a function of h. The extrapolation to L → ∞ fails for h < 0.07. (d) The classical polarization P0 [Eq. (6)], the
Berry phase correction P̃ [Eq. (7)], and the sum P = P̃ + P0 for L = 20.

III. HIGHER DIMENSIONS

Let us move on to higher dimensions. Our numerical cal-
culations in this section are based on quantum Monte Carlo
(QMC) simulations.

A. Isotropic case

We consider the antiferromagnetic Heisenberg model on
the d-dimensional (d = 2 or 3) cubic lattice

Ĥ = J
∑
〈r,r′〉

ŝr · ŝr′ , (9)

where 〈r, r′〉 represents the nearest-neighboring sites. We set
J = 1 as before. Unlike the one-dimensional model, in dimen-
sions higher than one, the SO(3) spin rotational symmetry of
the Hamiltonian is spontaneously broken down to the U(1)
rotation about the direction of the Néel ordered moment at
zero temperature. This spontaneously broken symmetry gives
rise to gapless Nambu-Goldstone excitations, invalidating the
direct application of the results [2–5,7,9,10] for gapped sys-
tems. Nevertheless, we show in the following that the corner
magnetization of antiferromagnets is still quantized to Mz

c =
S/2d+1 despite the gapless nature of the phase.

To discuss the corner magnetization, we want to impose
the OBC with a finite linear dimension L as we did in the
previous section. As is well known, however, the true ground
state of any finite-sized system respects all symmetries of the
Hamiltonian. For the Heisenberg model, this is guaranteed
by the Marshall-Lieb-Mattis theorem [21,22] stating that the

ground state has the lowest possible total spin, i.e., spin 0
when L is even and spin 1/2 when L is odd.

The standard trick to overcome this difficulty is to tempo-
rary introduce the staggered field h by adding

h
∑

r

eiQ·rŝz
r (10)

to the Hamiltonian in Eq. (1), where Q = (π, π ) for d = 2
and Q = (π, π, π ) for d = 3. The applied field breaks the
SO(3) symmetry of the Hamiltonian and induces a gap �

to the Nambu-Goldstone excitations. Therefore, the system is
effectively gapped at every stage of the calculation. There is
an alternative approach based on the long-range property of
correlation functions as we discuss in Sec. III B.

Given L and h > 0, the definition of the corner magneti-
zation Mz

c in two and three dimensions is the direct extension
of that of the edge magnetization in one dimension. We first
compute the expectation value 〈ŝz

r〉L,h using the ground state
with h > 0 and then introduce the smoothened magnetization
by the Gaussian convolution

mz
L,h(r) =

∑
r′

g(r − r′)
〈
ŝz

r′
〉
L,h, (11)

where g(r) = (2πλ2)−d/2e−|r|2/(2λ2 ) with λ = 2. We define the
corner magnetization by the integral of mz

L,h(r) over the corner
region R: (

Mz
c

)
L,h

=
∫

R
dd r mz

L,h(r). (12)

The specific choice of R is not important as far as it fully
contains a single corner since the smoothened magnetization
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FIG. 3. Deviation of the edge magnetization δMz
c ≡ S/2 − Mz

c as
a function of δ at h = 0.25 for the (a) S = 1 and (b) S = 1/2 models.
For comparison, results from the linear spin-wave approximation are
plotted by black lines. The spin-wave calculation captures the correct
qualitative behavior, but significantly underestimate the size of the
deviation, and as such the absolute values of the spin-wave results
are multiplied by a factor of 100.

mz
L,h(r) is nonzero only near corners of the system as shown

below. In our calculation we use −∞ < x, y � (L + 1)/2
in two dimensions and −∞ < x, y, z � (L + 1)/2 in three
dimensions. Finally, we switch off the staggered field after
taking the thermodynamic limit:

Mz
c ≡ lim

h→+0
lim

L→∞
(
Mz

c

)
L,h. (13)

Similar to the polarization argument for the one-
dimensional case in Sec. II A, one can compute the corner
magnetization under the field, (Mz

c )L,h in Eq. (12), in several
ways. One simple approach is known as “filling anomaly”
[10], which gives the fractional part of the corner charge
in terms of the total U(1) charge Q in the system and the
number of point-group related corners N . The U(1) charge Q
in our present problem is given by the eigenvalue of the total
magnetization operator

Ŝz
tot =

∑
r

ŝz
r. (14)

For example, if we impose the OBC with odd L for two-
dimensional square lattice systems, the fourfold rotational
symmetry C4 about the center site of the system gives N = 4.

