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Light-induced Dzyaloshinskii-Moriya interactions in antiferromagnetic metals
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The Dzyaloshinskii-Moriya (DM) interaction plays an essential role in novel topological spintronics, and the
ability to control this chiral interaction is of key importance. Developing a general microscopic framework to
compute DM interactions using imaginary-time Green’s function formalism, we theoretically show that the ac
electric field component of a laser pulse induces nonequilibrium static DM interactions in an antiferromagnetic
system in the presence of relativistic spin-orbit coupling. These induced DM interactions might even be
anisotropic depending on the direction of magnetic moments and the laser pulse polarization. We further show
that intense polarized laser pulses can in principle generate both classes of DM interactions, i.e., bulk-type and
interfacial-type, in a magnetic system even though the crystal symmetry prohibits one of them in equilibrium.
Our results reveal another aspect of rich behavior of periodically driven spin systems and out of equilibrium
magnetic systems.
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I. INTRODUCTION

The Dzyaloshinskii-Moriya (DM) interaction is an anti-
symmetric exchange interaction arising in magnetic systems
with broken spatial inversion symmetry. This chiral interac-
tion is responsible for many exotic states and the stabilization
of topological solitons in both ferromagnetic (FM) and anti-
ferromagnetic (AFM) systems, such as helimagnets [1], chiral
domain walls [2,3], skyrmions [4–7], hopfions [8], topological
magnons [9], and nonreciprocal dynamics of magnetic excita-
tions or magnons [10,11]. In AFM materials, DM interactions
also break the degeneracy of two magnon modes with oppo-
site helicities [12–14], making AFM materials promising for
magnonic devices.

The competition between the DM interaction and the
Heisenberg exchange defines the degree of deviation from
collinearity of the spin structures and also governs the stability
of topological spin textures. A sudden change in this ratio
can lead to excitation of ultrafast magnons in the system [15].
Also dynamical control of topological spin textures is of great
interest [16]. Hence, finding an efficient method of controlling
DM interactions is one of the current technological interests
and challenges in novel nanoscale spintronics. From a funda-
mental point of view, the precise and systematic calculation
of DM interactions in different magnetic structures as well
as the formulation of new methods for inducing equilibrium
and nonequilibrium DM interactions in magnetic materials
is an open question, and there is an urgent demand for new
proposals.

Based on the symmetry group analysis of crystals,
Dzyaloshinskii proposed that an antisymmetric exchange
interaction is allowed in noncentrosymmetric magnetic ma-
terials [17]. The microscopic origin of the DM interaction
was formulated by Moriya using the Anderson superexchange
interaction mechanism in the presence of spin-orbit coupling

(SOC) [18]. Moriya found that the DM interaction is linearly
proportional to the SOC strength. Nevertheless, this formal-
ism is not quite suitable for quantitatively computing the DM
interactions of real structures. Recent developments in spin-
tronics necessitate more convenient machinery and precise
approaches suitable for realistic systems with complicated
band structures, e.g., in conjunction with ab initio calcula-
tions. In recent years, there have been several new proposals
for computing equilibrium DM interactions in insulating and
metallic magnetic systems. Katsnelson et al. developed a
method for calculating DM interaction using the exact per-
turbation expansion of the total energy of an AFM system
in the canting angle [19]. In another approach, the origin of
DM interactions is attributed to a Doppler shift due to an
intrinsic spin current induced by SOC [20]. Several different
approaches based on the Berry phase formalism, spin-spin
correlation functions, and the magnetic force theorem have
been developed recently to compute the DM interactions
of realistic band structures in both FM and AFM systems
in equilibrium [21–27]. Equilibrium DM interaction might
be enhanced and even induced in magnetic thin films by
breaking the inversion symmetry via, e.g., sandwiching a
magnetic slab between two different layers, using proximity
effects in heavy-metal (HM) and magnetic film heterostruc-
tures [28–32], or applying electric gate voltages and lattice
strains [33–35].

Nonequilibrium DM interactions have been a subject of
very recent studies in spintronics and quantum magnetism.
DM interactions in FM metals can be modified by charge
currents and electrical voltages [36,37]. On the other hand,
it has recently been proposed that DM interactions can be
dramatically tuned in the presence of nonresonant laser pulses
via a direct coupling between the electric field component
of light and spins [15,16,38–40]. However, the situation in
metallic AFM systems [41] is unclear.
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In this paper, we study the DM interaction induced in
a metallic AFM system with finite SOC under a period-
ically driven electric field such as that arising from an
intense laser pulse. Using the path integral approach and the
imaginary-time Matsubara Green’s function formalism [42],
we develop a general formalism based on the computation of
spin correlation functions. Then, we compute the induced DM
interaction and present analytical results for a toy model of a
two-dimensional (2D) Rashba AFM system. Our formalism
is quite general and can possibly be implemented in first-
principles codes to compute induced DM interactions in more
complicated conventional AFM systems as well as recently
discovered topological and Weyl AFM materials [43–45].

The rest of the paper is organized as follows. In Sec. II,
we find a relation for the DM interaction tensor in terms of
correlation functions. In Sec. III, we introduce the path inte-
gral formalism to determine the effective bosonic action for a
generic magnetic system. In Sec. IV, we introduce our model
Hamiltonian and perturbing potentials. In Sec. V, we review
the results for the equilibrium DM interaction induced by the
Rashba SOC in an AFM system. In Sec. VI, we derive the DM
interaction induced by an ac electric field using fourth-order
perturbation theory. We present our conclusions in Sec. VII.

II. DM INTERACTIONS IN TERMS OF CORRELATION
FUNCTIONS

Phenomenologically, the free energy density of an inhomo-
geneous DM interaction can be written as [23,46–48]

EDM = Dabcna∂bnc, (1)

where the Einstein summation convention over repeated
indices is employed and a, b, c ∈ {x, y, z}. In the above equa-
tion, n is the order parameter vector field, e.g., the staggered
or Néel vector in AFM systems and the total magnetization
vector in FM systems, and D is the DM interaction tensor.
As already mentioned, it is possible to find the nonzero ele-
ments of the DM tensor based on the magnetic symmetries of
crystals. In this section, we want to find a general formula to
compute the DM interaction tensor in terms of spin correlation
functions [21].

From the definition of the partition function Z in quantum
statistical mechanics, we know that the action S is related to
the total energy of the system E ,

Z =
∫

Dne−Seff [n]/h̄ =
∫

Dne−βE [n], (2)

where the integral is taken over a bosonic field, which in our
case is the order parameter of the system in question, and Seff

is the effective bosonic action obtained after summation over
the fermionic degrees of freedom of the original total action.
The total action is the sum of the fermionic action, bosonic
action, and a term describing the interaction between these
fermions and bosons. Using the above relation, one can deter-
mine the total magnetic energy of a magnetic system. In this
approach, the spin-spin interactions, appearing in the effective
micromagnetic energy, are mediated by itinerant electrons
and thus have a Ruderman-Kittel-Kasuya-Yosida (RKKY)-
like coupling origin [49]. Note that the total micromagnetic
energy of the system is the sum of this RKKY-like magnetic

energy and the free energy of the localized spins presented in
the bosonic spin Hamiltonian.

In general, the effective action can be written in terms of
the correlation functions C. Up to the second order deviation
of the order parameter from equilibrium δn, we have βSeff =
δnaCabδnb. From Eq. (2), we find that (β/h̄)δSeff/δna =
δE/δna. The functional derivatives of the effective action
and micromagnetic energy are βδSeff/δna = Cabδnb and
δE/δna = Dabc∂bδnc, respectively. Expanding the correlation
function up to the first order of the wave vector q, Cab

q ≈
−ih̄(∂Cab

q=0/∂qc)∂c, we can determine the DM tensor,

Dabc = −i
∂Cac

q=0

∂qb
. (3)

Thus, different components of the DM interaction tensor are
related to the derivative of the spin correlation function with
respect to the wave vector. In the next sections, we compute
the appropriate spin correlation functions to find the equilib-
rium and light-induced DM interactions.

III. PATH INTEGRAL FORMALISM AND EFFECTIVE
BOSONIC ACTION

In this section, we use thermal quantum field theory and
the path integral approach to find the effective bosonic action
of a generic magnetic metal in the presence of perturbing po-
tentials. In this approach, we sum over the fermionic degrees
of freedom of itinerant electrons, and thus, the resulting ef-
fective DM interaction has an RKKY-like origin in which two
localized magnetic moments indirectly interact via itinerant
electrons.