Furthermore, Q = ±S mod 4e depending on the direction
of the center spin, where e is the unit of the U(1) charge
defined by

e ≡
{

1 (S = 0, 1, 2, . . .),
1/2 (S = 1/2, 3/2, . . .). (15)

Therefore, (
Mz

c

)
L,h

= Q

N
= ±S

4
mod e. (16)

For a three-dimensional cube, N = 8 because of the ad-
ditional inversion symmetry I about the center. Viewing the
three-dimensional system as stacked two-dimensional layers
with alternating corner magnetizations ±S/4, we find Q = ±S
mod 2e. (This ambiguity of Q can be understood from the
coordination number of each lattice site. See Ref. [7] for more
details.) The sign corresponds to the corner magnetization of
the topmost (or the bottommost) layer. Hence,

(
Mz

c

)
L,h

= Q

N
= ±S

8
mod

e

4
. (17)

Note that the filling anomaly formulas in Eqs. (16) and (17)
assume that the excess charge in the system is localized to
corners; i.e., the bulk, surfaces, and hinges are all charge
neutral. Furthermore, the linear dimension of the system, L,
must be an odd integer, otherwise the point-group symmetry
is broken and the total U(1) charge Q vanishes. However, since
the corner magnetization is a local property determined by
the configuration of 〈ŝz

r〉 near a corner, the value of (Mz
c )L,h

should be unchanged for even L when L is sufficiently large.
In fact, the calculation of the corner charge based on the bulk
multipole moment [4] is free from the parity of L.

Both rotation C4 and inversion I are the symmetries of the
system even in the presence of the staggered field h and the
symmetry quantization of (Mz

c )L,h remains effective. There-
fore, from Eq. (13), we conclude

Mz
c ≡ lim

h→+0
lim

L→∞
(
Mz

c

)
L,h

= ± S

2d
(18)

modulo e for d = 2 and e/4 for d = 3 in the antiferromagnetic
phase.

To verify the picture above, we perform unbiased QMC
calculations based on Feynman’s path integral [23] for the S =
1/2 models in two and three dimensions. To update world-
line configurations, we adopt a modified version [24] of the
directed-loop algorithm [25]. For each parameter set, we per-
form typically 105 Monte Carlo sweeps for the thermalization
and the measurement in 128 independent Markov chains. In
the QMC simulations, the local magnetization 〈ŝr〉L,h is given
by the Gibbs ensemble average with the sufficiently large
inverse temperature β instead of the ground-state expectation
value. The estimate is exact within the statistical error. Given
〈ŝr〉L,h, we compute the smoothened magnetization mz

L,h(r)
and the corner magnetization (Mz

c )L,h using Eqs. (11) and (12).
Our results are summarized in Fig. 4 for the two-

dimensional model and Fig. 5 for the three-dimensional
model. As shown in the Figs. 4(a), 4(b) 5(a), and 5(b),
the smoothened magnetization mz

L,h(r) is nonzero only
near the corners of the systems, which justifies our definition
of the corner magnetization as an integral of mz

L,h(r) over a

134430-5
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FIG. 4. QMC simulations of the S = 1/2 Heisenberg model on a square lattice under the OBC. (a,b) Real-space distribution of the
expectation value 〈ŝz

r〉L,h and the coarse-grained magnetization mz
L,h(r) [Eq. (11)] under the OBC for L = β = 48, δ = 0, and h = 0.01. Pane;

(b) shows 〈ŝz
r〉L,h and mz

L,h(r) along the lines connecting the representative points in (a) O = (L/2 + 1, L/2 + 1), X = (L − 1, L/2 + 1), and
M = (L, L). The inset shows mz

L,h(r) near M in the logarithmic scale, indicating that mz
L,h(r) is exponentially localized to corners. (c) The edge

magnetization (Mz
c )L,h [Eq. (12)] as a function of h. The inverse temperature is set to be β = L. The statistical errors in the QMC data are

smaller than the symbol sizes.