The total Hamiltonian of a magnetic system is the sum
of an unperturbed Hamiltonian and an external perturbing
potential V coupled to fermions and can in general be spatially
and temporally dependent. The unperturbed Hamiltonian con-
sists of a fermionic part describing the dynamics of itinerant
free electrons and SOC, a bosonic part HB consisting of
the different possible magnetic interactions between localized
spins such as the Heisenberg exchange interactions, magnetic
anisotropies, and intrinsic DM interactions, with a spin order
parameter n, and an interaction term between the fermions and
bosons.

It is more convenient to collect all terms of the total Hamil-
tonian that have fermionic operators, i.e., the fermionic term,
the interaction term, and the perturbing term, in a new total
fermionic Hamiltonian HF ,

HF [n] = H0[n] + Vr,τ . (4)

Thus, the total Hamiltonian is Htot = HF [n] + HB[n]. The
total partition function is given by

Z =
∫

D�∗D�Dne−(SB+SF )/h̄, (5)

where SB and SF are the bosonic and fermionic parts of the
action, respectively, and � is the Grassmannian coherent-state
spinor. The fermionic part of the action SF related to the
fermionic Hamiltonian (4) is

SF =
∫ h̄β

0
dτ

∫
dr�∗

r,τ (h̄∂τ + HF [n])�r,τ , (6)
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where β is the thermodynamic beta, τ is the imaginary time,
and h̄ is the reduced Planck’s constant. SB similarly describes
the dynamics of the localized spins or magnons through the
bosonic Hamiltonian HB. In our formalism, we consider a
system with strong magnetic anisotropy in the low tempera-
ture limit, at which we can ignore both quantum and thermal
fluctuations. In this regime, SB is integrated out from the
partition function.

The total imaginary-time Green’s function related to the
fermionic Hamiltonian (4) is defined as

h̄G−1
r,τ,r′,τ ′ = −(h̄∂τ + HF )δ(τ − τ ′)δ(r − r′). (7)

Hence, we can rewrite the fermionic action as

SF =
∫∫ h̄β

0
dτdτ ′

∫∫
drdr′�∗

r,τ

( − h̄G−1
r,τ,r′,τ ′

)
�r′,τ ′ . (8)

To find an effective bosonic action, we integrate all
fermionic degrees of freedom in the partition function (5)
using the Gaussian integral technique and Jacobi’s formula.
Hence, we find Z = ∫

Dne−Seff [n]/h̄, where the effective ac-
tion can be expressed by

Seff = −h̄
∫∫ h̄β

0
dτdτ ′

∫∫
drdr′Tr

[
ln

( − G−1
r,τ,r′,τ ′

)]
. (9)

The Green’s function in this effective action (9) is the total
exact Green’s function related to the Hamiltonian (4) and can
be calculated using perturbation theory.

In general, the total perturbation to the equilibrium Hamil-
tonian can be a linear sum of l different perturbing potentials,

Vr,τ =
l∑

i=1

V i
r,τ . (10)

Using the Dyson relation, we find the total Green’s function
in terms of noninteracting Green’s functions G0,

G−1 = (G0)−1 − V. (11)

Inserting Eq. (11) into the effective action (9) and expanding
the action in terms of the total perturbing potential, in the
Fourier space, we can formally write the total effective action
as

Seff = S (0) + S (1) +
∞∑

n=2

S (n), (12)

S (n�2) =
l∑

p=1

S (n)
κp

, (13)

where S (0) and S (1) are the noninteracting and first-order per-
turbed actions, respectively. S (n) with n � 2 denotes higher-
order nonlinear effective action, and κp = (κp,1, ..., κp,n) with
p = {1, ..., l} represents different permutations of l perturbing
potentials appearing in the nth order perturbation theory.

The nonlinear nth order term of the effective action in the
Matsubara representation is then

S (n�2)
κp

= mκp

n

∑
k1...kn

Tr

[(n−1∏
i=1

G0
ki

V
κp,i

ki−ki+1

)
G0

kn
V

κp,n

kn−k1

]
, (14)

where mκp is the multiplicity of the permutation κp. In the
above expression, we introduce the four-vector notation k ≡
(k, iωm), where k is the electron wave vector, ωm = (2m +
1)π/β is the mth fermionic Matsubara frequency, and G0

k =
(ih̄ωm − H0)−1 is the noninteracting Green’s function in the
Matsubara representation.

IV. MODEL HAMILTONIAN AND PERTURBING
POTENTIALS

We consider a generic unperturbed fermionic Hamiltonian
for a 2D magnetic metal,

H0 = Hkin + Hso + Hsd, (15)

where Hkin is the kinetic energy of itinerant electrons, Hso is
the SOC term, and the last term is the s-d exchange interaction
between the spin of localized d electrons and itinerant s elec-
trons. In the semiclassical regime, the s-d exchange interaction
is modeled by

Hsd[n] = Jsd� · nr,τ , (16)

where Jsd is the strength of the s-d exchange interaction,
� is the spin matrix of itinerant electrons in an appropriate
Hilbert space, and n is the spin order parameter field. In a
simple FM metal, � ≡ σ is the two-by-two spin Pauli matrix,
and n is the magnetization direction vector, while in a simple
two-sublattice AFM metal, � ≡ σ ⊗ τz, where τz denotes the
sublattice degrees of freedom and n is the direction of the
staggered Néel vector.

In our formalism for computing the DM interactions, the
perturbing potential V is a sum of (i) the deviation of the
order parameter from its equilibrium direction and (ii) the ac
electric field component of the laser pulse coupled to itinerant
electrons.

(i) The deviation of the order parameter from its equilib-
rium direction is defined as

δnr,τ = n0 − nr,τ , (17)

where n0 is the equilibrium direction of the order parameter.
Through the s-d exchange, the related perturbing potential is
thus

V (1) = Jsd� · δnr,τ δ(r − r′)δ(τ − τ ′). (18)

(ii) The coupling between the electric field and the itiner-
ant electrons is introduced in the noninteracting Hamiltonian
via the minimal-coupling prescription, p → p + eAt , where
p = −ih̄∇ is the linear momentum operator, −e < 0 is the
electron charge, and A is the vector potential related to the
applied electric field Et = −∂t At . The electric field perturbing
potential in imaginary time [42] is

V (2) = jr · Aτ , (19)

where jr = e∂H0[n0]/∂ p is the charge current density opera-
tor.
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V. EQUILIBRIUM DM INTERACTION: SECOND-ORDER
PERTURBATION THEORY

In the absence of any external perturbation, SOC might
induce an equilibrium DM interaction in the magnetic system.
In this section, we find this equilibrium DM interaction. The
results presented in this section have already been presented
in Ref. [21], but for completeness and further discussion, we
outline them here briefly.

Without loss of generality, we consider a 2D AFM metal
with broken inversion symmetry in the z direction normal
to the plane modeled by a 2D Rashba SOC. The effective
unperturbed Hamiltonian of this system on a square lattice
is [21]

H0 = (γpσ0 + iαR ẑ · σ × ∇) ⊗ τx + Jsd� · n0, (20)

where γp = −ε0 − h̄2∇2/2m is the kinetic energy oper-
ator, with m denoting the effective electron mass, ε0 =
h̄2k2

0/2m, αR is the Rashba SOC strength, � ≡ σ ⊗ τz, and
n0 = ( sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ ) is the equilibrium di-
rection of the order parameter. The band dispersion of this

system is anisotropic ξη
s = η

√
J 2

sd + γ 2
k + α2

Rk2 + s2αRkζk,

where ζk =
√

γ 2
k + J 2

sd(1 − sin2 ϑ sin2 (ϕ − φk )), k = |k|,
φk = tan−1(ky/kx ), η = ±1 labels the conduction and valence
bands, and s = ±1 denotes the chirality of the subbands; see
Fig. 1.