corner region as in Eq. (12). Figures 4(c) and 5(c) illustrate
how the corner magnetization (Mz

c )L,h approaches the ideal
value S/2d as the system size L is increased while the SO(3)
symmetry is broken by a nonzero h, verifying our conclusion
in Eq. (18). These plots also demonstrate the importance of
the order of the two limits, L → ∞ and h → +0: if the order
is reversed, one finds limL→∞ limh→+0(Mz

c )L,h = 0.
The exponential localization of mz

L,h(r) found in Figs. 4
and 5 may be understood from the bulk excitation gap �

induced by the staggered field h. In the limit of small h, the
gap � is proportional to

√
h [26,27]. This implies that the

localization length of the corner magnetization grows as h−1/2

and diverges in the limit of h → +0. To confirm this under-
standing, we systematically study the h dependence of mz

L,h(r)
along the diagonal line r = (n, n) in the two-dimensional case.
Figure 6(a) compares the QMC results to the linear spin-
wave ones at h = 0.05 and L = 48. While the two results
agree well with each other, the QMC results for 8 � n � 40
severely suffer from the statistical error. Figure 6(b) shows the
L dependence of the spatial decay obtained by the spin-wave
approximation, suggesting that L must be fairly large to avoid

the finite-size effect. For these reasons, we use the results from
the spin-wave theory for L = 128 for this analysis. Figure 6(c)
suggests that mz

L,h(n, n) decays exponentially for sufficiently
large n for each h > 0. We determine the localization length
ξ (h) from the slope of the fitting line. The h dependence of
the localization length is plotted in Fig. 6(d), which implies
a power-law divergence ∝ h−a (a = 0.496). This behavior is
consistent with the h dependence of the excitation gap � ∝√

h. We expect that this divergent behavior of the localization
length is universal among models of colinear antiferromagnets
which spontaneously break the spin rotation symmetry.

The divergence of the localization length suggests that
mz(r) in the h → +0 limit exhibits only a power-law decay ∝
r−b due to the presence of gapless spin-wave excitations. This
does not invalidate the quantization of the corner magnetiza-
tion Mz

c = S/2d as long as the correct order of limit is assumed
and the corner region R is chosen much larger than ξ (h)d

for each h. For the convergence of the corner magnetization
Mz

c = ∫
R dd r mz(r), which is guaranteed by the upper bound

of the integral S/2d set by the filling anomaly argument, the
power b must be greater than d + 1. Determining the exponent

(a) (b) (c)

FIG. 5. QMC simulations of the S = 1/2 Heisenberg model on a simple cubic lattice under the OBC. (a,b) Real space distribution of
the expectation value 〈ŝz

r〉 and the coarse-grained magnetization mz(r) [Eq. (11)] under the OBC for L = β/2 = 16, δ = 0, and h = 0.01. The
lattice points are labeled by r = (x, y, z) with three integers 1 � x, y, z � L. The representative points are defined as O = (L/2 + 1, L/2, L/2 +
1), X = (L, L/2, L/2 + 1), M = (L, 1, L/2 + 1), and K = (L, 1, L). Plot (b) shows 〈ŝz

r〉 and mz(r) along the straight lines connecting the
representative points (O → X → M → K → O) shown in the inset of (a). (c) The edge magnetization Mz

c [Eq. (12)] as a function of h. The
inverse temperature is set to be β = 2L. The statistical errors in the QMC data are smaller than the symbols.
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FIG. 6. (a) The coarse-grained magnetization mz
L,h(r) along the

diagonal line r = (n, n) (n ∈ N) based on the spin-wave theory (or-
ange) and the QMC simulation (blue). The QMC data for |mz

L,h(r)| �
10−5 are buried within the statistical error. (b) The spin-wave results
of mz

L,h(n, n) under the staggered field h = 2−7 (= 0.0078125), sug-
gesting that L = 128 is sufficiently large for n < 55 and h � 2−7.
(c) The spin-wave results of mz

L,h(n, n) for L = 128. The localization
length ξ (h) of the corner charge is determined by the slope of the
linear fitting line. (d) The h dependence of the localization length
ξ (h) in (c). The slope of the fitting line (black) is 0.496.

numerically in a reliable manner requires more sophisticated
methods for treating the gapless isotropic model, and we leave
this as an interesting open question.