The perturbing potential [see Eq. (18)] is in the Fourier
space given as

V (1)
k,iνl

= Jsd� · δnk,iνl . (21)

In the absence of any time-dependent perturbation, the lowest-
order perturbation that leads to a finite DM interaction is the
second-order perturbation theory. Using Eqs. (13) and (14),
we find

S (2) =
∑
a,b

∑
q,m

δna
q,iνm

�ab
q,iνm

δnb
−q,−iνm

, (22)

with the following transverse spin susceptibility tensor,

�ab
q,iνm

= J 2
sd

2

∑
k,n

Tr
[
�aG0

k,iωn
�bG0

k+q,iωn+iνm

]
, (23)

where νm = 2mπ/β is the mth bosonic Matsubara frequency.
The different elements of the DM tensor are calculated

using Eq. (3). In the presence of an axially symmetric 2D
Rashba SOC, the nonzero elements of the equilibrium DM
tensor are only Di0

x ≡ (D0
xxz = −D0

zxx ), Di0
y ≡ (D0

yyz = −D0
zyy),

and thus, the DM interaction is interfacial type and is related
to the dc spin susceptibility as [21]

Di0
x(y) = i

∂�
x(y),z
q=0

∂qx(y)
= −i

∂�
z,x(y)
q=0

∂qx(y)
. (24)

Since the assumed Rashba SOC, see Eq. (20), is isotropic,
the obtained interfacial-type DM interaction is also isotropic,
Di

0 ≡ (Di0
x = Di0

y ). Finally, the micromagnetic DM free en-
ergy, Eq. (3), arisen from the isotropic Rashba SOC can be
written in the form of Lifshitz invariants and in a compact
form reads EiDM = Di

0n · (ẑ × ∇) × n [47].

FIG. 1. The dispersion relation of a Rashba AFM metal with
n0 = x̂ in two different directions φk = 0 (top) and φk = π/2 (bot-
tom). The solid and dashed curves show the conduction (η = +1)
and valence (η = −1) bands, respectively, while red and blue col-
ors mark the s = +1 and s = −1 spin chirality of the subbands,
respectively.

On the other hand, it can be shown that for a 2D Dres-
selhaus SOC, HSOC = iαD(σx∂x − σy∂y) ⊗ τx, where αD is
the isotropic Dresselhaus SOC strength, the nonzero el-
ements of the equilibrium DM tensor are Db0

x ≡ (D0
zxy =

−D0
yxz ), Db0

y ≡ (D0
xyz = −D0

zyx ), with Db0
x = i∂�

zy
q=0/∂qx =

−i∂�
yz
q=0/∂qx and Db0

y = i∂�xz
q=0/∂qy = −i∂�zx

q=0/∂qy; thus,
the DM interaction is bulk type. Consequently, the free energy
of this isotropic bulk-type DM interaction can again be written
in terms of Lifshitz invariants as EbDM = Db

0n · ∇ × n, with
Db

0 ≡ (Db0
x = Db0

y ) [47].
As we have already discussed, this DM interaction induced

by SOC in metals has an RKKY-like origin [50]. It arises
from indirect anisotropic exchange interactions between two
localized spins mediated by itinerant electrons.

Equations (23) and (24) can in general be evaluated nu-
merically for arbitrary band structures. In the limit of small
Rashba (Dresselhaus) SOC and at zero temperature, the equi-
librium interfacial (bulk) DM interaction in the metallic and
insulating regimes of an AFM system read [21]

Di(b)
0 =

{
− k2

0J 2
sd

8πε2
F

(
2 − ε2

F

ε2
0

)
αR(D), Jsd < εF < ε0( k2

0
2π

)
αR(D), 0 < εF < Jsd,

(25)

where εF is the Fermi energy. These results show that the sign
and amplitude of the DM interaction can be tuned by changing
the Fermi level, e.g., via charge doping or a gate voltage [21].
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Note that as we have also found here, in equilibrium, it is
forbidden to have a bulk-type (interfacial-type) DM interac-
tion in the presence of a Rashba (Dresselhaus) SOC in our
system. We later show that this argument is not anymore valid
in the presence of the optical perturbation. Here, we should
emphasize that in the case of an arbitrary direction of the
equilibrium order parameter n0 and in the presence of strong
SOCs, there might be small anisotropy in the DM parameters
along different spatial directions that we neglect in the present
study [23].

VI. LIGHT-INDUCED DM INTERACTION:
FOURTH-ORDER PERTURBATION THEORY

In the presence of a laser pulse, the ac electric field compo-
nent of the electromagnetic wave is coupled to itinerant charge
carriers, and we can treat this coupling as a time-dependent
perturbing potential in our formalism. To examine the effect of
a laser pulse, we consider a spatially uniform time-oscillating
electric field, described using a dipole approximation in the
long-wavelength limit as

Eτ = Eτ ε̂, Eτ = E0e−�τ , (26)

where E0 and � are the electric field amplitude and fre-
quency of the laser pulse, respectively, and ε̂ = (εxx̂ +
εyŷ)/

√|εx|2 + |εy|2 denotes the polarization direction with
εx(y) ∈ C. The perturbing potential is as follows, see Eq. (19),

V (2) = jr · Aτ , (27)

jr = −e

(
ih̄∇
m

σ0 + αR ẑ × σ

)
⊗ τx. (28)

In the frequency domain, we obtain

V (2)
k,iνl

= ukE−iνl + u†
kEiνl , (29)

uk = jk · ε̂

i�
. (30)

In the presence of an ac electric field, the lowest-order
perturbation that leads to a finite static contribution to the
equilibrium DM interaction is the fourth-order perturbation
theory [see Eq. (14)],

S (4)
κp

=mκp

4

∑
k1...kn

Tr

[( 3∏
i=1

G0
ki

V
κp,i

ki−ki+1

)
G0

kn
V

κp,n

kn−k1

]

=mκp

4

∑
k1,k2,k3,k4

Tr
[
G0

k1
V

κp,1

k1−k2
G0

k2
V

κp,2

k2−k3
G0

k3

× V
κp,3

k3−k4
G0

k4
V

κp,4

k4−k1

]
. (31)

Since we have two perturbing potentials, V (1) and V (2) [see
Eqs. (21) and (29)], there are four different permutations
mκ1 = 4 for κ1 = (1, 1, 2, 2) and two permutations mκ2 =
2 for κ2 = (1, 2, 1, 2). Thus, the fourth-order action, using
Eq. (13), can be expressed as

S (4) =S (4)
κ1

+ S (4)
κ2

, (32)

where

S (4)
κi

= h̄β
∑
a,b

∑
q,l,m, j

δna
−q,−iνl

�i,ab
q,ν j ,νl ,νm

δnb
q,−iνm

, (33)

and the polarization tensors are given by

�1,ab
q,ν j ,νl ,νm

= J 2
sd

h̄β

∑
k,n

Tr
[
G0

k,iωn
�aG0

k+q,iωn+iνl

× �bG0
k,iωn+iνl +iνm

V (2)
k,−iν j

× G0
k,iωn+iνl +iνm+iν j

V (2)
k,iνl +iνm+iν j

]
, (34)

�2,ab
q,ν j ,νl ,νm

= J 2
sd

2h̄β

∑
k,n

Tr
[
G0

k,iωn
�aG0

k+q,iωn+iνl

× V (2)
k+q,−iν j

G0
k+q,iωn+iνl +iν j

�b

× G0
k,iωn+iνl +iνm+iν j

V (2)
k,iνl +iνm+iν j

]
. (35)

�1 is related to two successive electronic excitations and re-
laxations, while �2 involves overlapping excitation processes;
see. Fig. 2. Since the dynamics of the spins are much slower
than those of electrons, we consider only quasistatic magnons,
i.e., νl = νm = 0. Using Eq. (29), after some algebra, we can
rewrite the total time-averaged quasistatic polarization tensor
as 〈

�ab
q,ν j

〉 = 〈
�1,ab

q,ν j

〉 + 〈
�2,ab

q,ν j

〉 = J 2
sdχ

ab
q,ν j

Eiν jE−iν j , (36)

where 〈...〉 denotes time averaging and χ is the ac response
function tensor,

χab
q,ν j

= 1

h̄β

∑
k,n

Tr

[
G0

k,iωn
�aG0

k+q,iωn
�bG0

k,iωn
ukG0

k,iωn+iν j
uk

+ G0
k,iωn

�aG0
k+q,iωn

�bG0
k,iωn

u†
kG

0
k,iωn+iν j

u†
k

+ 1

2
G0

k,iωn
�aG0

k+q,iωn
uk+qG0

k+q,iωn+iν j
�bG0

k,iωn+iν j
uk

+ 1

2
G0

k,iωn
�aG0

k+q,iωn
u†

k+qG
0
k+q,iωn+iν j

�bG0
k,iωn+iν j

u†
k

]
.