B. Effect of anisotropy

Finally, let us numerically study the effect of U(1) sym-
metry breaking in two and three dimensions by the QMC
calculation. To this end, we introduce the anisotropy

Ĥ ′ = −δ
∑
〈r,r′〉

(
2ŝx

r ŝx
r′ + ŝy

r ŝy
r′
)

(19)

and consider the Hamiltonian Ĥδ ≡ Ĥ + Ĥ ′ just like as we
did in the one-dimensional case. Even in the presence of
δ > 0, the Hamiltonian possesses the time-reversal symmetry
T̂ and the formation of the Néel order requires spontaneous
breaking of T̂ . In principle, we could directly see how the
corner magnetization Mz

c , defined by Eqs. (12) and (13), gets
modified by the anisotropy parameter δ. However, as we have
seen in Sec. II for the one-dimensional case, the deviation of
Mz

c from the quantized value is very small and comparable to
the statistical error of the QMC results, which makes difficult
to estimate it precisely by the direct calculations.

To overcome this difficulty and estimate Mz
c precisely, we

consider an imaginary-time correlation of the total magneti-
zation Ŝz

tot (τ ) ≡ e+τ Ĥδ Ŝz
tote

−τ Ĥδ :

Czz
tot (β ) ≡ 1

Z
tr
[
Ŝz

tot (τ = β/2)Ŝz
tot (0)

]
= 1

Z
tr
[
Ŝz

tote
− 1

2 βĤδ Ŝz
tote

− 1
2 βĤδ

]
, (20)

where Z = tr e−βĤδ is the partition function. In this approach,
we can set h = 0 from the beginning, just like in the standard
treatment of symmetry broken phases by long-range orders.
For a large β, Czz

tot(β ) is dominated by the doubly degenerate
ground states |+〉 and |−〉 = T̂ |+〉 with well-developed Néel
order:

Czz
tot (β ) � 1

2

[〈+|Ŝz
tot|+〉2 + 〈−|Ŝz

tot|−〉2 + 2|〈−|Ŝz
tot|+〉|2]

= 1
2

[〈+|Ŝz
tot|+〉2 + 〈−|Ŝz

tot|−〉2
]

= 〈+|Ŝz
tot|+〉2 = Q2. (21)

In going to the second line, we dropped the cross terms,
which vanishes because |+〉 and |−〉 are linear combinations
of the wave function in different Sz

tot sectors, i.e., the sectors
of Sz

tot = ±1/2 + 2n (n is an integer) for |±〉. Therefore, Mz
c

can be estimated from Eqs. (16) and (17) as

Mz
c = Q

N
= 1

2d

√
Czz

tot(β ). (22)

Both L and β must be sufficiently large to justify all the ap-
proximations in the discussions above. As noted in Sec. III A,
L must be an odd integer to use the filling anomaly for-
mula. Furthermore, the bulk, the surfaces, and the hinges of
the system must be all charge neutral. This is numerically
suggested by Figs. 4(b) and 5(b) but can also be argued in

FIG. 7. Deviation of the edge magnetization δMz
c ≡ S/2d − Mz

c

as a function of δ calculated for the S = 1/2 Heisenberg model
under the OBC defined on (a) the two-dimensional square lattice and
(b) the three-dimensional cubic lattice. The value of Mz

c is estimated
from the correlation function Czz

tot [Eqs. (20) and (22)] by the QMC
calculations. The statistical errors in the QMC data are smaller than
the symbol sizes. The results of the linear spin-wave calculation of
δMz

c (L = 72 for two dimensions and L = 24 for three dimensions)
are also shown by the black line for comparison. The staggered field
h is set 0 in these calculations.
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the following way. The neutrality of the bulk follows by the
vanishing bulk magnetization, and that of the surfaces can be
checked by computing the bulk polarization as we did for the
one-dimensional system. Hinges must also be charge neutral
because the three-dimensional system can be understood as
stacking of two-dimensional layers with alternating sign of
corner magnetizations.

Our numerical results of δMz
c ≡ 1/2d+1 − Mz

c are shown
in Fig. 7. We see that δMz

c/Mz
c is smaller than 10−2 and the

corner magnetization is nearly insensitive to the anisotropy.
Figures 3 and 7 clearly suggest the tendency that the QMC
calculations and the spin-wave results agree better in higher
dimensions: in contrast to the one-dimensional case where the
absolute value of δMz

c were underestimated in the spin-wave
theory by the factor of 102, the agreement becomes better for
higher dimensions and is almost perfect in three dimensions.
These are understood from the fact that quantum fluctuations
are less relevant in higher dimensions.