(37)

In Fig. 2, the different Feynman diagrams related to this cor-
relation function are plotted.

The contribution of the ac electric field to the interfacial-
type DM interaction is given by the dynamical correlation
functions through analytical continuation as

δDi
x(y) =

(
∂χ

x(y),z
q,ν j |iν j→�+i0+

∂qx(y)

)
q→0

J 2
sdE2

0 . (38)

As we already discussed in the previous section, the bulk-
type DM interaction δDb

x(y) can also be computed using
Eq. (38) through the proper change of the spatial indices.
Equations (36), (37), and (38) are our main results. These
equations are quite general and might be implemented in
first principle codes to compute induced DM interactions in
materials with realistic band structures.

For a Rashba AFM model described by the Hamilto-
nian (20) and an AFM order parameter along the x direction
n0 = x̂, we numerically and analytically compute the induced
interfacial-type and possible bulk-type DM interactions. If the
order parameter was perpendicular to the plane, i.e., along the
direction of inversion symmetry breaking, we had an in-plane
rotational symmetry described by a U (1) gauge symmetry.
However, we consider a system with an order parameter along
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uk,−iνj
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Σb

Σb

u†
k,iνj

G0
k,iωn

G0
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k,iωn+iνj
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u†
k,−iνj

u†
k,−iνj

u†
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k,iωn
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Σa
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(a)

(b)

FIG. 2. The Feynman diagrams of different photon-magnon scat-
tering processes involved in the transverse correlation function
computed within the fourth-order perturbation theory are shown, see
Eq. (37). (a) Successive and (b) overlapping processes in which two
photons are created (top)/annihilated (bottom) and two magnons are
annihilated (top)/created (bottom).

a particular direction inside the plane and thus, we reduce
the rotational symmetry of the system further. In this case,
we expect the response of the system to be sensitive to the
laser polarization, and therefore the induced DM interaction

FIG. 3. Numerical results for the laser-induced interfacial-type
DM interaction in a Rashba AFM system as a function of the Fermi
energy εF , for a laser pulse with linear polarization along x (blue)
and y (red) directions and circular polarization (green). The two
components of the DM tensor related to the interfacial DM inter-
action are plotted by dashed lines δDi

x and solid lines δDi
y. The

equilibrium direction of the AFM order parameter is n0 = x̂. The
inset shows the induced DM interaction inside and far above the
gap. For the numerical calculations, we use ε0 = 4 eV, Jsd = 1 eV,
k0αR = 0.4 eV, a = 0.4 nm, � = 0.75 eV, and T = 300 K.

might even be anisotropic depending on the laser pulse po-
larization. The ratio δDx/δDy measures the DM anisotropy,
and its value can be tuned by varying the Fermi level, SOC
strength, and laser pulse frequency. Furthermore, in this far-
from-equilibrium situation, it is now allowed to have a finite
bulk-type (interfacial-type) DM interaction in a system with a
Rashba (Dresselhaus) SOC.

For the light-induced interfacial-type DM interaction in the
metallic regime and in the limits of high frequency (Jsd �
εF � �) and zero temperature, we find

δDi
x(y) = −αRJ 2

sd

(
ε2

0 − ε2
F

)
2π�3ε3

F

e2λx(y)E2
0 , (39)

where λx(y) = Re[3ε2
x(y) + ε2

y(x)]/(|εx|2 + |εy|2). In the insulat-
ing regime (εF < Jsd) and in the nonresonant case � < 2Jsd,
we obtain

δD̃i
y = 2αRJ 2

sd

π�3
√

4J 2
sd − �2

tan−1

⎛
⎝ �√

4J 2
sd − �2

⎞
⎠e2λ̃E2

0 ,

(40)

δD̃i
x = 2J 2

sd − �2

4J 2
sd − �2

δD̃i
y − αRJ 2

sd

π�2
(
4J 2

sd − �2
)e2λ̃E2

0 , (41)

where λ̃ = Re[ε2
x + ε2

y ]/(|εx|2 + |εy|2).
These results show that a nonresonant polarized laser pulse

can induce an anisotropic DM interaction. In the insulating
phase, the induced DM interaction is zero for circularly polar-
ized laser pulses in our model.

The numerical results for different laser pulse polarizations
and frequencies at room temperature are shown in Figs. 3
and 4. These results show that not only can we change the
amplitude and sign of the induced DM interactions, but we
can also tune the DM anisotropy in this system.
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FIG. 4. The frequency dependence of the laser-induced
interfacial-type DM interaction in a Rashba AFM system as a
function of the Fermi energy εF . The induced DM interaction
changes sign and peaks in magnitude at the insulator-metal
transition. The system parameters are the same as in Fig. 3.

The Rashba SOC in equilibrium gives only rise to an
interfacial-type DM interaction and thus, a bulk-type DM
interaction is forbidden, see Sec. V. However, in the nonequi-
librium situation other elements of the DM tensor, see
Eqs. (37) and (38), can be nonzero depending on the order
parameter direction and the laser polarization. In the metallic
regime, up to linear order in the Rashba SOC strength, we find

δDb
x(y) = −αRJ 2

sd

(
ε2

0 − ε2
F

)
π�3ε3

F

e2λb
x(y)E2

0 , (42)

where λb
x(y) = Re[εx(y)εy(x)]/(|εx|2 + |εy|2). This result shows

that in a Rashba AFM system, a bulk-type DM interaction
might be induced for certain laser pulse polarizations. How-
ever, the bulk-type DM interaction is zero inside the gap in
our model. These analytical results are also confirmed with
numerical calculations, see Fig. 5.

FIG. 5. Numerical results for the laser-induced bulk-type DM
interaction in a Rashba AFM system as a function of the Fermi
energy εF for different laser polarizations. The system parameters
are the same as in Fig. 3.

VII. SUMMARY AND CONCLUDING REMARKS

In this study, we investigated the effect of nonresonant laser
pulses on the DM interactions. The ultrafast renormalization
of DM interactions can destabilize the magnetic ground state
and excite magnons in the systems. Additionally, a sudden
change in DM interactions in magnetic systems with topo-
logical solitons, stabilized with DM interactions, may trigger
ultrafast dynamics of these chiral objects. On the other hand,
generation of static DM interactions of different symmetries,
bulk-type and interfacial-type, in the far from equilibrium
magnetic systems may lead to dynamical stabilization of novel
exotic topological spin textures.

In the present calculations, we ignored the effect of laser-
induced heating. To avoid too much sample heating, it is
possible to use nonresonant subpicosecond laser pulses with
high frequencies. In the presence of heating, we have to take
into account the effect of thermal magnons in our formalism
as well. On the other hand, in quantum AFM systems with
weak or zero magnetic anisotropy, quantum fluctuations are
pronounced at zero temperature. In this study, the quantum
fluctuations have been neglected since we considered an AFM
system with strong anisotropy that makes the system assume a
classical Néel ground state. An advantage of our formalism is
that both quantum and thermal effects can be implemented in
this machinery method which will be the focus of our future
work.

Additionally, we should emphasize that although in the
current study we considered only the direct coupling of pho-
tons and spin-spin interactions by the renormalization of the
DM parameters, there is another nonthermal optomagnetic
mechanism known as the inverse Faraday effect that indirectly
couples photons and spins via SOC by inducing an effective
magnetic field along the laser pulse propagation [41,51,52].
This effective magnetic field couples to spins by a Zeeman-
like interaction and excites magnons. Both mechanisms are
second order in the electric field, and the competition between
these two mechanisms is an open question for further studies.

In summary, we developed a theory to compute the light-
induced DM interactions induced by an ac electric field in
AFM systems. The formalism is quite general and may be
used in first-principle codes for complicated band structures
and to compute DM interactions in novel states of magnetic
materials such as topological AFM materials and Weyl AFM
systems. Using a Rashba AFM model, we evaluated the am-
plitude of the light-induced DM interaction. Our theory shows
that ultrafast laser pulses can suddenly change the equilibrium
DM interaction and thus lead to ultrafast magnon excitation in
AFM systems. We also showed that in nonequilibrium situa-
tions, it is possible to have different types of DM interactions
which are usually forbidden in equilibrium for a particular
system. The results suggest that nonequilibrium magnetic
systems may host interesting and exotic physics which are
promising for future spintronics.
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