IV. DISCUSSIONS

In this work we explored fractional corner magnetizations
of collinear antiferromagnets as a direct analog of fractional
corner charges in ionic crystals. We demonstrated that the cor-
ner magnetization is quantized to S/2d in d-dimensional cubic
system for d = 1, 2, and 3 when the spin rotational symmetry
about the z axis is exact. In the presence of an anisotropy
which breaks the symmetry, the corner magnetization is no
longer quantized but the deviation from the quantized value
turns out to be very small (typically about 1%), at least for the
type of anisotropy considered here. In particular, the d = 2
and 3 systems we considered numerically are all gapped be-
cause of a finite (though possibly small) staggered field h or
anisotropy δ. This allowed us to circumvent the difficulty in
studying the magnetically ordered ground state in the finite-
temperature simulation by using a sufficiently large inverse
temperature β. Our results suggest that the corner magnetiza-
tion becomes power-law localized in the isotropic limit due
to the emergence of the gapless Goldstone modes, although
we leave the detailed analysis of the power-law exponent for
future studies.

The fractional corner magnetizations predicted in this work
can, in principle, be measured in the actual materials by local
probes such as the atomic force microscope. For example,
La2CuO4, which is a parent material for cuprate high-Tc

superconductors, is known to develop a two-dimensional
collinear Néel order with S = 1/2 on the Cu square lattice,
and hence, would be a good candidate in two dimensions
[28,29]. It is interesting to note that recently the compound
was successfully fabricated in the form of a single layer
[30]. We note many other candidates for the S = 1/2 square
antiferromagnets, e.g., Sr2CuTeO6 [31], MoOPO4 [32], and
Ba2CuTeO6 and Ba2CuWO6 [33]. For three-dimensional
systems, perovskite materials, which develop G-type antifer-
romagnetic orders, such as ATiO3 with A = La, Ce, Pr, Nd,
and Sm, would be good candidates [34,35]. Other materials
like TaF3, KFeF3, KCoF3 [34], and RbMnF3 [36] would also
be worth investigating.

Anisotropy originating from the Dzyaloshinskii-Moriya
coupling becomes important near the edges/surfaces of the

samples where the inversion symmetry is locally broken. In
this work, we could not study such an effect due to the neg-
ative sign problem of the QMC calculations. We leave more
detailed examination to future work.
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APPENDIX A: RESTA’S FORMULA

In the main text the polarization P is computed as the sum
of the classical polarization P0 and the Berry phase correction
P̃ . The polarization can also be computed under the PBC
using Resta’s formula [38,39]. For spin S systems, it reads

PR =
{

1
2π

Im log
〈
ei 2π

L

∑L
r=1 rŝz

r
〉

mod 1 (S = 0, 1, . . .),
1

4π
Im log

〈
ei 4π

L

∑L
r=1 rŝz

r
〉

mod 1
2

(
S = 1

2 , 3
2 , . . .

)
.

(A1)
See Ref. [17] for the details of these formulas.

APPENDIX B: CHOICE OF COARSE-GRAINING
PARAMETER

Here we show that our choice of λ = 2 in this work is
practically large enough. We first consider an infinite one-
dimensional system and assume 〈ŝr〉 = M(−1)r for r ∈ N.
Then the coarse-grained magnetization is given by

mz(r) = M
L∑

r′∈N
g(r − r′)(−1)r′

. (B1)

Note that mz(r) is a periodic function of r satisfying mz(r +
1) = mz(r). The amplitude of the oscillation of mz(r)/M is
given by

A(λ) = mz(0)

M
=

L∑
r′∈N

g(r′)(−1)r′ = ϑ4
(
0, e− 1

2λ2
)

√
2πλ2

, (B2)

where ϑ4(z, q) ≡ ∑
n∈N (−1)nqn2

e2niz is one of Jacobi theta
functions. A(λ) is monotonically decreasing, for example,

A(1) = 1.44 × 10−2, (B3)

A(1.5) = 3.01 × 10−5, (B4)

A(2) = 5.35 × 10−9. (B5)

To define the corner magnetization in a d-dimensional sys-
tem properly, the coarse-grained magnetization mz(r) must be
negligibly smaller than M in the bulk, on the surface, and at
the hinges. This is guaranteed when A(λ) � 1, such as when
λ = 1.5 and λ = 2.
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